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A B S T R A C T

Zimbabwe is blessed with tourist attractions that draw visitors from all over the world. However, there are
no quantitative models available for tourism stakeholders to utilize in decision-making and planning. The
country is experiencing foreign currency shortages, which may be alleviated if the tourism industry, which
has the power to generate foreign currency, adopted quantitative forecasting techniques that can provide
reliable estimates. For planning reasons, resource mobilization, and allocation, accurate tourist projections
are critical to the government and other tourism stakeholders. The goal of this research is to model interna-
tional tourist arrivals in Zimbabwe and develop a quantitative statistical model that can be used to forecast
future international tourist visitors. The Zimbabwe National Statistics Agency (ZIMSTAT) provided monthly
foreign tourist arrivals data for the period January 2000 to December 2018. After the data revealed non-sta-
tionarity and seasonality, a time series technique in the form of the Box-Jenkins approach is applied to the
data. The autocorrelation function (ACF), partial autocorrelation function (PACF), and root mean square error
(RMSE) revealed that a seasonal autoregressive integrated moving average (SARIMA) model suited well to
the data. The model predicted a gradual and seasonal increase in international tourist arrivals. The results of
this model could be used by those in charge of tourism marketing to develop effective and efficient market-
ing strategies so that the country can receive a significant increase in international tourists, which will bring
in much-needed foreign currency. It is important for tourism stakeholders and service providers to guarantee
the availability of enough transport and accommodation facilities, especially during peak seasons.

© 2022 The Author(s). Published by Elsevier España, S.L.U. on behalf of Sustainable Technology and Entre-
preneurship. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

One of the key economic areas that is expanding quickly around
the world is tourism, which offers employment and investment
opportunities (Chang et al., 2011). According to Mitchell and Ashley
(2006) and the World Bank (2006), it is one of the important sectors
that can reduce poverty and boost economic growth in African
nations. The tourist industry contributes 12% of Zimbabwe’s GDP.
Tourism is one of the most diverse industries in the world due to its
integrating effect that spans practically all sectors of the economy
(Meschede, 2020). It is recognized as the largest industry in the
planet (Li et al., 2022). Tourism has been reckoned to be one of the
most developed as a major global industry reflected by an annual
average growth of 4-5% contributing to 8% of the Global GDP and 10
% in global employment (World Tourism Organisation, 2020; Valto-
lina, Barricelli, and Di Gaetano, 2020; Nyagadza et al., 2022). Accord-
ing to WTTC (2019) the tourism industry witnessed a growth of 3.9%
and contributed $8.8 trillion in revenue and created 319 million jobs
to the global economy. This shows how tourism can influence global
turnaround of economies, if it is supported with proper investment
in marketing and provided with systems that amend any likely mis-
haps. Tourism reckoned as one of the most developed industries
globally (Nyagadza et al., 2022). This is reflected by the industries
annual average growth of 4-5%, its 8% contribution to the Global GDP
and 10 % contribution in global employment (Nyagadza, Mazuruse,
Muposhi & Chigora, 2022).

Because it directly adds to the country’s gross domestic product
(GDP), generates employment, and boosts foreign exchange reserves
in addition to drawing in foreign direct investment (FDI), Zimbabwe’s
tourist sector is crucial to the country’s economic development (Chi-
kobvu & Makoni, 2019). The majority of Zimbabwe’s economic
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sectors are associated with the travel and tourism sector, and they
greatly profit from foreign visitors (Woyo & Slabbert, 2021; Makoni
and Chikobvu, 2018; Chikobvu & Makoni, 2019; Makoni & Chikobvu,
2017). Therefore, successful international tourism demand forecast-
ing in Zimbabwe offers tourism decision-makers a useful planning
tool.

