Dechant, Pierre-Philippe ORCID: https://orcid.org/0000-0002-4694-4010 (2016) A new construction of E8 and the other exceptional root systems. In: Algebra Seminar, 18th January 2016, Queen Mary University of London. (Unpublished)

Downloaded from: http://ray.yorksj.ac.uk/id/eprint/4025/

Research at York St John (RaY) is an institutional repository. It supports the principles of open access by making the research outputs of the University available in digital form. Copyright of the items stored in RaY reside with the authors and/or other copyright owners. Users may access full text items free of charge, and may download a copy for private study or non-commercial research. For further reuse terms, see licence terms governing individual outputs. Institutional Repository Policy Statement

RaY

Research at the University of York St John

For more information please contact RaY at ray@yorksj.ac.uk

The University of lork $^{\prime}$

A new construction of E_{8} and the other exceptional root systems

Pierre-Philippe Dechant

Department of Mathematics (and Biology), University of York
QMUL algebra seminar - January 18, 2016

Main results

- Each 3D root system induces a 4D root system
- H_{3} (icosahedral symmetry) induces the E_{8} root system
- Clifford algebra is a very natural framework for root systems and reflection groups

Overview

(1) Root systems and Clifford algebras

- Root systems
- Clifford Basics
(2) H_{4} as a rotation group I: 3D to 4D spinor induction, Trinities
and McKay correspondence
- 3D to 4D spinor induction
- Trinities and McKay correspondence
(3) E_{8} from the icosahedron
(4) H_{4} as a rotation group II: The Coxeter plane

Root systems

Root system Φ : set of vectors α in a vector space with an inner product such that

$$
\begin{aligned}
& \text { 1. } \Phi \cap \mathbb{R} \alpha=\{-\alpha, \alpha\} \forall \alpha \in \Phi \\
& \text { 2. } s_{\alpha} \Phi=\Phi \forall \alpha \in \Phi
\end{aligned}
$$

Simple roots: express every element of Φ via a
\mathbb{Z}-linear combination.
reflection/Coxeter groups $s_{\alpha}: v \rightarrow s_{\alpha}(v)=v-2 \frac{(v \mid \alpha)}{(\alpha \mid \alpha)} \alpha$

Cartan Matrices

$$
\begin{aligned}
& \text { Cartan matrix of } \alpha_{i} \mathrm{~s} \text { is } A_{i j}=2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}=2 \frac{\left|\alpha_{j}\right|}{\left|\alpha_{i}\right|} \cos \theta_{i j} \\
& A_{2}: A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
\end{aligned}
$$

Coxeter-Dynkin diagrams: node $=$ simple root, no link $=$ roots orthogonal, simple link $=$ roots at $\frac{\pi}{3}$, link with label $m=$ angle $\frac{\pi}{m}$.

$I_{2}(n) \circ{ }^{n}$

Lie groups to Lie algebras to Coxeter groups to root systems

- Lie group: manifold of continuous symmetries (gauge theories, spacetime)
- Lie algebra: infinitesimal version near the identity
- Non-trivial part is given by a root lattice
- Weyl group is a crystallographic Coxeter group: $A_{n}, B_{n} / C_{n}, D_{n}, G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ generated by a root system.
- So via this route root systems are always crystallographic. Neglect non-crystallographic root systems $I_{2}(n), H_{3}, H_{4}$.

Non-crystallographic Coxeter groups $H_{2} \subset H_{3} \subset H_{4}$

$H_{2} \subset H_{3} \subset H_{4}: 10,120,14,400$ elements, the only Coxeter groups that generate rotational symmetries of order 5
linear combinations now in the extended integer ring

$$
\begin{aligned}
& \mathbb{Z}[\tau]=\{a+\tau b \mid a, b \in \mathbb{Z}\} \text { golden ratio } \tau=\frac{1}{2}(1+\sqrt{5})=2 \cos \frac{\pi}{5} \\
& x^{2}=x+1 \\
& \tau^{\prime}=\sigma=\frac{1}{2}(1-\sqrt{5})=2 \cos \frac{2 \pi}{5} \\
& \tau+\sigma=1, \tau \sigma=-1
\end{aligned}
$$

