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Abstract
Background In contrast to younger athletes, there is comparatively less literature examining cardiac structure and function 
in older athletes. However, a progressive accumulation of studies during the past four decades offers a body of literature 
worthy of systematic scrutiny.
Objectives We conducted a systematic review, meta-analysis and meta-regression of controlled echocardiography studies 
comparing left ventricular (LV) structure and function in aerobically trained older athletes (> 45 years) with age-matched 
untrained controls, in addition to investigating the influence of chronological age.
Methods Electronic databases were searched from inception to January 2018 before conducting a random-effects meta-
analysis to calculate pooled differences in means, effect size and 95% confidence intervals (CIs). Study heterogeneity was 
reported using Cochran’s Q and I2 statistic.
Results Overall, 32 studies (644 athletes; 582 controls) were included. Athletes had greater LV end-diastolic diameter 
(3.65 mm, 95% CI 2.66–4.64), interventricular septal thickness (1.23 mm, 95% CI 0.85–1.60), posterior wall thickness 
(1.20 mm, 95% CI 0.83–1.56), LV mass (72 g, 95% CI 46–98), LV mass index (28.17 g·m2, 95% CI 19.84–36.49) and 
stroke volume (13.59 mL, 95% CI 7.20–19.98) (all p < 0.01). Athletes had superior global diastolic function [ratio of early 
(E) to late (A) mitral inflow velocity (E/A) 0.18, 95% CI 0.13–0.24, p < 0.01; ratio of early (e′) to late (a′) diastolic annular 
tissue velocity (e′/a′) 0.23, 95% CI 0.06–0.40, p = 0.01], lower A (−8.20 cm·s−1, 95% CI −11.90 to −4.51, p < 0.01) and 
a′ (−0.72 cm·s−1, 95% CI −1.31 to −0.12, p = 0.02), and more rapid e′ (0.96 cm·s−1, 95% CI 0.05–1.86, p = 0.04). Meta-
regression for chronological age identified that athlete–control differences, in the main, are maintained during advancing age.
Conclusions Athletic older men have larger cardiac dimensions and enjoy more favourable cardiac function than healthy, 
non-athletic counterparts. Notably, the athlete groups maintain these effects during chronological ageing.

Key Points 

Trained older men have larger left ventricular morphol-
ogy and superior diastolic function than age-matched 
untrained yet healthy controls, determined by conven-
tional echocardiography.

The functional adaptations noted in older athletes are, in 
the main, maintained with chronological age from mid-
dle and into older age.

Aerobic exercise is an effective non-pharmacological 
therapy to preserve cardiac function during ageing and is 
maintained with continuous exercise therapy.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s4027 9-018-1004-3) contains 
supplementary material, which is available to authorized users.
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1 Introduction

It is well established that a lifestyle consisting of regular 
physical exertion is associated with reduced cardiovascular 
risk and all-cause mortality across the age spectrum [1, 2]. 
Despite this, epidemiological studies consistently iden-
tify older adults as the least physically active demographic 
where few achieve the recommended levels of physical 
activity required to accrue health benefits [3]. Studies of 
ageing athletes observe relatively high levels of cardiovas-
cular reserve (maximal aerobic capacity) compared with 
their sedentary counterparts [4]. In this respect, the ‘mas-
ters athlete’ model offers a unique non-pharmacological 
model to differentiate the inexorable from the preventable 
mechanisms of cardiovascular ageing. In studies of cardio-
vascular function, endurance-trained masters athletes have 
superior functional capacity and cardiovascular reserve to 
their sedentary peers, and are comparable in these respects 
to non-athletes who are years (and often decades) their 
junior. As this is not the focus of the present review, we 
direct readers to the eminent works from Professor Benja-
min Levine (University of Texas) and Professor Douglas 
R. Seals (University of Colorado) [5, 6].

A major limitation of this area, however, is that ran-
domised controlled trials of life-long exercise are highly 
unlikely, and therefore researchers must rely on evidence 
from animal models and controlled observational studies 
to further our understanding of the effects of age on car-
diac structure and function [5, 7–9]. Indeed, the pleio-
tropic benefits of aerobic endurance exercise have been 
acknowledged as a potential non-pharmacological mitigant 
to deterioration of left ventricular (LV) diastolic function 
[10]. Although this body of evidence is encouraging, it 
is often hampered by small sample sizes in controlled 
observational studies which suffer from low statistical 
power, methodological inconsistencies and untested exter-
nal validity. In contrast to a wealth of data in younger 
cohorts < 45 years, including several meta-analyses of LV, 
right ventricular (RV) and left atrial (LA) structure and 
function in both male [11–17] and female [14, 17, 18] ath-
letes, there have been narrative reviews [10, 19–21] but no 
systematic synthesis of evidence in older athletes relative 
to matched, untrained controls. Further, in the absence of 
prospective investigations of multiple decades in duration, 
quantifying the influence of chronological age on exercise-
related morphological and functional adaptations must be 
realised through cross-sectional studies, across the age 
spectrum from middle to older age (i.e. > 45 years).

In light of this, we undertook a systematic review and 
meta-analysis of studies using echocardiography to (1) 
compare LV morphology and systolic and diastolic func-
tion in older athletes versus age-matched sedentary but 

otherwise healthy controls and (2) employ meta-regression 
to explore the influence of chronological age on cardiac 
structure and function in the ageing athlete.

2  Methods

The systematic search processes, evaluation, analysis, and 
reporting were conducted and presented in accordance with 
the Preferred Reporting Items for Systematic review and 
Meta-Analyses (PRISMA) guidelines for reporting system-
atic reviews and meta-analyses [22].

2.1  Information Sources and Search Strategy

An electronic database search was designed by two authors 
(AB and NS), who conducted an independent literature 
search of PubMed (title and abstract), MEDLINE (title) and 
ScienceDirect (title, abstract and keywords) for published, 
English-language journal articles from inception to 11 Janu-
ary 2018 (see Electronic Supplementary Material Appendix 
S1 for the PubMed database search).

2.2  Inclusion Criteria

Studies were eligible for quantitative analysis when meeting 
the following criteria: (1) study participants were male; (2) 
mean participant age ≥ 45 years; (3) aged-matched control 
group; (4) athlete groups were aerobic/endurance trained; 
(5) control groups were untrained; (6) participants were 
reported as free from cardiovascular diseases; (7) the study 
was observational in design and data were recorded at a sin-
gle time point (including recruitment data from intervention 
studies); (8) studies used echocardiography; and (9) studies 
assessed cardiac strain using two-dimensional speckle track-
ing echocardiography (STE).

We elected to include only endurance athletes participat-
ing in predominantly dynamic aerobic activity (for example, 
distance running, cycling, and rowing). Where study infor-
mation was unclear, corresponding authors were contacted 
by email.

2.3  Study Selection and Data Extraction

Following an initial literature search (AB), study data were 
independently extracted by AB and AC and cross-checked 
by an arbitrator (NS). Extracted data were entered into a 
spreadsheet  (Microsoft® Excel 2016, Microsoft Corpora-
tion, Redmond, WA, USA). Twenty-one measures of LV, 
RV and LA structure and function were recorded. Cardiac 
structure measures included (1) interventricular septum 
(IVS) thickness, (2) LV posterior wall thickness (PWT), (3) 
left ventricular end-diastolic diameter (LVEDD), (4) relative 
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wall thickness (RWT), (5) left ventricular mass (LVM), (6) 
LVM index (LVMi), (7) left ventricular end-diastolic vol-
ume (LVEDV), (8) right ventricular end-diastolic diameter 
(RVEDD), and (9) left atrial diameter (LAD). LV systolic 
function measures by conventional echocardiography were 
(10) ejection fraction (EF), (11) fractional shortening (FS), 
(12) stroke volume (SV), (13) systolic annular tissue velocity 
(s′), and by two-dimensional STE, (14) global longitudinal 
strain (GLS). Diastolic function measures were (15) early 
mitral inflow velocity (E), (16) late mitral inflow velocity 
(A), (17) ratio of early to late mitral inflow velocity (E/A), 
(18) early diastolic annular tissue velocity (e′), (19) late 
diastolic annular tissue velocity (a′), (20) ratio of early to 
late diastolic annular tissue velocity (e′/a′), and (21) ratio of 
early mitral inflow velocity to early diastolic annular tissue 
velocity (E/e′).

Multiple segment reports for mitral annular tissue veloci-
ties (septal, lateral wall, inferior wall, anterior wall) were 
combined to obtain a global value. We included studies 
employing either pulsed-wave Doppler or colour Dop-
pler techniques to obtain tissue velocities. Data for RWT 
included both descriptions of RWT and thickness/radius 
ratio. We elected to only include studies that scaled LVM 
to body surface area (BSA) in line with current echocardio-
graphic recommendations [23]. GLS was deemed as a global 
value from the average of multiple segments, and E/e′ was 
considered to be an estimate of LV filling pressure [24].