The growth and promise of this global giant would have tran-
scended into the current and future periods but was curtailed by the
catastrophic surge of the COVID-19 pandemic (G€ossling et al., 2020).
This pandemic has negatively impacted economies globally killing
many lives (Rezapouraghdam & Karatepe, 2020; Guo et al., 2020). It
caused a downturn in the world economy which was never experi-
enced in the past decades (World Economic Forum, 2020). It forced
businesses to close and restricted both inbound and outbound move-
ment of people for pleasure and business. According to Bahar & Celik
Ilal (2020) the upsurge of COVID-19 has negatively impacted the
global tourism business which had made large investments in the
building of hotels, setting up of tour operators and airline companies.
They also said that the surge affected the employees and clients of
this industry as it came as a destruction in doing business and sup-
porting progress in the global socio-economy wellbeing (Don Chi
Wai Wu et al., 2021; Nyagadza, Chuchu & Chigora, 2022). Further-
more, Fernandes (2020) announced that the consequences brought
by COVID-19 on the global economy are worse than those experi-
enced in the Great Depression of the 1930s and even those of the
global financial crisis (GFC) of 2008.

However, many countries, like Zimbabwe, have reaped significant
benefits from tourism since the host country can obtain foreign cur-
rency, which helps to enhance the country’s GDP. According to the
World Travel and Tourism Council (WTTC), tourism accounts for 10%
of worldwide GDP (Adhikari and Agrawal, 2013; Ghalehkhondabi et
al., 2019). Accurate tourism demand is important for investors, the
government, and tourism managers since it aids in planning and
decision-making (Li et al., 2022, Makoni & Chikobvu, 2021). Accord-
ing to Makoni and Chikobvu (2018), accurate tourism projections
enable the sector to continue playing a crucial role in raising the
nation’s economic standing. These forecasts are mainly obtained
through using scientific statistical techniques (Makoni & Chikobvu,
2021, Chang, 2011). The forecasting performance of statistical fore-
casting methods is superior to judgmental methods, claim Athanaso-
poulos et al. (2009).

According to Salinas Fern�andez et al. (2022), the Covid-19 global
pandemic is having a detrimental impact on the tourism business
activities and the economies of countries that heavily rely on the sec-
tor. Zimbabwe is not exceptional. In addition to agriculture and min-
ing, Zimbabwe’s economy depends heavily on the tourism industry,
which the Covid-19 outbreak affected severely. For things to return
to normal in Zimbabwe, the nation must make the tourism industry
competitive. Rebranding and ensuring that the nation’s tourist sector
is competitive, will be achieved through the use of accurate tourism
projections emanating from statistical models (Nyagadza et al.,
2022).

Tourism time series and forecasting studies will be vital if the
country is to expand economically, monetarily, and socially. It is quite
difficult to accurately predict the expected quantity of tourists within
a certain time frame because there are some unplanned changes that
can disrupt activity (Hao et al., 2020). As a result, it is vital to precisely
anticipate the number of tourists at any given time. Accurate tourist
demand projections are essential to design policy. Zimbabwe is one
of the world’s most tourist-dependent countries. International tourist
arrivals in Zimbabwe should be taken seriously because they vary
year to year owing to unforeseeable reasons like COVID-19 and
drought (Ugur and Akb ıyık, 2020). Accurate forecasting assists gov-
ernment and industry actors in making key decisions, minimizing
waste and inefficiency of tourist resources, and thereby decreasing
risk and uncertainty (Chen et al., 2014).
2

This study aims at predicting Zimbabwe’s international tourist
arrivals using the Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) model. In Africa and Zimbabwe in particular, statistical
time-series tourist prediction models are lacking. More wealthy
nations than emerging ones use the models. The lack of scientific
methodologies and informative time series models for forecasting
international visitor arrivals for planning and decision-making pur-
poses is being filled. The study adds to the body of knowledge regard-
ing the significance of SARIMA models in the tourism sector.
Consequently, effective demand forecasting for international tourism
in Zimbabwe and beyond provides decision-makers in the tourism
industry with a useful planning tool. The most widely used and well-
known statistical time series forecasting models is the Autoregressive
Integrated Moving Average (ARIMA) or a seasonal ARIMA (SARIMA).
The Box-Jenkins methodology is employed in fitting the ARIMA/SAR-
IMA models, it is well-known for its high forecasting accuracy and
efficiency in modeling a variety of time series in a basic manner
(Khandlwal et al., 2015; Nyagadza & Chigora, 2022).