The Icosahedron

- Rotational icosahedral group is $I=A_{5}$ of order 60
- Full icosahedral group is H_{3} of order 120 (including reflections/inversion); generated by the root system icosidodecahedron

Clifford Algebra and orthogonal transformations

- Form an algebra using the Geometric Product for two vectors

$$
a b \equiv a \cdot b+a \wedge b
$$

- Inner product is symmetric part $a \cdot b=\frac{1}{2}(a b+b a)$
- Reflecting a in b is given by $a^{\prime}=a-2(a \cdot b) b=-b a b$ (b and $-b$ doubly cover the same reflection)
- Via Cartan-Dieudonné theorem any orthogonal (/conformal/modular) transformation can be written as successive reflections

$$
x^{\prime}= \pm n_{1} n_{2} \ldots n_{k} x n_{k} \ldots n_{2} n_{1}= \pm A x \tilde{A}
$$

Clifford Algebra of 3D

- E.g. Pauli algebra in 3D (likewise for Dirac algebra in 4D) is

$$
\underbrace{\{1\}}_{1 \text { scalar }} \underbrace{\left\{e_{1}, e_{2}, e_{3}\right\}}_{3 \text { vectors }} \underbrace{\left\{e_{1} e_{2}, e_{2} e_{3}, e_{3} e_{1}\right\}}_{3 \text { bivectors }} \underbrace{\left\{I \equiv e_{1} e_{2} e_{3}\right\}}_{1 \text { trivector }}
$$

- We can multiply together root vectors in this algebra $\alpha_{i} \alpha_{j} \ldots$
- A general element has 8 components, even products (rotations/spinors) have four components:

$$
R=a_{0}+a_{1} e_{2} e_{3}+a_{2} e_{3} e_{1}+a_{3} e_{1} e_{2} \Rightarrow R \tilde{R}=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}
$$

- So behaves as a 4D Euclidean object - inner product

$$
\left(R_{1}, R_{2}\right)=\frac{1}{2}\left(R_{2} \tilde{R}_{1}+R_{1} \tilde{R}_{2}\right)
$$

Overview

(1) Root systems and Clifford algebras

- Root systems
- Clifford Basics
(2) H_{4} as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence
- 3D to 4D spinor induction
- Trinities and McKay correspondence
(3) E_{8} from the icosahedron
(4) H_{4} as a rotation group II: The Coxeter plane

Induction Theorem - root systems

- Theorem: 3D spinor groups give 4D root systems.

Induction Theorem - root systems

- Theorem: 3D spinor groups give 4D root systems.
- Check axioms:

$$
\begin{aligned}
& \text { 1. } \Phi \cap \mathbb{R} \alpha=\{-\alpha, \alpha\} \quad \forall \alpha \in \Phi \\
& \text { 2. } s_{\alpha} \Phi=\Phi \forall \alpha \in \Phi
\end{aligned}
$$

Induction Theorem - root systems

- Theorem: 3D spinor groups give 4D root systems.
- Check axioms:

1. $\Phi \cap \mathbb{R} \alpha=\{-\alpha, \alpha\} \forall \alpha \in \Phi$
2. $s_{\alpha} \Phi=\Phi \forall \alpha \in \Phi$

- Proof: 1. R and $-R$ are in a spinor group by construction (double cover of orthogonal transformations), 2. closure under reflections is guaranteed by the closure property of the spinor group (with a twist: $-R_{1} \tilde{R}_{2} R_{1}$)
- Induction Theorem: Every rank-3 root system induces a rank-4 root system (and thereby Coxeter groups)

Spinors from reflections

- The 6 roots in $A_{1} \times A_{1} \times A_{1}$ generate 8 spinors.
- $\pm e_{1}, \pm e_{2}, \pm e_{3}$ give the 8 spinors $\pm 1, \pm e_{1} e_{2}, \pm e_{2} e_{3}, \pm e_{3} e_{1}$
- The discrete spinor group is isomorphic to the quaternion group Q.
- As 4D vectors these are the 8 roots of $A_{1} \times A_{1} \times A_{1} \times A_{1}$ (the 16-cell).