When unsuccessful attempts were made to contact 
authors, data were extracted from study figures. Study 
means ± standard deviation (SD) were recorded for all vari-
ables; where studies reported the standard error of the mean 
(SEM), we applied a manual conversion using the formula 
SD = SEM × √N, where N is the number of participants. 
Likewise, when median and range were reported, a manual 
conversion was applied to convert data into mean and SD, in 
accordance with the study sample size [25]. For each study, 
the mean age of athlete and control groups were averaged to 
obtain a pooled mean. Study quality was assessed for each 
individual study using a 17-point checklist (Electronic Sup-
plementary Material Table S1) adapted for specificity for 
this meta-analysis from a previously published checklist 
used in a similar study of young athletes [13].

2.4  Statistical Analyses

Meta-analyses were executed using Comprehensive Meta-
Analysis (Biostat, V 2.2.064, Englewood, NJ, USA). Pooled 
data using a random-effects model were used to investigate 
athlete–control differences. Differences in means were cal-
culated for each individual study, and a summary of overall 
difference in means recorded for all variables. Differences 
in means in a positive direction indicated greater magni-
tude of LV structure or function in athletes, with negative 

direction favouring a greater magnitude in controls. Het-
erogeneity was reported using Cochran’s Q and I2 statistic 
and classed as either low, moderate, or high at 25%, 50%, 
and 75%, respectively [26]. Using pooled athlete and control 
age (continuous moderator variable), we conducted random-
effects (method of moments) meta-regression analysis to 
examine the relationship between differences in means with 
chronological age. Meta-regression analysis was performed 
where there were ten or more studies [27]. Publication bias 
was addressed using Egger’s regression intercept [28] to test 
for asymmetry and interpreted conservatively [27]. Statisti-
cal significance was granted at p ≤ 0.05.

3  Results

3.1  Search Outcome

Figure 1 illustrates the systematic filtration process. The 
electronic database search resulted in 597 records, which 
were exported to referencing software (Zotero, Fairfax, VA, 
USA) to manage the systematic process.

Thirty-two studies including 1226 participants [644 ath-
letes (59 ± 8 years) and 582 controls (59 ± 8 years); mean 
age range 46–74 years] met the inclusion criteria for quan-
titative analyses [7, 29–59]. This allowed for the following 
comparisons [number of studies presented in parentheses; 
study names for each comparison can be found in sup-
plementary forest plots (Electronic Supplementary Mate-
rial Figs. S1–S21)]: IVS (n = 18), PWT (n = 18), LVEDD 
(n = 23), LVM (n = 10), LVMi (n = 20), RWT (n = 11), 
LVEDV (n = 10), RVEDD (n = 3), LAD (n = 5), EF (n = 15), 
FS (n = 11), SV (n = 7), s′ (n = 14), GLS (n = 5), E (n = 22), 
A (n = 20), E/A (n = 23), e′ (n = 14), a′ (n = 13), e′/a′ (n = 7), 
E/e′ (n = 8) (Fig. 1).

Summarised participant anthropometrics, systolic and 
diastolic blood pressure and heart rate are presented in 
Table 1. Characteristics of athlete training regimes and con-
trol activity levels are reported in Table 2. LV, RV and LA 
structure and systolic and diastolic function data for con-
trol and athlete groups are presented in Tables 3, 4, and 5, 
respectively. Table 6 describes the meta-analyses data for 
athlete–control comparisons including between-study het-
erogeneity. Electronic Supplementary Material Figs. S1–S36 
present forest plots of athlete–control comparisons and 
meta-regression figures of the athlete–control differences 
moderated for chronological age.

3.2  Cardiac Structure

IVS, PWT, LVEDD, LVEDV, LVM and LVMi were greater 
in athletes compared with controls, while RWT, RVEDD and 
LAD did not differ. Significant heterogeneity was observed 
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for all parameters, with inconsistency considered moderate 
for LVEDD, yet high for IVS, PWT, RWT, LVM, LVMi, 
LVEDV RVEDD and LAD.

3.3  Left Ventricular Systolic Function

EF, FS, s′ and GLS were not different between athletes and 
controls, whereas SV was greater in athletes. Between-
study heterogeneity was significant in all cases and the 

inconsistency considered moderate in FS and GLS, yet high 
for EF, s′ and SV.

3.4  Left Ventricular Diastolic Function

Pooled analysis of studies measuring mitral inflow velocity 
revealed no difference in E between athletes and controls, 
albeit A was significantly lower in athletes. Accordingly, 
E/A was greater in athletes compared with controls. Tissue 

Fig. 1  Schematic of systematic 
process used for identification 
of eligible studies. Flow dia-
gram of identified records and 
the filtration process of article 
inclusion and exclusion. A late 
diastolic mitral inflow velocity, 
a′ late diastolic tissue velocity, 
CVD cardiovascular disease, 
E early diastolic mitral inflow 
velocity, e′ early diastolic tissue 
velocity, e′/a′ ratio of early to 
late diastolic tissue velocity, 
E/A ratio of early to late mitral 
inflow velocity, E/e′ ratio of 
early diastolic mitral inflow 
velocity to early diastolic tissue 
velocity, EF ejection fraction, 
FS fractional shortening, GLS 
global longitudinal strain, IVS 
interventricular septal, LAD 
left atrial diameter, LVEDD 
left ventricular end-diastolic 
diameter, LVEDV left ventricu-
lar end-diastolic volume, LVM 
left ventricular mass, LVMi 
left ventricular mass index, 
PWT posterior wall thickness, 
RVEDD right ventricular end-
diastolic diameter, RWT  relative 
wall thickness, s′ systolic tissue 
velocity, SV stroke volume
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velocity analyses showed higher e′ in athletes, whereas ath-
letes showed significantly reduced a′ but greater e′/a′ com-
pared with controls. E/e′ was not different between athletes 
and controls. Between-study heterogeneity was significant 
for all parameters of diastolic parameters besides E/e′. 
Inconsistency was low for E/A and E/e′, moderate for E, A 
and a′, and high for e′ and e′/a′.

3.5  Meta‑Regression(s)

The difference between athletes and controls was maintained 
with chronological age for all available variables, with the 
exception of LVEDD, LVMi and A (Table 7). There was 
a significant inverse but opposite relationship in LVEDD, 
LVMi and A between athletes and controls that continued 
with chronological age.

3.6  Publication Bias

Egger’s regression revealed that LVMi was the only variable 
which demonstrated significant bias (Electronic Supplemen-
tary Material Table S2).

4  Discussion

This first systematic pooling of controlled echocardio-
graphic evidence of cardiac structure and function in 
aerobically (endurance) trained older athletes compared 
with age-matched untrained controls reveals that (1) 
endurance-trained older athletes have superior diastolic 
function compared with untrained counterparts, which is 
sustained regardless of advancing age; (2) mean LVM of 
older endurance athletes is greater (mean difference 72 g) 
than that of controls, as evidenced by greater wall thickness 
(mean ~ 1.2 mm) and chamber diameter (mean difference 
3.7 mm); (3) despite modest differences in global systolic 
function between groups, older athletes have a larger SV 
(equivalent to mean difference ~ 1 L·min−1 greater cardiac 
output at rest) than controls, and this difference is sustained 
with chronological ageing.

4.1  Left Ventricular Diastolic Function

Older athletes enjoy more favourable global diastolic func-
tion which is driven by a reduced reliance on late diastolic 
filling and evident in both haemodynamic and tissue assess-
ment. Greater E/A in aerobic athletes both contrasts [12] 
and concurs [13] with previous meta-analyses in younger 
cohorts. The E/A difference between groups shown here 
(mean difference 0.18) compares well with that reported 
for younger individuals (mean difference 0.2) by Utomi 
et al. [13], suggesting that the difference in global diastolic 

function between aerobically trained athletes and untrained 
controls is age independent. This is endorsed by the finding 
of the present meta-regression. Collectively, this supports 
the tenet that global diastolic function assessed by mitral 
inflow is preserved in athletes (versus controls) from ~ 18 
to 74 years of age. The improved global diastolic function 
mediated by reductions in A, without concomitant changes 
in E, accords with a large investigation of young, Olym-
pic calibre athletes [60], highlighting a similar adaptation 
in athletes of all ages compared with untrained controls. 
Moreover, meta-regression analysis observed that the dif-
ference in A between athletes and controls becomes more 
exaggerated with advancing age, which suggests an incre-
mental reliance on atrial contraction to support LV filling in 
untrained controls.

Greater e′ in older trained adults agrees with findings 
from Utomi et al. [13] in younger athletes. In our meta-anal-
ysis, athletes demonstrated lower a′, and when considered 
with the observed difference in early diastole, a greater e′/a′ 
was observed in athletes than in controls. These observations 
support the precept that continuation of a high volume of 
aerobic exercise into advanced age has pleiotropic effects 
on cardiac function.