Literature review

According to Song and Li (2008), there are primarily three model
groups (time series, econometric, and artificial intelligence-based
models) used to anticipate tourism demand using historical data.

The ARIMA/SARIMA models are the widely used in tourism
demand forecasting Wu et al. (2021). Athanasopoulos et al. (2011)
compared univariate and multivariate time series approaches, econo-
metric models using 66 monthly series, 427 quarterly series, and 518
annual series, and came to the conclusion that pure time series-based
approaches like ARIMA models are superior to the models with
explanatory variables. Forecasts using univariate models like the
ARIMA or SARIMA are accurate. In Macau, a special administrative
region (SAR) of China, Wu et al. (2021) forecast a need for tourists.
The authors proposed a brand-new hybrid strategy that combines
the SARIMA model with long short-term memory (LSTM)
(SARIMA + LSTM). The proposed model fared better than the ARIMA,
SARIMA, and naive models.

A SARIMA (2, 1, 0)(2, 0, 0)12 model, according to Makoni and Chi-
kobvu (2018), fit the Victoria Falls Rainforest, one of Zimbabwe’s
most well-known tourist destinations, well. The SARIMA model was
shown to have the highest predicting accuracy by Makoni and Chi-
kobvu (2018) when they compared it to the naive, seasonal naive,
and Holt-Winters exponential smoothing models. A similar method
will be applied to Zimbabwe as a country rather than just one partic-
ular tourist attraction site. In Spain, seasonality was taken into
account in Martín Martín and Salinas Fern�andez’s (2022) analysis of
the implications of technological advancements in the train network
on tourism sustainability. They suggested models that account for
the seasonality in tourist arrivals; thus, this study uses a SARIMA
model that does so.

As recommended by Salinas Fern�andez et al. (2022) as recovery
plans for the tourism sector, Zimbabwean tourism stakeholders must
ensure the availability of information and communication technolo-
gies, the destination’s openness to travelers from around the world,
and the availability of adequate transportation and accommodation
infrastructures and tourist services. This is possible with the help of
insightful, accurate tourism projections. In their study, Li et al. (2022)
found a positive correlation between a recovery employee’s physical
beauty and tourists’ perceptions of the recovery employee and the
company (Arasli et al., 2021; Mao et al., 2021). In order to develop
effective and efficient recovery measures that go beyond the COVID-
19 outbreak, the current study’s major objective is to use time series
models to model international arrivals, regardless of their gender and
employee’s physical beauty (Bartik et al., 2020; Sam et al., 2020).

Li et al. (2022) forecast the medium-term performance of restruc-
tured tourism enterprises using a new adaptive integrated predictor.
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The SARIMA models will be used in this study rather than the adap-
tive integrated predictor since they are more flexible and straightfor-
ward to employ for predicting tourism demand (Brito et al., 2021;
Siami-Namini et al., 2018). Two alternative univariate-time-series
methodologies and one artificial intelligence (AI) methodology were
used by Diunugala and Mombeuil (2020) to forecast the number of
tourists arriving in Sri Lanka from the top 10 tourist-producing
nations (India, China, the UK, France, Japan, the Maldives, Germany,
the USA, Russia, and Australia). They came to the conclusion that
ARIMA and Winter’s exponential smoothing were the two most
effective models for predicting foreign traveler arrivals (FTAs) in Sri
Lanka.

Msofe and Mbago (2019) used the Box-Jenkins (1970) approach to
predict the arrival of foreign tourists in Zanzibar and discovered that
the SARIMA (1, 1, 1) (1, 1, 2)12 model best fit the monthly data as indi-
cated by the Akaike’s Information Criterion (AIC). The forecasts
revealed a rise in seasonality and future foreign tourist arrivals. In
their projection for Indonesia’s foreign tourism demand, Nurhasanah
et al. (2022) used the Box-Jenkins (1971) methodology. The best
model, according to the authors, was a SARIMA one because it took
into account the seasonality of tourist demand. The predictions
revealed a rise in incoming foreign tourists. The authors suggested
using the methodology, therefore it will be used in this study to fore-
cast tourist demand.
Methods

The Box-Jenkins (1970) technique has a good performance in fore-
casting, according to the literature (Nadal-De Simone et al., 2000),
hence it is adopted in this study. The proposed container throughput
forecasting methodology includes the following steps: (i) time series
characteristics, (ii) Augmented Dickey-Fuller Test for stationarity, (iii)
model identification and estimation, (iv) diagnostic checking, (v)
accuracy measures, and (vi) forecasting and forecast evaluation.