H_{4} as a rotation group I: as icosahedral spinors

- The H_{3} root system has 30 roots e.g. simple roots $\alpha_{1}=e_{2}, \alpha_{2}=-\frac{1}{2}\left((\tau-1) e_{1}+e_{2}+\tau e_{3}\right)$ and $\alpha_{3}=e_{3}$.
- The subgroup of rotations is A_{5} of order 60
- These are doubly covered by 120 spinors of the form $\alpha_{1} \alpha_{2}=-\frac{1}{2}\left(1-(\tau-1) e_{1} e_{2}+\tau e_{2} e_{3}\right), \alpha_{1} \alpha_{3}=e_{2} e_{3}$ and $\alpha_{2} \alpha_{3}=$ $-\frac{1}{2}\left(\tau-(\tau-1) e_{3} e_{1}+e_{2} e_{3}\right)$.
- As a set of vectors in 4 D , they are
$(\pm 1,0,0,0)$ (8 permutations) , $\frac{1}{2}(\pm 1, \pm 1, \pm 1, \pm 1)$ (16 permutations),

$$
\frac{1}{2}(0, \pm 1, \pm \sigma, \pm \tau)(96 \text { even permutations) }
$$

which are precisely the 120 roots of the H_{4} root system.

Spinors from reflections

- The 3D Coxeter groups that are symmetry groups of the Platonic Solids:
- The 6/12/18/30 roots in $A_{1} \times A_{1} \times A_{1} / A_{3} / B_{3} / H_{3}$ generate 8/24/48/120 spinors.
- E.g. $\pm e_{1}, \pm e_{2}, \pm e_{3}$ give the 8 spinors $\pm 1, \pm e_{1} e_{2}, \pm e_{2} e_{3}, \pm e_{3} e_{1}$
- The discrete spinor group is isomorphic to the quaternion group Q / binary tetrahedral group 2T/ binary octahedral group 2O/ binary icosahedral group 2l).

| A_{1}^{3} | $\mathrm{~A}_{3}$ | $\mathrm{~B}_{3}$ | H_{3} |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~A}_{1}^{4}$ | D_{4} | $\mathrm{~F}_{4}$ | H_{4} |

Exceptional Root Systems

- Exceptional phenomena: D_{4} (triality, important in string theory), F_{4} (largest lattice symmetry in 4D), H_{4} (largest non-crystallographic symmetry); Exceptional D_{4} and F_{4} arise from series A_{3} and B_{3}

rank-3 group	diagram	binary	rank-4 group	diagram
$A_{1} \times A_{1} \times A_{1}$	$\bigcirc \circ \bigcirc$	Q	$A_{1} \times A_{1} \times A_{1} \times A_{1}$	$\bigcirc \circ \circ \circ$
A_{3}	$\bigcirc 0$	$2 T$	D_{4}	\bigcirc
B_{3}	$0-14$	20	F_{4}	$0-{ }^{4}$
H_{3}	$0-5$	21	H_{4}	$0-15$

Arnold's Trinities

Arnold's observation that many areas of real mathematics can be complexified and quaternionified resulting in theories with a similar structure.