4.2  Cardiac Structure

Older athletes presented with larger LV wall thicknesses, 
absolute and relative LVMs, chamber diameter and LVEDV, 
which is comparable with findings from large-scale meta-
analyses in younger athletes [12, 13]. This indicates preload 
dependent cardiac adaptation, widely considered as a normal 
cardiac manifestation from aerobic training [61], and these 
data suggest the maintenance of this phenomenon beyond 
45 years. However, study-to-study variances in athlete and 
control blood pressures may have contributed towards the 
between-study heterogeneity observed, particularly for 
LVMi. Slower resting heart rates in athletes could also con-
tribute to the increased LVEDD and LVEDV by lengthening 
the diastolic filling period. Furthermore, the meta-regres-
sion indicated no association between age and LVM, yet a 
significant, negative association with age and LVMi. The 
latter finding suggests that the differences in allometrically 
scaled LVM to BSA progressively decreased with advanc-
ing age, and supports a recent proposition that differences 
in LVMi between athletes and controls are dampened with 
advancing age [20]. The evidence that chronological age 
mediates LVMi in ageing athletes has not been convinc-
ing, with studies finding that younger, but not older athletes, 
have larger LVMi than age-matched controls [62] or older 
athletes do have a larger LVMi than controls yet this is to a 
lesser extent than younger athletes versus untrained controls 
[37, 63]. In contrast, others have shown a training effect 
with no interaction between age and training [29, 32, 49, 
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Table 4  Summary of athlete and control groups included for measures of left ventricular systolic function

References Study group (n) EF (%) FS (%) SV (mL) s′ (cm·s−1) GLS (%)

Child et al. [33] Control (12)
Runners (9)

–
–

39.1 ± 4.7
37.8 ± 2.6↔

–
–

–
–

–
–

D’Andrea et al. [35] Control (25)
Swimmers (40)

–
–

41.7 ± 3.7
46.7 ± 4.7↑

71.4 ± 3.2
90.1 ± 6.2↑

9.0 ± 4.0
14.0 ± 3.0↑

–
–

Giada et al. [42] Control (12)
Cyclists (12)

67.0 ± 4.0
63.0 ± 5.0↓

–
–

–
–

–
–

–
–

Lee et al. [45] Control (9)
Cyclists, triathletes, speed-skaters (12)

61.2 ± 2.4
61.6 ± 4.0↔

–
–

–
–

–
–

–
–

Maufrais et al. [50] Control (26)
Runners, triathletes, cyclists (35)

–
–

–
–

–
–

7.3 ± 1.6
7.5 ± 1.6↔

–
–

Northcote et al. [54] Control (17)
Runners (18)

58.0 ± 7.0
57.0 ± 10.5↔

27.0 ± 6.2
29.0 ± 5.7↔

–
–

–
–

–
–

Nottin et al. [55] Control (14)
Cyclists (14)

61.0 ± 3.0
62.0 ± 2.0↔

–
–

–
–

10.5 ± 2.4
9.6 ± 1.8↔

–
–

Sagiv et al. [57] Control (15)
Aerobic athletes (15)

–
–

–
–

57.3 ± 6.6
68.1 ± 4.3↑

–
–

–
–

Nishimura et al. [53] Control (15)
Bicyclists (29)

66.0 ± 2.0
63.0 ± 4.0↓

32.0 ± 2.0
30.0 ± 3.0↓

93.0 ± 16.0
111.0 ± 15.0↑

–
–

–
–

Baldi et al. [29] Control (20)
Endurance athletes (19)

–
–

36.9 ± 5.7
33.7 ± 5.6↔

–
–

7.1 ± 0.9
8.3 ± 1.4↑

–
–

Bouvier et al. [31] Control (12)
Orienteers, runners (10)

–
–

32.0 ± 6.0
31.0 ± 6.0↔

–
–

–
–

–
–

Carrick-Ranson et al. [32] Control (27)
Cyclists, runners, dual/triathletes (17)

–
–

–
–

–
–

10.0 ± 1.0
8.0 ± 2.0↓

–
–

Di Bello et al. [36] Control (11)
Runners (12)

71.8 ± 9.1
75.5 ± 9.3↔

42.0 ± 8.2
45.2 ± 9.0↔

65.5 ± 36.1
97.3 ± 23.2↑

–
–

–
–

Galetta et al. [40] Control (16)
Runners (16)

67.2 ± 4.5
64.2 ± 5.2↔

–
–

–
–

–
–

–
–

Galetta et al. [39] Control (25)
Runners (25)

66.2 ± 4.5
64.2 ± 5.2↔

–
–

–
–

8.9 ± 0.8
9.3 ± 0.8↔

–
–

Jungblut et al. [43] Control (12)
Runners (12)

–
–

40.0 ± 6.0
40.0 ± 4.0↔

–
–

–
–

–
–

Schmidt et al. [58] Control (26)
Soccer players (17)

54.0 ± 6.0
58.0 ± 4.0↑

–
–

–
–

8.7 ± 1.5
8.1 ± 1.3↔

− 17.7 ± 2.5
− 19.9 ± 2.5↑

Seals et al. [59] Control (6)
Runners (8)

–
–

36.2 ± 6.9
33.3 ± 8.8↔

–
–

–
–

–
–

Molmen et al. [52] Control (10)
Cross-country skiers (11)

58.7 ± 7.2
63.7 ± 4.8↔

–
–

79.0 ± 13.0
102.0 ± 25.0↑

7.3 ± 0.8
8.2 ± 1.6↔

–
–

Cottini et al. [34] Control (15)
Aerobic athletes (15)

58.0 ± 2.7
65.0 ± 3.0↑

–
–

–
–

–
–

–
–

Olsen et al. [56] Control (11)
Runners (17)

59.0 ± 3.0
60.0 ± 4.0↔

–
–

–
–

9.4 ± 1.2
8.2 ± 1.5↓

–
–

Fleg et al. [38] Control (23)
Runners (16)

–
–

42.0 ± 9.0
38.0 ± 6.0↔

–
–

–
–

–
–

Miki et al. [51] Control (14)
Cyclists (35)

–
–

35.6 ± 3.7
34.7 ± 4.2↔

–
–

–
–

–
–

Matelot et al. [48] Control (10)
Runners, cyclists (13)

67.1 ± 5.6
62.2 ± 4.3↓

–
–

–
–

8.9 ± 1.5
8.6 ± 2.0↔

− 19.4 ± 2.1
− 19.8 ± 1.9↔

Donal et al. [37] Control (15)
Cyclists (38)

62.8 ± 6.8
61.4 ± 6.0↔

–
–

76.2 ± 14.3
74.0 ± 14.5↔

10.2 ± 1.3
9.2 ± 2.2↔

− 18.0 ± 2.4
− 17.3 ± 2.2↔

Bohm et al. [30] Control (33/32a)
Runners, rowers, triathletes (33/32 a)

–
–

–
–

–
–

9.0 ± 1.5
9.5 ± 1.5↔

− 18.0 ± 2.0a

− 17.0 ± 2.0a↓

Grace et al. [7] Control (22)
Triathletes, athletics, sprint cyclists, 

racquet sports (17)

55.6 ± 8.6
60.9 ± 5.1↑

–
–

67.0 ± 23.0
77.0 ± 9.0↔

–
–

–
–
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56]. Additionally, meta-regression showed the difference 
in LVEDD between athletes and controls decreases by a 
mean ~ 0.14 mm each year. Taking these findings together, 
we speculate that a gradual lowering of exercise intensity 
and/or training volume in older athletes [8], with a corre-
sponding loss of volume overload, explains their inability to 
maintain physiological LVEDD and thus, ventricular mass, 
which is an established stimulus for physiological eccentric 
remodelling in those participating in isotonic exercise [64].

LAD was similar between athletes and controls, which 
contrasts with a prior meta-analysis showing larger LAD 
and volumes in younger athletes than in controls [17]. 
However, the results of this review may be considered 
preliminary given the relatively small number of studies 
available for the analysis of LA structure. Atrial morphol-
ogy in older endurance athletes, relative to normal con-
trols, requires further study and is of clinical interest given 
the ongoing debate concerning the potential interaction 
between atrial structural remodelling and the known larger 
incidence of atrial fibrillation in endurance athletes [65].

Similarly, RVEDD did not differ between older athletes 
and controls, which agrees with previous work in younger 
endurance athletes. Yet, two of the three studies in this meta-
analysis observed larger RVEDD in athletes than in controls, 
highlighting a biventricular enlargement [30, 35] but signifi-
cant heterogeneity between studies. This could be explained 
by age, as the participants in the studies showing RV dila-
tion were younger than those in the study showing compa-
rable diameter between athletes and controls [37]. Given 
the observed meta-regression of reduced mean difference 
LVEDD between athletes and controls with chronological 
age, it may be possible for a similar observation regarding 
the right-sided heart; however, more data are required before 
a sufficiently powered meta-regression can be conducted.