Characteristics of time series data

The monthly international tourist arrivals statistics (Yt) for Zim-
babwe for the period January 2000 to December 2018 were used in
this study. The time-series data is initially examined for inconsisten-
cies. To stabilize the variance, a variety of transformation strategies
(Hill et al., 2006; Nyagadza, Chigora & Chuchu, 2022) might be used.
An autocorrelation function (ACF) can be used to visualize the modi-
fied time series and display a seasonal trend. There is a need to exam-
ine seasonality in the series if the ACF and partial correlation function
(PACF) show considerable rises with a repeated and persistent pat-
tern over the complete lag period.
Test for stationarity (the augmented Dickey-Fuller t statistic)

The mean, variance, and covariance are the key features to look
for when determining whether or not the data is stationary. The Aug-
mented Dickey-Fuller (ADF) test is the regularly used method for
testing stationarity of data, and it will be applied in this study. It will
be carried out under the null hypothesis that the monthly interna-
tional tourist data series has a unit root. The ADF test statistic will be
computed and compared to the relevant critical value. The ADF test is
based on the following expression proposed by Banerjee et al. (1993).

Dyt � aþ bt þ p� 1ð Þyt�1 þ d1Dyt�1 þ . . . þ dp�1Dyt�pþ1

þ et ; ð1Þ

where a is a constant, b the coefficient of a simple time trend, D is
the first difference operator, di are parameters and p the lag order of
the autoregressive process. The decision on whether to include the
3

intercept and/or the time trend should be determined ahead of time.
The lagged differenced variables are used to account for any serial
correlation that might emerge in the error term et, which is assumed
to be a white noise process (Banerjee et al., 1993).

Box-Jenkins method

The Box-Jenkins (1970) methodology is a combination of the
autoregressive (AR) and moving average (MA) method (Shen, 2009).
The approach accommodates both stationary and non-stationary
time series. The approach include:

(i) Identification- ACF and PACF are used to determine the model’s
order using time series graphs of the data.

(ii) Parameter estimation. Applying the maximum likelihood estima-
tion (MLE) method in estimating the model parameters of the ten-
tative model.

(iii) Diagnostic Checking. The suitability of the fitted model in terms of
forecasting accuracy is being checked.

ARMA
Once the data is stationary and the tentative model has been iden-

tified, an appropriate model can be fitted. Box et al. (2011) propose an
ARMA model that reduces the number of parameters by combining
both the AR and MA models. The ARMA (p,q) is a combination of an
AR(p) and MA(q) components. Both p and q are integers and repre-
sent the orders of the AR and the MA components, respectively. An
ARMA (p,q)model can be expressed as:

yt ¼ mþ
Xp
i¼1

;iYt� i�
Xq
i¼1

uiet� iet ; ð2Þ

where m is the mean, ;i represents the AR parameters, ui represents
the MA parameters, et is a white noise series with mean zero and var-
iance s2 denoted as et »Nð0;s2Þ.

After applying the backward shift operator, the resultant model
will be:

1� ;1B� ;2B� . . . ;1B2 � . . .� ;pBp� �
Yt

¼ mþ 1� u1B� u2B� . . . u1B2 � . . .� uqBq� �
et ; ð4Þ

where the first component 1 - ;1B� ;2B� . . . ;1B2 � . . .� ;pBp repre-
sents the AR(p) and the second component 1 - u1B� u2B� . . . u1B2 �
. . .� uqBq represents the MA(q).