4.3  Left Ventricular Systolic Function

Conventional measures of LV systolic function, EF and FS 
were comparable between athletes and controls, as observed 
in younger cohorts [12, 13], which indicates preservation 
of resting EF and FS in older athletes. SV was greater in 
athletes than in controls and comparable with the literature 
for younger athletes [13]. In the absence of changes to EF, 
greater SV in athletes is likely a reflection of larger LVEDV 
and LVEDD [66], which is notably preserved despite 
increasing age.

Speckle tracking-derived GLS is a more sensitive marker 
of LV systolic (dys)function than conventionally measured 
EF [67]. However, GLS appeared to be unaltered between 
older aerobically trained athletes and controls, which agrees 
with the findings of a recent systematic synthesis of data for 
younger athletes [15]. There is emerging evidence that GLS 
is reduced in disease states [68–70] and associated with poor 
cardiac outcomes [71]. Studies of younger [72–74] and older 
individuals [75] have reported small increases in GLS after 
aerobic training programmes, and these are considered to 
be positive adaptations of the athlete’s heart [76]. However, 
with only five studies included in this meta-analysis, the 
small volume of work in older athletes requires expansion 
before more accurate estimations can be made, especially 
considering recent documentation of preserved GLS in life-
long exercisers, albeit in a mixed sex cohort [77].

4.4  Limitations

4.4.1  Available Studies

Within the present systematic search there was a single study 
of female athletes [78]. Due to this near absence of literature 
in ageing female athletes, the present findings should only 
be generalised to ageing men. Similarly, there were only 

Table 4  (continued)

References Study group (n) EF (%) FS (%) SV (mL) s′ (cm·s−1) GLS (%)

Maessen et al. [47] Control (13)
Endurance athletes (18)

–
–

–
–

–
–

9.0 ± 1.4
9.3 ± 1.9↔

–
–

Maufrais et al. [49] Control (20)
Cyclists (22)

–
–

–
–

–
–

7.8 ± 1.4
7.4 ± 1.2↔

18.1 ± 3.0
17.3 ± 2.1↔

Data are mean ± standard deviation unless otherwise stated
Statistical significance at p < 0.05
EF ejection fraction, FS fractional shortening, GLS global longitudinal strain, n participant number, s′ systolic tissue velocity, SV stroke volume
↑ Significantly greater in athletes
↓ Significantly less in athletes
↔ No athlete–control different
a Different n for GLS
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Table 5  Summary of athlete and control groups included for measures of left ventricular diastolic function

References Study group (n) E (cm·s−1) A (cm·s−1) E/A e′ (cm·s−1) a′ (cm·s−1) e′/a′ E/e′

D’Andrea et al. [35] Control (25)
Swimmers (40)

72.0 ± 17.0
88.0 ± 12.0↑

53.0 ± 14.0
56.0 ± 12.0↔

1.4 ± 0.5
1.7 ± 0.5↑

9.0 ± 2.0
16.0 ± 4.0↑

11.0 ± 2.0
12.0 ± 2.0↑

0.8 ± 0.4
1.3 ± 0.3↑

–
–

Giada et al. [42] Control (12)
Cyclists (12)

54.9 ± 12.0
57.0 ± 19.0↔

57.0 ± 7.0
54.0 ± 15.0↔

0.9 ± 0.2
1.0 ± 0.3↔

–
–

–
–

–
–

–
–

Lee et al. [45] Control (9)
Cyclists, triathletes, 

speed-skaters (12)

73.0 ± 22.0
73.0 ± 16.0↔

81.0 ± 13.0
62.0 ± 14.0↓

0.9 ± 0.2
1.2 ± 0.5↔

–
–

–
–

–
–

–
–

Lindsay and Dunn 
[46]

Control (45)
Runners (45)

70.0 ± 20.0
70.0 ± 20.0↔

70.0 ± 20.0
60.0 ± 13.0↓

1.1 ± 0.2
1.2 ± 0.5(↔)

–
–

–
–

–
–

–
–

Maufrais et al. [50] Control (26)
Runners, triathletes, 

cyclists (35)

70.0 ± 15.0
71.0 ± 15.0↔

66.0 ± 13.0
64.0 ± 16.0↔

1.1 ± 0.2
1.2 ± 0.3↔

7.9 ± 1.3
8.8 ± 1.9↑

8.4 ± 1.3
7.5 ± 1.3↓

1.0 ± 0.2
1.2 ± 0.3↑

–
–

Nottin et al. [55] Control (14)
Cyclists (!4)

53.7 ± 9.7
68.3 ± 13.1↑

67.4 ± 12.3
66.9 ± 10.6↔

0.8 ± 0.2
1.0 ± 0.2↑

11.3 ± 3.2
11.4 ± 2.0↔

12.4 ± 2.4
11.0 ± 1.7↔

0.9 ± 0.3
1.1 ± 0.3↔

4.4 ± 1.1
6.1 ± 2.0↑

Baldi et al. [29] Control (20)
Endurance athletes 

(19)

52.0 ± 10.9
56.6 ± 13.7↔

56.3 ± 11.2
57.2 ± 13.8↔

0.9 ± 0.3
1.0 ± 0.3↔

7.1 ± 1.5
7.7 ± 1.6↔

10.9 ± 1.5
11.9 ± 1.6↑

0.7 ± 0.1
0.7 ± 0.1↔

7.6 ± 2.0
7.5 ± 2.1↔

Bouvier et al. [31] Control (12)
Orienteers, runners 

(10)

–
–

–
–

0.8 ± 0.2
1.4 ± 0.7↑

–
–

–
–

–
–

–
–

Carrick-Ranson et al. 
[32]

Control (27)
Cyclists, runners, 

dual/triathletes (17)

53.7 ± 15.3
53.7 ± 8.7↔

60.4 ± 20.7
48.8 ± 8.5↓

0.9 ± 0.2
1.1 ± 0.2↑

6.9 ± 1.4
6.6 ± 1.5↔

10.0 ± 2.1
8.5 ± 1.7↓

0.7 ± 0.1
0.8 ± 0.2↔

8.0 ± 2.0
9.0 ± 2.0↔

Di Bello et al. [36] Control (11)
Runners (12)

77.0 ± 10.0
84.0 ± 13.0↔

82.0 ± 22.0
74.0 ± 20.0↔

1.0 ± 0.2
1.2 ± 0.3↑

–
–

–
–

–
–

–
–

Galetta et al. [40] Control (16)
Runners (16)

56.6 ± 6.3
56.4 ± 6.1↔

59.8 ± 9.1
55.9 ± 8.5↔

0.9 ± 0.2
1.0 ± 0.3↔

–
–

–
–

–
–

–
–

Galetta et al. [39] Control (25)
Runners (25)

56.6 ± 6.3
58.4 ± 6.1↔

64.8 ± 8.1
45.9 ± 7.5↓

0.9 ± 0.2
1.2 ± 0.3↑

9.1 ± 2.3
12.3 ± 2.8↑

10.7 ± 1.7
8.6 ± 1.6↓

0.8 ± 0.3
1.4 ± 0.3↑

–
–

Gates et al. [41] Control (11)
Aerobic athletes (12)

–
–

–
–

0.9 ± 0.2
1.1 ± 0.3↔

–
–

–
–

–
–

–
–

Gates et al. [41] Control (24)
Aerobic athletes (16)

–
–

–
–

1.3 ± 0.4
1.8 ± 0.5↑

–
–

–
–

–
–

–
–

Jungblut et al. [43] Control (12)
Runners (12)

76.0 ± 22.0
79.0 ± 16.0↔

75.0 ± 15.0
73.0 ± 19.0↔

1.0 ± 0.3
1.1 ± 0.2↔

–
–

–
–

–
–

–
–

Schmidt et al. [58] Control (26)
Soccer players (17)

70.0 ± 10.0
60.0 ± 10.0↓

70.0 ± 20.0
50.0 ± 10.0↓

1.1 ± 0.3
1.1 ± 0.2↔

10.2 ± 2.3
10.0 ± 1.9↔

11.8 ± 1.9
10.6 ± 2.4↔

–
–

–
–

Molmen et al. [52] Control (10)
Cross-country skiers 

(11)

58.0 ± 15.0
58.0 ± 14.0↔

71.0 ± 19.0
49.0 ± 14.0↓

0.9 ± 0.3
1.3 ± 0.7↔

6.9 ± 1.5
9.0 ± 2.1↑

11.5 ± 2.1
10.3 ± 2.8↔

–
–

–
–

Cottini et al. [34] Control (15)
Aerobic athletes (15)

62.2 ± 8.2
80.0 ± 13.6↑

68.2 ± 5.5
64.9 ± 12.3↔

0.9 ± 0.1
1.2 ± 0.1↑

–
–

–
–

–
–

–
–

Olsen et al. [56] Control (11)
Runners (17)

56.0 ± 8.0
63.0 ± 15.0↔

63.0 ± 12.0
59.0 ± 15.0↔

0.9 ± 0.2
1.1 ± 0.3↔

7.8 ± 1.7
8.3 ± 2.5↔

11.2 ± 1.0
10.1 ± 1.4↓

–
–

7.5 ± 1.4
8.1 ± 2.8↔

Fleg et al. [38] Control (23)
Runners (16)

68.0 ± 19.0
56.0 ± 15.0↓

68.0 ± 19.0
51.0 ± 16.0↓

1.1 ± 0.4
1.2 ± 0.5↔

–
–

–
–

–
–

–
–

Matelot et al. [48] Control (10)
Runners, cyclists (13)

69.2 ± 8.3
64.0 ± 11.0↔

74.6 ± 16.5
58.9 ± 16.7↓

1.0 ± 0.2
1.1 ± 0.3↔

9.9 ± 1.9
10.5 ± 2.6↔

10.8 ± 1.9
10.5 ± 1.1↔

–
–

7.2 ± 1.4
6.3 ± 1.3↔

Donal et al. [37] Control (15)
Cyclists (38)

71.5 ± 17.0
61.5 ± 13.3↓

68.0 ± 19.4
59.7 ± 13.8↔

1.1 ± 0.5
1.1 ± 0.3↔

12.3 ± 2.3
10.5 ± 2.3↓

11.2 ± 2.6
10.9 ± 2.6↔

–
–

6.2 ± 1.7
6.2 ± 2.1↔

Bohm et al. [30] Control (33)
Runners, rowers, 

triathletes (33)

–
–

–
–

–
–

12.0 ± 3.0
11.5 ± 3.0↔

10.5 ± 2.5
9.0 ± 2.5↓

1.25 ± 0.6
1.35 ± 0.6↔

6.0 ± 1.5
6.0 ± 1.5↔
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two (potentially eligible) studies that examined resistance 
training (i.e. bodybuilding exercise) [35, 79] in ageing men, 
which precluded comparisons between the two most com-
mon exercise modes. In particular, more data are needed 
to fully characterise LA size in masters athletes, including 
diameter and volume, since varying degrees of lifelong train-
ing hours were associated with LA volume but not dimen-
sion [80]. The preponderance of studies of the LV and pau-
city of studies reporting on the RV limited our inclusion of 
RV indices, and therefore, a greater focus on the right side of 
the heart is warranted in older athletes. Future work should 
also include STE assessment of both left and right sides 
of the heart, to enable further insight into intrinsic cardiac 
mechanics.

Reporting of athlete training was inconsistent between 
studies, which prevented additional meta-regression analy-
ses of training years, volume and intensity to further elu-
cidate the between-study heterogeneity. Therefore, more 
robust documentation with quantitative means ± SDs is 
required before the influence of training regimes can be 
documented within a narrower age range, since cardiac 
structure and function have been reported to be exercise 
dose dependent [81]. Many studies did not state the spe-
cific sport performed by the athletes, or enrolled endurance 
athletes from different sports with varying magnitudes of 
static and dynamic loading. To allow subgroup analysis 
on the type of sport in future meta-analysis, we suggest 
studies report the sports of their athletes.

4.4.2  Present Meta‑Analysis

This meta-analysis has notable limitations. Firstly, we 
were confined to analysing male participants. Further, we 
did not include other measures of body size-adjusted LV 
morphology (IVS, PWT, LVEDD). This was due to few 
data and inconsistent scaling within the literature. Of the 
included studies for LVMi, five used either  height2.7 or 
fat-free mass to index LVM, which prevented separate 
meta-analysis and regression using these parameters for 
indexing other than BSA. It is noteworthy that two stud-
ies [34, 51] did not disclose the sex of participants. To 
resolve this, we employed an educated assumption of male 
participants because average LVEDD and LVEDV greatly 
exceeded the normal range in females [34]. This was fur-
ther endorsed when average group LVMi data scaled to 
BSA were at the upper end of the range in men [23, 51] 
and vastly exceeded the expected range in females. We 
acknowledge that the data presented in this meta-analysis 
are derived from cross-sectional studies. However, there 
exists a paucity of prospective studies of sufficient dura-
tion to adequately quantify the influence of chronological 
age on the observed athlete–control differences, in addi-
tion to having relatively small sample sizes and mixed 
sexes. Indeed, 1 year of endurance training in older adults 
(> 65 years) did not alter LV stiffness and compliance [9], 
whereas recently, Howden et al. [82] observed reduced 
LV stiffness in middle-aged adults following 2 years of 

Table 5  (continued)

References Study group (n) E (cm·s−1) A (cm·s−1) E/A e′ (cm·s−1) a′ (cm·s−1) e′/a′ E/e′

Grace et al. [7] Control (22)
Triathletes, athlet-

ics, sprint cyclists, 
racquet sports (17)

68.0 ± 14.0
70.0 ± 11.0↔

63.0 ± 15.0
54.0 ± 7.0↓

1.1 ± 0.3
1.3 ± 0.3↑

6.2 ± 1.3
7.4 ± 1.4↑

–
–

–
–

–
–

Maessen et al. [47] Control (13)
Endurance athletes 

(18)

62.7 ± 15.7
63.0 ± 11.9↔

–
–

–
–

–
–

11.2 ± 2.0
11.3 ± 2.5↔

–
–

–
–

Maufrais et al. [49] Control (20)
Cyclists (22)

69.7 ± 11.3
73.0 ± 15.7↔

–
–

–
–

9.1 ± 1.6
9.5 ± 2.6↔

–
–

–
–

7.8 ± 1.6
7.8 ± 2.0↔

Data are presented as mean ± standard deviation unless otherwise stated
Statistical significance at p < 0.05
A late diastolic mitral inflow velocity, a′ late diastolic tissue velocity, E early diastolic mitral inflow velocity, e′ early diastolic tissue velocity, 
e′/a′ ratio of early to late diastolic tissue velocity, E/A ratio of early to late mitral inflow velocity, E/e′ ratio of early diastolic mitral inflow veloc-
ity to early diastolic tissue velocity, n participant number
↑ Significantly greater in athletes
↓ Significantly less in athletes
↔ No athlete–control difference
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high-intensity training. While these data provide invalu-
able knowledge pertaining to the optimal stage of life to 
initiate exercise for offsetting the ageing process, the pre-
sent findings document the benefit of exercise in those 
already trained across the age spectrum.

5  Conclusions

Pooled information from controlled echocardiography 
studies demonstrates that older athletes have superior 
global diastolic function compared with controls because 

of a reduced reliance on atrial contraction to LV filling 
in mitral inflow velocity and both increased early and 
reduced late diastolic tissue velocities. Furthermore, 
older athletes have notable differences in cardiac structure 
(wall thickness, cavity size and LV volume) with greater 
relative and absolute LVM. Despite unremarkable differ-
ences in LV systolic function, SV is markedly greater in 
older athletes. Notably, the present data also identify that 
masters athletes maintain these functional effects during 
chronological ageing.

Table 6  Meta-analyses of 
athlete–control differences for 
cardiac structure, systolic and 
diastolic function

Bold values indicate statistical significance (p < 0.05)
A late diastolic mitral inflow velocity, a′ late diastolic tissue velocity, CI confidence interval, E early 
diastolic mitral inflow velocity, e′ early diastolic tissue velocity, e′/a′ ratio of early to late diastolic tissue 
velocity, E/A ratio of early to late mitral inflow velocity, E/e′ ratio of early diastolic mitral inflow velocity 
to early diastolic tissue velocity, EF ejection fraction, FS fractional shortening, GLS global longitudinal 
strain, IVS interventricular septal, LAD left atrial diameter, LVEDD left ventricular end-diastolic diameter, 
LVEDV left ventricular end-diastolic volume, LVM left ventricular mass, LVMi left ventricular mass index, 
PWT posterior wall thickness, RVEDD right ventricular end-diastolic diameter, RWT  relative wall thick-
ness, s′ systolic tissue velocity, SV stroke volume

Parameter Number 
of studies

Differ-
ence in 
means

95% CI p value Heterogeneity p value

Cochran’s Q I2 statistic (%)

Cardiac structure
 IVS (mm) 18 1.23 0.85 to 1.60 < 0.01 78.42 78.32 < 0.01
 PWT (mm) 18 1.20 0.83 to 1.56 < 0.01 81.60 79.17 < 0.01
 LVEDD (mm) 23 3.65 2.66 to 4.64 < 0.01 64.99 66.15 < 0.01
 RWT 11 0.00 −0.02 to 0.03 0.73 51.89 80.73 < 0.01
 LVM (g) 10 72.03 45.70 to 98.36 < 0.01 211.29 95.74 < 0.01
 LVMi (g·m2) 20 28.17 19.84 to 36.49 < 0.01 148.62 87.22 < 0.01
 LVEDV (mL) 10 16.11 7.80 to 24.43 < 0.01 56.02 83.93 < 0.01
 LAD (mm) 5 2.07 −1.66 to 5.79 0.28 20.73 80.70 < 0.01
 RVEDD (mm) 3 3.49 −0.55 to 7.53 0.09 29.37 93.19 < 0.01