ARIMA

SARIMA model
The Seasonal ARIMA (SARIMA) is formed by adding seasonal

terms in the ARIMAmodels. SARIMA Models are written as:
SARIMA (p, d, q) (P, D, Q) s where p is the non-seasonal AR order, d

is the non-seasonal difference, q is the non-seasonal MA order, P is
the seasonal AR order, D is the seasonal difference, Q is the non-sea-
sonal MA order and s denotes the seasonality period. The SARIMA
model can be written as:

’p Wð Þ;P Wsð Þr d r D
s Yt ¼ uq Wð Þ � u�Q Wsð Þet ð5Þ

where ’p; ;P ; uq; �u�Q are model parameters and r D
s ¼ ð1�WsÞD

The ACF and PACF plots are used to identify the tentative orders of
the model. Table 1 summarizes the behavior of ACF and PACF; it was
adopted from Aidoo (2011) who also adopted it from Shumway and
Stoffer (2006).



Table 1
ACF and PACF behaviour for seasonal and non-seasonal ARMA (p,q) models

AR(p) MA(q) ARMA(p,q)

Non-seasonal ARMA(p,q) ACF tails off at lag k cuts off after lag q Tails off
k = 1, 2, 3, . . .

PACF cuts off after lag p Tails off at lags k k = 1, 2, 3, . . . Tails off
AR(P)s MA(Q)s ARMA(P,Q)s

pure-seasonal ARMA(p,q) ACF tails off at lag ks cuts off after lag Qs Tails off at ks
k = 1, 2, 3, . . .

PACF cuts off after lag Ps Tails off at lags ks Tails off at ks
k = 1, 2, 3, . . .

Source: Data analysis (2022)

Table 2
Descriptive statistics for Yt .

Mean Standard Deviation Minimum Maximum Skewness Kurtosis

175881 60055.3 15511 485900 1.24 4.33

Source: Data analysis (2022)

Table 3
Augmented Dickey-Fuller Test of Yt .

Augmented Dickey-Fuller Test

Test Statistic = -5.777 Lag order = 6, p-value = 0.01

Source: Data analysis (2022)
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Model selection and validation
The Akaike’s Information Criterion (AIC) and Bayesian Information

Criterion (BIC) are used for model selection whereby a lower AIC or
BIC imply a better model. The AIC and BIC are computed as follows:

AIC ¼ 2k� 2log Lð Þ ¼ 2k� nlog
RSS
n

� �
; ð6Þ

BIC ¼ se2ð Þ þ k
n
log nð Þ; ð7Þ

where k is the number of parameters in the statistical model, RSS is
the residual sum of squares for the estimated model, n is the number
of observations and s2

e is the variance of the residuals.
They are used to evaluate the forecasting accuracy of a model. The

RMSE and MAPE can be given by the following equations.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

ðAt � FtÞ2
vuut ; ð8Þ

MAPE ¼ 1
n

Xn
t¼1

����At � Ft

��������At

����

0
BB@

1
CCA � 100; ð9Þ

where n is the number of observations, is the actual and the esti-
mated tourism series, respectively. A model with lower RMSE or
MAPE suggest a better model and will be used for prediction pur-
poses.
Fig. 1. Time series plot of original tourist arriv

4

Results and discussion

Data characteristics and analysis

The monthly international tourist arrivals data (YtÞ for Zimbabwe
for the period January 2000 to December 2018 obtained from the
Zimbabwe National Statistics Agency (ZIMSTAT) are used. The in-
sample data is from January 2000 to December 2017 and out of sam-
ple data is from January 2018 to December 2018. R software is used
for data analysis. The descriptive statistics for the data are presented
in Table 2.

The average number of international tourists is 175881. The data
is positively skewed because of the positive skewness value. The dis-
tribution of the data is leptokurtic because of the kurtosis value that
exceed 3. The distribution is not normally distributed. To visualise
some of the characteristics of the data, a time series plot for Yt was
constructed. Figure 1 is a time series of the data.

Figure 1 shows a significant decline in international tourist arriv-
als around the year 2008 probably due to the presidential elections
that were held during that year. The noticed spike around the year
2009 was due to the introduction of multiple currencies and the for-
mation of the government of national unity (GNU). There is minimum
variation in the series but a stationarity test (ADF test) is conducted.
The null hypothesis of the presence of unit root on Yt is examined.
Table 3 presents the results.