Left ventricular systolic function
 EF (%) 15 0.43 −1.57 to 2.44 0.67 82.90 83.11 < 0.01
 FS (%) 11 −0.34 −2.32 to 1.63 0.73 34.60 71.10 < 0.01
 SV (mL) 7 13.59 7.20 to 19.98 < 0.01 30.48 80.31 < 0.01
 s′ (cm·s−1) 14 0.09 −0.53 to 0.70 0.79 82.85 84.31 < 0.01
 GLS (%) 5 −0.04 −1.18 to 1.10 0.94 13.63 70.66 0.01

Left ventricular diastolic function
 E (cm·s−1) 22 2.08 −1.12 to 5.28 0.20 74.06 71.64 < 0.01
 A (cm·s−1) 20 −8.20 −11.90 to −4.51 < 0.01 68.73 72.36 < 0.01
 E/A 23 0.18 0.13 to 0.24 < 0.01 42.31 48.00 0.01
 e′ (cm·s−1) 14 0.96 0.05 to 1.86 0.04 93.55 86.10 < 0.01
 a′ (cm·s−1) 13 −0.72 −1.31 to −0.12 0.02 41.32 70.96 < 0.01
 e′/a′ 7 0.23 0.06 to 0.40 0.01 61.44 90.23 < 0.01
 E/e′ 8 0.23 −0.31 to 0.77 0.40 12.51 44.06 0.08



 A. J. Beaumont et al.

Compliance with Ethical Standards 

Funding No sources of funding were used to assist in the preparation 
of this article.

Conflict of interest Alexander Beaumont, Fergal Grace, Joanna Rich-
ards, Amy Campbell and Nicholas Sculthorpe declare that they have 
no conflicts of interest relevant to the content of this review.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

 1. Paffenbarger RS, Hyde RT, Wing AL, Lee IM, Jung DL, Kampert 
JB. The association of changes in physical-activity level and other 
lifestyle characteristics with mortality among men. N Engl J Med. 
1993;328:538–45.

 2. Thompson PD, Buchner D, Piña IL, Balady GJ, Williams MA, 
Marcus BH, et al. Exercise and physical activity in the preven-
tion and treatment of atherosclerotic cardiovascular disease: a 

Table 7  Meta-regression(s) of left ventricular structure and function between older athletes and controls during advancing age with interpreta-
tion

Bold values indicate statistical significance (p < 0.05)
A late diastolic mitral inflow velocity, a′ late diastolic tissue velocity, CI confidence interval, E early diastolic mitral inflow velocity, e′ early dias-
tolic tissue velocity, E/A ratio of early to late mitral inflow velocity, EF ejection fraction, FS fractional shortening, IVS interventricular septal, 
LVEDD left ventricular end-diastolic diameter, LVEDV left ventricular end-diastolic volume, LVM left ventricular mass, LVMi left ventricular 
mass index, PWT posterior wall thickness, RWT  relative wall thickness, s′ systolic tissue velocity, SE standard error

Covariate parameter Number 
of stud-
ies

Cochran’s Q SE β 95% CI p value Interpretation (i.e. difference between athletes and 
controls with advancing age)

Left ventricular structure
 IVS 18 1.88 0.02 −0.04 −0.08 to 

0.01
0.17 Maintained

 PWT 18 0.05 0.02 −0.005 −0.05 to 
0.04

0.82 Maintained

 LVEDD 23 6.42 0.05 −0.14 −0.24 to 
−0.03

0.01 Reduced. The greater LVEDD in athletes reduced 
by ~ 0.14 mm per year relative to controls

 RWT 11 1.06 0.002 −0.002 −0.01 to 
0.002

0.30 Maintained

 LVM 10 0.29 1.81 −0.97 −4.51 to 
2.58

0.59 Maintained

 LVMi 20 9.79 0.57 −1.79 −2.91 to 
−0.67

< 0.01 Reduced. The greater LVMi in athletes reduced 
by ~ 1.79 g·m2 per year relative to controls

 LVEDV 10 0.44 0.62 0.41 −0.81 to 
1.63

0.51 Maintained

Left ventricular systolic function
 EF 15 1.57 0.15 0.19 −0.11 to 

0.48
0.21 Maintained

 FS 11 0.42 0.11 −0.07 −0.30 to 
0.15

0.51 Maintained

 s′ 14 2.80 0.04 −0.07 −0.16 to 
0.01

0.09 Maintained

Left ventricular diastolic function
 E 22 2.53 0.25 −0.40 −0.89 to 

0.09
0.11 Maintained

 A 20 3.98 0.25 −0.50 −1.00 to 
−0.01

0.046 Increased. There was an increase of ~ 0.50 cm·s−1 
per year in controls relative to athletes

 E/A 23 0.0001 0.004 0.00004 −0.01 to 
0.01

0.99 Maintained

 e′ 14 0.41 0.06 −0.04 −0.17 to 
0.09

0.52 Maintained

 a′ 13 1.03 0.04 −0.04 −0.12 to 
0.04

0.31 Maintained

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Ageing, Aerobic Exercise and Cardiac Function

statement from the council on clinical cardiology (subcommit-
tee on exercise, rehabilitation, and prevention) and the council 
on nutrition, physical activity, and metabolism (subcommittee on 
physical activity). Circulation. 2003;107:3109–16.

 3. Knowles A-M, Herbert P, Easton C, Sculthorpe N, Grace FM. 
Impact of low-volume, high-intensity interval training on maximal 
aerobic capacity, health-related quality of life and motivation to 
exercise in ageing men. Age Dordr Neth. 2015;37:25.

 4. Rogers MA, Hagberg JM, Martin WH, Ehsani AA, Holloszy JO. 
Decline in  VO2max with aging in master athletes and sedentary 
men. J Appl Physiol. 1990;68:2195–9.

 5. Seals DR, Edward F. Adolph Distinguished Lecture: the remark-
able anti-aging effects of aerobic exercise on systemic arteries. J 
Appl Physiol. 2014;117:425–39.

 6. Shibata S, Fujimoto N, Hastings JL, Carrick-Ranson G, Bhella 
PS, Hearon CM, et al. The effect of lifelong exercise frequency 
on arterial stiffness. J Physiol. 2018;596:2783–95.

 7. Grace F, Herbert P, Elliott AD, Richards J, Beaumont A, Scult-
horpe NF. High intensity interval training (HIIT) improves resting 
blood pressure, metabolic (MET) capacity and heart rate reserve 
without compromising cardiac function in sedentary aging men. 
Exp Gerontol [Internet]. 2017. http://linki nghub .elsev ier.com/retri 
eve/pii/S0531 55651 63060 03. Accessed 16 Jun 2017.

 8. Tanaka H, Seals DR. Endurance exercise performance in masters 
athletes: age-associated changes and underlying physiological 
mechanisms. J Physiol. 2008;586:55–63.

 9. Fujimoto N, Prasad A, Hastings JL, Arbab-Zadeh A, Bhella PS, 
Shibata S, et al. Cardiovascular effects of 1 year of progressive 
and vigorous exercise training in previously sedentary individuals 
older than 65 years of age. Circulation. 2010;122:1797–805.

 10. Wilson M, O’Hanlon R, Basavarajaiah S, George K, Green D, 
Ainslie P, et al. Cardiovascular function and the veteran athlete. 
Eur J Appl Physiol. 2010;110:459–78.

 11. Fagard RH. Athlete’s heart: a meta-analysis of the echocardio-
graphic experience. Int J Sports Med. 1996;17(Suppl 3):S140–4.

 12. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. 
The athlete’s heart. A meta-analysis of cardiac structure and func-
tion. Circulation. 2000;101:336–44.

 13. Utomi V, Oxborough D, Whyte GP, Somauroo J, Sharma S, Shave 
R, et al. Systematic review and meta-analysis of training mode, 
imaging modality and body size influences on the morphology 
and function of the male athlete’s heart. Heart. 2013;99:1727–33.

 14. McClean G, Riding NR, Ardern CL, Farooq A, Pieles GE, Watt 
V, et al. Electrical and structural adaptations of the paediatric 
athlete’s heart: a systematic review with meta-analysis. Br J Sports 
Med. 2017;52(4):230. https ://doi.org/10.1136/bjspo rts-2016-
09705 2.

 15. Beaumont A, Grace F, Richards J, Hough J, Oxborough D, 
Sculthorpe N. Left ventricular speckle tracking-derived car-
diac strain and cardiac twist mechanics in athletes: a systematic 
review and meta-analysis of controlled studies. Sports Med. 
2017;47:1145–70.

 16. D’Ascenzi F, Pelliccia A, Solari M, Piu P, Loiacono F, Anselmi 
F, et al. Normative reference values of right heart in competi-
tive athletes: a systematic review and meta-analysis. J Am Soc 
Echocardiogr. 2017;30(845–858):e2.

 17. Iskandar A, Mujtaba MT, Thompson PD. Left atrium size in 
elite athletes. JACC Cardiovasc Imaging. 2015;8:753–62.

 18. Whyte GP, George K, Nevill A, Shave R, Sharma S, McKenna 
WJ. Left ventricular morphology and function in female ath-
letes: a meta-analysis. Int J Sports Med. 2004;25:380–3.

 19. Naylor LH, George K, O’Driscoll G, Green DJ. The athlete’s 
heart: a contemporary appraisal of the “Morganroth hypoth-
esis”. Sports Med. 2008;38:69–90.

 20. Pavlik G, Major Z, Csajági E, Jeserich M, Kneffel Z. The 
athlete’s heart. Part II: influencing factors on the athlete’s 

heart: types of sports and age (review). Acta Physiol Hung. 
2013;100:1–27.

 21. Brown B, Green DJ, Wilson M, Drezner J, George K, Oxborough 
D. The complex phenotype of the athlete’s heart: implications for 
pre-participation screening. Exerc Sport Sci Rev. 2017;45:96–104.

 22. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. 
Preferred reporting items for systematic reviews and meta-analy-
ses: the PRISMA statement. BMJ. 2009;339:b2535.

 23. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, 
Ernande L, et al. Recommendations for cardiac chamber quanti-
fication by echocardiography in adults: an update from the Ameri-
can Society of Echocardiography and the European Association 
of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 
2015;16:233–71.

 24. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, 
Smiseth OA, et al. Recommendations for the evaluation of left 
ventricular diastolic function by echocardiography. J Am Soc 
Echocardiogr. 2009;22:107–33.

 25. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and vari-
ance from the median, range, and the size of a sample. BMC Med 
Res Methodol. 2005;5:13.

 26. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring 
inconsistency in meta-analyses. BMJ. 2003;327:557–60.

 27. Higgins JPT, Green S. Cochrane handbook for systematic reviews 
of interventions. [Internet]. The Cochrane Collaboration. 2011. 
http://handb ook.cochr ane.org. Accessed 18 Jan 2018.

 28. Egger M, Davey Smith G, Schneider M, Minder C. Bias in 
meta-analysis detected by a simple, graphical test. BMJ. 
1997;315:629–34.

 29. Baldi JC, McFarlane K, Oxenham HC, Whalley GA, Walsh HJ, 
Doughty RN. Left ventricular diastolic filling and systolic func-
tion of young and older trained and untrained men. J Appl Physiol. 
2003;95:2570–5.

 30. Bohm P, Schneider G, Linneweber L, Rentzsch A, Krämer N, 
Abdul-Khaliq H, et al. Right and left ventricular function and 
mass in male elite master athletes: a controlled contrast enhanced 
CMR study. Circulation. 2016;133(20):1927–35.

 31. Bouvier F, Saltin B, Nejat M, Jensen-Urstad M. Left ventricular 
function and perfusion in elderly endurance athletes. Med Sci 
Sports Exerc. 2001;33:735–40.

 32. Carrick-Ranson G, Doughty RN, Whalley GA, Walsh HJ, Gam-
ble GD, Baldi JC. The larger exercise stroke volume in endur-
ance-trained men does not result from increased left ventricu-
lar early or late inflow or tissue velocities. Acta Physiol (Oxf). 
2012;205:520–31.

 33. Child JS, Barnard RJ, Taw RL. Cardiac hypertrophy and func-
tion in master endurance runners and sprinters. J Appl Physiol. 
1984;57:176–81.

 34. Cottini E, Giacone G, Cosentino M, Cirino A, Rando G, Vintaloro 
G. Evaluation of left ventricular diastolic function by pulmonary 
venous and mitral flow velocity patterns in endurance veteran ath-
letes. Arch Gerontol Geriatr. 1996;22(Suppl 1):179–86.

 35. D’Andrea A, Caso P, Scarafile R, Salerno G, De Corato G, 
Mita C, et al. Biventricular myocardial adaptation to different 
training protocols in competitive master athletes. Int J Cardiol. 
2007;115:342–9.

 36. Di Bello V, Lattanzi F, Picano E, Talarico L, Caputo MT, Di 
Muro C, et al. Left ventricular performance and ultrasonic myo-
cardial quantitative reflectivity in endurance senior athletes: an 
echocardiographic study. Eur Heart J. 1993;14:358–63.

 37. Donal E, Rozoy T, Kervio G, Schnell F, Mabo P, Carré F. Com-
parison of the heart function adaptation in trained and seden-
tary men after 50 and before 35 years of age. Am J Cardiol. 
2011;108:1029–37.

http://linkinghub.elsevier.com/retrieve/pii/S0531556516306003
http://linkinghub.elsevier.com/retrieve/pii/S0531556516306003
https://doi.org/10.1136/bjsports-2016-097052
https://doi.org/10.1136/bjsports-2016-097052
http://handbook.cochrane.org


 A. J. Beaumont et al.

 38. Fleg JL, Shapiro EP, O’Connor F, Taube J, Goldberg AP, 
Lakatta EG. Left ventricular diastolic filling performance in 
older male athletes. JAMA. 1995;273:1371–5.

 39. Galetta F, Franzoni F, Femia FR, Bartolomucci F, Carpi A, 
Santoro G. Left ventricular diastolic function and carotid artery 
wall in elderly athletes and sedentary controls. Biomed Pharma-
cother Biomed Pharmacother. 2004;58:437–42.

 40. Galetta F, Franzoni F, Santoro G, Prattichizzo F, Femia FR, 
Pastine F, et al. QT dispersion in elderly athletes with left ven-
tricular hypertrophy. Int J Sports Med. 2003;24:233–7.

 41. Gates PE, Tanaka H, Graves J, Seals DR. Left ventricular 
structure and diastolic function with human ageing. Rela-
tion to habitual exercise and arterial stiffness. Eur Heart J. 
2003;24:2213–20.

 42. Giada F, Bertaglia E, De Piccoli B, Franceschi M, Sartori F, 
Raviele A, et al. Cardiovascular adaptations to endurance train-
ing and detraining in young and older athletes. Int J Cardiol. 
1998;65:149–55.

 43. Jungblut PR, Osborne JA, Quigg RJ, McNeal MA, Clauser J, 
Muster AJ, et al. Echocardiographic Doppler evaluation of left 
ventricular diastolic filling in older, highly trained male endurance 
athletes. Echocardiography. 2000;17:7–16.

 44. Kozàkovà M, Galetta F, Gregorini L, Bigalli G, Franzoni F, 
Giusti C, et al. Coronary vasodilator capacity and epicardial ves-
sel remodeling in physiological and hypertensive hypertrophy. 
Hypertension. 2000;36:343–9.

 45. Lee LS, Mariani JA, Sasson Z, Goodman JM. Exercise with a 
twist: left ventricular twist and recoil in healthy young and mid-
dle-aged men, and middle-aged endurance-trained men. J Am Soc 
Echocardiogr. 2012;25:986–93.

 46. Lindsay MM, Dunn FG. Biochemical evidence of myocar-
dial fibrosis in veteran endurance athletes. Br J Sports Med. 
2007;41:447–52.

 47. Maessen MF, Eijsvogels TM, Stevens G, van Dijk AP, Hop-
man MT. Benefits of lifelong exercise training on left ventric-
ular function after myocardial infarction. Eur J Prev Cardiol. 
2017;24(17):1856–66. https ://doi.org/10.1177/20474 87317 72876 
5.

 48. Matelot D, Schnell F, Kervio G, Ridard C, Thillaye du Boul-
lay N, Wilson M, et al. Cardiovascular benefits of endurance 
training in seniors: 40 is not too late to start. Int J Sports Med. 
2016;37:625–32.

 49. Maufrais C, Doucende G, Rupp T, Dauzat M, Obert P, Not-
tin S, et  al. Left ventricles of aging athletes: better untwist-
ers but not more relaxed during exercise. Clin Res Car-
diol. 2017;106(11):884–92. https ://doi.org/10.1007/s0039 
2-017-1133-y.

 50. Maufrais C, Schuster I, Doucende G, Vitiello D, Rupp T, Dauzat 
M, et al. Endurance training minimizes age-related changes of 
left ventricular twist-untwist mechanics. J Am Soc Echocardiogr. 
2014;27:1208–15.

 51. Miki T, Yokota Y, Seo T, Yokoyama M. Echocardiographic find-
ings in 104 professional cyclists with follow-up study. Am Heart 
J. 1994;127:898–905.

 52. Molmen HE, Wisloff U, Aamot IL, Stoylen A, Ingul CB. Aerobic 
interval training compensates age related decline in cardiac func-
tion. Scand Cardiovasc J. 2012;46:163–71.