At the 5% level of significance, the null hypothesis is being rejected
and it can be concluded that the data is stationary. To identify the
tentative model, the ACF and PACF of Yt are constructed and pre-
sented in Figure 2.
als data (YtÞ. Source: Data analysis (2022)



Fig. 2. ACF and PACF of Yt . Source: Data analysis (2022)

Table 4
AIC values for fitted models

Model specification AIC value

SARIMA(1,0,0)(1,0,0)12 model with non-zero mean 5591.42
SARIMA(1,0,0)(1,0,0)12 model with zero mean 5631.69
SARIMA(1,0,0)(0,0,1)12 model with non-zero mean 5606.37
SARIMA(1,0,0)(0,0,1)12 model with zero mean 5663.4
SARIMA(1,0,0)(1,0,1)12 model with non-zero mean 5561.62
SARIMA(1,0,0)(1,0,1)12 model with zero mean 5580.25

Source: Data analysis (2022)

Table 5
SARIMA (1,0,0)(1,0,1)12 model parameters.

m u1 Q1 ;1
Coefficient 177589.04 0.491 0.9872 -0.8647
S.E 21662.31 0.060 0.0240 0.1261
T-statistic 8.1981 8.1833 41.1333 -6.8573

Source: Data analysis (2022)

T. Makoni, G. Mazuruse and B. Nyagadza Sustainable Technology and Entrepreneurship 2 (2023) 100027
Figure 2 shows decaying spikes on the ACF and the first spike that
cutting of at lag 1 on the PACF suggest an AR(1) model. Significant
spikes at lag 1 and lag 12, lag 24 and lag 36 in the ACF and PACF sug-
gests the need for a seasonal component. The possible models being
suggested are the SARIMAð1;0;0Þð1;0;1Þ12 and SARIMAð1;0;0Þ
ð1;0;0Þ12: The suggested model will be fitted together with other
specifications and the best model will be the one with a lower AIC
value. The AIC for the fitted models are presented in Table 4.

The results in Table 4 suggest that the SARIMA (1,0,0)(1,0,1)12
model with non-zero mean is the best for the data because of the
lowest AIC value.

The Maximum Likelihood Estimation (MLE) method was used in
the estimation of the SARIMA (1,0,0)(1,0,1)12 model with non-zero
mean parameters. The model parameters are summarised in Table 5.
Fig. 3. QQ and ACF plots of SARIMA (1,0,0)(1,0,1)12

5

Table 5 results shows that all the model parameters are statisti-
cally significant as indicated by the t-statistic (t > = 2.00) values. Since
the model residuals are significant, the next is to examine if the
model residuals are correlated and normally distributed. The QQ and
ACF plots are used to assess normality and autocorrelation, respec-
tively. The results are presented in Figure 3.

According to the QQ plot, the model residuals seem normally dis-
tributed and the ACF plots suggest that the absence of autocorrelation
on the residuals besides one significant spike exhibited which is out-
side the boundaries.

Accuracy measures

The Root Mean Squared Error (RMSE) and Mean Absolute Percent
Error (MAPE) were used to examine the forecasting accuracy of the
model. Table 6 presents the results.

The SARIMA (1,0,0)(1,0,1)12 model with non-zero mean’s forecast-
ing accuracy outperformed the other fitted SARIMA models because
of both lower RMSE and MAPE values. The model is used to project
future international tourist arrivals for the next 4 years. The forecasts
are besides the Covid-19 period. Table 7 presents the results.

Table 7 shows a slow decline in future tourist arrivals. There is
seasonality in the arrivals with more tourists being expected around
December. This is probably due to the fact that most tourists from
European countries visit Zimbabwe during their winter season
(around December). Enough accommodation, transport facilities and
enough tour guides have to be in place during the seasonal months.
Furthermore, the Zimbabwe Tourism Authority (ZTA) could embark
on effective marketing strategies and market all the tourism resorts
in Zimbabwe to all the possible visitors. This will result in significant
increase in international tourist arrivals; hence increase in foreign
currency earnings, employment opportunities. Figure 4 is a graphical
presentation of the forecasted international tourist arrivals.