 53. Nishimura T, Yamada Y, Kawai C. Echocardiographic evaluation 
of long-term effects of exercise on left ventricular hypertrophy and 
function in professional bicyclists. Circulation. 1980;61:832–40.

 54. Northcote RJ, McKillop G, Todd IC, Canning GP. The effect of 
habitual sustained endurance exercise on cardiac structure and 
function. Eur Heart J. 1990;11:17–22.

 55. Nottin S, Nguyen L-D, Terbah M, Obert P. Long-term endurance 
training does not prevent the age-related decrease in left ventricu-
lar relaxation properties. Acta Physiol Scand. 2004;181:209–15.

 56. Olsen RH, Couppé C, Dall CH, Monk-Hansen T, Mikkelsen 
UR, Karlsen A, et al. Age-related decline in mitral peak diastolic 
velocities is unaffected in well-trained runners. Scand Cardiovasc 
J. 2015;49:183–92.

 57. Sagiv M, Goldhammer E, Ben-Sira D, Amir R. What maintains 
energy supply at peak aerobic exercise in trained and untrained 
older men? Gerontology. 2007;53:357–61.

 58. Schmidt JF, Andersen TR, Andersen LJ, Randers MB, Hornstrup 
T, Hansen PR, et al. Cardiovascular function is better in veteran 
football players than age-matched untrained elderly healthy men. 
Scand J Med Sci Sports. 2015;25:61–9.

 59. Seals DR, Hagberg JM, Spina RJ, Rogers MA, Schechtman KB, 
Ehsani AA. Enhanced left ventricular performance in endurance 
trained older men. Circulation. 1994;89:198–205.

 60. Caselli S, Di Paolo FM, Pisicchio C, Pandian NG, Pelliccia A. 
Patterns of left ventricular diastolic function in Olympic athletes. 
J Am Soc Echocardiogr. 2015;28:236–44.

 61. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative 
left ventricular dimensions in trained athletes. Ann Intern Med. 
1975;82:521–4.

 62. Pavlik G, Olexó Z, Osváth P, Sidó Z, Frenkl R. Echocardiographic 
characteristics of male athletes of different age. Br J Sports Med. 
2001;35:95–9.

 63. Teske AJ, Prakken NH, De Boeck BWL, Velthuis BK, Doev-
endans PA, Cramer MJM. Effect of long term and intensive 
endurance training in athletes on the age related decline in left 
and right ventricular diastolic function as assessed by Doppler 
echocardiography. Am J Cardiol. 2009;104:1145–51.

 64. Kovacs R, Baggish AL. Cardiovascular adaptation in athletes. 
Trends Cardiovasc Med. 2016;26:46–52.

 65. Elliott AD, Linz D, Verdicchio CV, Sanders P. Exercise and 
atrial fibrillation: prevention or causation? Heart Lung Circ. 
2018;27:1078–85.

 66. Rowland T. Endurance athletes’ stroke volume response to pro-
gressive exercise. Sports Med. 2009;39:687–95.

 67. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocar-
dial strain imaging: how useful is it in clinical decision making? 
Eur Heart J. 2016;37:1196–207.

 68. Galderisi M, Lomoriello VS, Santoro A, Esposito R, Olibet M, 
Raia R, et al. Differences of myocardial systolic deformation and 
correlates of diastolic function in competitive rowers and young 
hypertensives: a speckle-tracking echocardiography study. J Am 
Soc Echocardiogr. 2010;23:1190–8.

 69. Santoro A, Alvino F, Antonelli G, Zacà V, Benincasa S, Lunghetti 
S, et al. Left ventricular twisting modifications in patients with 
left ventricular concentric hypertrophy at increasing after-load 
conditions. Echocardiography. 2014;31:1265–73.

 70. Butz T, van Buuren F, Mellwig KP, Langer C, Plehn G, Meiss-
ner A, et al. Two-dimensional strain analysis of the global and 
regional myocardial function for the differentiation of pathologic 
and physiologic left ventricular hypertrophy: a study in athletes 
and in patients with hypertrophic cardiomyopathy. Int J Cardio-
vasc Imaging. 2011;27:91–100.

 71. Reant P, Mirabel M, Lloyd G, Peyrou J, Ayala J-ML, Dickie S, 
et al. Global longitudinal strain is associated with heart failure out-
comes in hypertrophic cardiomyopathy. Heart. 2016;102(10):741–
7. https ://doi.org/10.1136/heart jnl-2015-30857 6.

 72. Weiner RB, Hutter AM, Wang F, Kim J, Weyman AE, Wood MJ, 
et al. The impact of endurance exercise training on left ventricular 
torsion. JACC Cardiovasc Imaging. 2010;3:1001–9.

 73. Aksakal E, Kurt M, Ozturk ME, Tanboga IH, Kaya A, Nacar T, 
et al. The effect of incremental endurance exercise training on left 
ventricular mechanics: a prospective observational deformation 
imaging study. Anadolu Kardiyol Derg Anatol J Cardiol [Inter-
net]. 2013. http://anato ljcar diol.com/jvi.aspx?un = AJC-25238 . 
Accessed 7 Dec 2016.

https://doi.org/10.1177/2047487317728765
https://doi.org/10.1177/2047487317728765
https://doi.org/10.1007/s00392-017-1133-y
https://doi.org/10.1007/s00392-017-1133-y
https://doi.org/10.1136/heartjnl-2015-308576
http://anatoljcardiol.com/jvi.aspx%3fun%e2%80%89%3d%e2%80%89AJC-25238


Ageing, Aerobic Exercise and Cardiac Function

 74. D’Ascenzi F, Pelliccia A, Alvino F, Solari M, Loffreno A, Cameli 
M, et al. Effects of training on LV strain in competitive athletes. 
Heart Br Card Soc. 2015;101:1834–9.

 75. Schmidt JF, Hansen PR, Andersen TR, Andersen LJ, Hornstrup T, 
Krustrup P, et al. Cardiovascular adaptations to 4 and 12 months 
of football or strength training in 65- to 75-year-old untrained 
men. Scand J Med Sci Sports. 2014;24(Suppl 1):86–97.

 76. D’Ascenzi F, Caselli S, Solari M, Pelliccia A, Cameli M, Focardi 
M, et al. Novel echocardiographic techniques for the evaluation 
of athletes’ heart: a focus on speckle-tracking echocardiography. 
Eur J Prev Cardiol. 2016;23:437–46.

 77. Howden EJ, Carrick-Ranson G, Sarma S, Hieda M, Fujimoto 
N, Levine BD. Effects of sedentary aging and lifelong exercise 
on left ventricular systolic function. Med Sci Sports Exerc. 
2017;50:494–501.

 78. Hagmar M, Hirschberg AL, Lindholm C, Schenck-Gustafsson 
K, Eriksson MJ. Athlete’s heart in postmenopausal former elite 
endurance female athletes. Clin J Sport Med. 2005;15:257–62.

 79. Haykowsky MJ, Quinney HA, Gillis R, Thompson CR. Left ven-
tricular morphology in junior and master resistance trained ath-
letes. Med Sci Sports Exerc. 2000;32:349–52.

 80. Elliott AD, Mahajan R, Linz D, Stokes M, Verdicchio CV, Mid-
deldorp ME, et al. Atrial remodeling and ectopic burden in rec-
reational athletes: implications for risk of atrial fibrillation. Clin 
Cardiol. 2018;41:843–8.

 81. Bhella PS, Hastings JL, Fujimoto N, Shibata S, Carrick-Ranson 
G, Palmer MD, et al. Impact of lifelong exercise “dose” on left 
ventricular compliance and distensibility. J Am Coll Cardiol. 
2014;64:1257–66.

 82. Howden EJ, Sarma S, Lawley JS, Opondo M, Cornwell W, Stoller 
D, et al. Reversing the cardiac effects of sedentary aging in middle 
age—a randomized controlled trial: Implications for heart failure 
prevention. Circulation. 2018;137(15):1549–60.


	Aerobic Training Protects Cardiac Function During Advancing Age: A Meta-Analysis of Four Decades of Controlled Studies
	Abstract
	Background 
	Objectives 
	Methods 
	Results 
	Conclusions 

	1 Introduction
	2 Methods
	2.1 Information Sources and Search Strategy
	2.2 Inclusion Criteria
	2.3 Study Selection and Data Extraction
	2.4 Statistical Analyses

	3 Results
	3.1 Search Outcome
	3.2 Cardiac Structure
	3.3 Left Ventricular Systolic Function
	3.4 Left Ventricular Diastolic Function
	3.5 Meta-Regression(s)
	3.6 Publication Bias

	4 Discussion
	4.1 Left Ventricular Diastolic Function
	4.2 Cardiac Structure
	4.3 Left Ventricular Systolic Function
	4.4 Limitations
	4.4.1 Available Studies
	4.4.2 Present Meta-Analysis


	5 Conclusions
	References