According to the estimates, the number of international visitor
arrivals will gradually increase. Those in charge of marketing might
use this model to develop effective and efficient marketing tactics so
model residuals. Source: Data analysis (2022)



Fig. 4. Forecasted international tourist arrivals. Source: Data analysis (2022)

Table 6
Accuracy measures.

Model RMSE MAPE

SARIMA(1,0,0)(1,0,0)12 model with non-zero mean 54138.74 24.15696
SARIMA(1,0,0)(1,0,0)12 model with zero mean 49863.24 26.61991
SARIMA(1,0,0)(1,0,1)12 model with non-zero mean 45410.89 23.89017
SARIMA(1,0,0)(1,0,1)12 model with zero mean 45603.11 22.87933

Source: Data analysis (2022)

Table 7
60-period ahead out of sample tourist forecasts

Month Year

2019 2020 2021 2022 2023

January 210186 153570 153168 152850 152532
February 178250 145277 144927 144626 144325
March 183504 164203 163834 163493 163153
April 185105 173741 173363 173003 172643
May 174531 167796 167438 167089 166741
June 161282 157249 156916 156590 156264
July 174387 171879 171518 171161 170805
August 185436 183805 183420 183039 182658
September 171469 170389 170034 169680 169327
October 188194 187383 186993 186603 186215
November 173084 172480 172121 171763 171405
December 280466 279741 279159 278578 277998

Source: Data analysis (2022)
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that the country can see a big increase in international tourists, bring-
ing in much-needed foreign currency. They can strive to promote all
of the country’s tourist attractions. International tourist arrivals are
expected to be seasonal, thus tourism stakeholders should keep this
in mind while arranging transportation, lodging, and food and bever-
age services.

Conclusion

Predicting future foreign visitor arrivals is critical for tourism plan-
ning and marketing purposes since it is currently one of Zimbabwe’s key
areas for economic growth. The Box-Jenkins method was used in this
study to analyze data on monthly foreign visitor arrivals in Zimbabwe.
The SARIMA(1,0,0)(1,0,1)12 model, which was used to provide monthly
projections from January 2019 to December 2023, is the model that fits
the data the best, according to the results. The predictions show that the
number of foreign visitors to Zimbabwe is anticipated to keep rising, fol-
lowing a seasonal trend that is similar to that of the first statistics. The
results from this paper are similar to the results of previous studies of
Msofe and Mbago (2019), Makoni and Chikobvu (2018), Baldigara and
Mamula (2015) and Saayman and Saayman (2010), who used the Box-
Jenkins (1970) approach to predict the arrival of tourist arrivals, fitted
the SARIMA models that revealed a rise in seasonality and future tourist
arrivals. The purpose of this study is to attempt to add to the body of
6

knowledge about the importance of SARIMA models in the tourism
industry. Forecasters and government decision-makers can both profit
from this work in different ways. It serves as a manual for improving
sample predictions in the prediction context. These findings assist gov-
ernment decision-makers in developing appropriate policies, planning
and providing resources to society, andmaking investment decisions.

Study implications

According to the predicted values, there is a moderate but steady
increase in the number of foreign visitors arriving. Therefore, in order
to draw more foreign visitors from all areas of the world, the Zim-
babwe Tourism Authority and other tourism stakeholders in Zim-
babwe should continually keep improving the quality of tourism
services and products as well as tourism marketing methods. This
study also found evidence of seasonal changes, indicating the need
for appropriate action to address the problem of declining numbers
of foreign visitors and tourism revenue during low season. For
instance, the government should run tourism campaigns, ease inter-
national traveler visa requirements, create welcoming travel policies,
introduce direct flights to cut down on the number of tourists arriv-
ing by road, and appoint tourism ambassadors to market the nation’s
tourist destinations abroad as well as promote domestic tourism. The
government has to create better marketing and advertising
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campaigns, such as using digital tourismmarketing, to promote inter-
national tourist arrivals. Additionally, they must make greater invest-
ments in sustainable infrastructure facilities that satisfy high
international standards. The government is urged to create policies
that promote domestic travel as well, especially when there are fewer
foreign visitors.
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