- The fundamental trinity is thus $(\mathbb{R}, \mathbb{C}, \mathbb{H})$
- The projective spaces $\left(\mathbb{R} P^{n}, \mathbb{C} P^{n}, \mathbb{H} P^{n}\right)$
- The spheres $\left(\mathbb{R} P^{1}=S^{1}, \mathbb{C} P^{2}=S^{2}, \mathbb{H} P^{1}=S^{4}\right)$
- The Möbius/Hopf bundles $\left(S^{1} \rightarrow S^{1}, S^{4} \rightarrow S^{2}, S^{7} \rightarrow S^{4}\right)$
- The Lie Algebras $\left(E_{6}, E_{7}, E_{8}\right)$
- The symmetries of the Platonic Solids $\left(A_{3}, B_{3}, H_{3}\right)$
- The 4D groups (D_{4}, F_{4}, H_{4})
- New connections via my Clifford spinor construction (see McKay correspondence)

Platonic Trinities

- Arnold's connection between $\left(A_{3}, B_{3}, H_{3}\right)$ and $\left(D_{4}, F_{4}, H_{4}\right)$ is very convoluted and involves numerous other trinities at intermediate steps:
- Decomposition of the projective plane into Weyl chambers and Springer cones
- The number of Weyl chambers in each segment is $24=2(1+3+3+5), 48=2(1+5+7+11), 120=$ $2(1+11+19+29)$
- Notice this miraculously matches the quasihomogeneous weights $((2,4,4,6),(2,6,8,12),(2,12,20,30))$ of the Coxeter groups $\left(D_{4}, F_{4}, H_{4}\right)$
- Believe the Clifford connection is more direct

A unified framework for polyhedral groups

Group Discrete subgroup

$S O$ (3) rotational (chiral) $\quad x \rightarrow \tilde{R} \times R$
$O(3) \quad$ reflection (full/Coxeter)
$x \rightarrow \pm \tilde{A} x A$
Spin(3) binary
$\left(R_{1}, R_{2}\right) \rightarrow R_{1} R_{2}$
Pin(3) pinor
$\left(A_{1}, A_{2}\right) \rightarrow A_{1} A_{2}$

- e.g. the chiral icosahedral group has 60 elements, encoded in Clifford by 120 spinors, which form the binary icosahedral group
- together with the inversion/pseudoscalar I this gives 60 rotations and 60 rotoinversions, i.e. the full icosahedral group H_{3} in 120 elements (with 240 pinors)

Some Group Theory: chiral, full, binary, pin

- Easy enough to calculate conjugacy classes etc of pinors in Clifford algebra
- Chiral (binary) polyhedral groups have irreps
- tetrahedral (12/24): $1,1^{\prime}, 1^{\prime \prime}, 2_{s}, 2_{s}^{\prime}, 2_{s}^{\prime \prime}, 3$
- octahedral (24/48): $1,1^{\prime}, 2,2_{s}, 2_{s}^{\prime}, 3,3^{\prime}, 4_{s}$
- icosahedral ($60 / 120$): $1,2_{s}, 2_{s}^{\prime}, 3, \overline{3}, 4,44_{s}, 5,6_{s}$
- Binary groups are discrete subgroups of $S U(2)$ and all thus have a 2_{s} spinor irrep
- Connection with the McKay correspondence!

The McKay Correspondence: Coxeter number, dimensions of irreps and tensor product graphs

```
binary polyhe-
    dral groups
    2T,2O,2I
\sumd}\mp@subsup{d}{i}{}12,18,3
\sum\mp@subsup{d}{i}{2}24,48,120
```

McKay correspondence

Exceptional

Lie Groups
$E_{6}, 12$
$E_{7}, 18$
$E_{8}, 30$
(Coxeter numbers)

The McKay Correspondence

(Coxeter numbers)

The McKay Correspondence

More than E-type groups: the infinite family of 2D groups, the cyclic and dicyclic groups are in correspondence with A_{n} and D_{n}, e.g. the quaternion group Q and D_{4}^{+}. So McKay correspondence not just a trinity but ADE-classification. We also have $I_{2}(n)$ on top of the trinity $\left(A_{3}, B_{3}, H_{3}\right)$

rank-3 group	diagram	binary	rank-4 group	diagram	Lie algebra	diagram
$A_{1} \times A_{1} \times A_{1}$	$\bigcirc 00$	Q	$A_{1} \times A_{1} \times A_{1} \times A_{1}$	$\bigcirc \circ \circ$	D_{4}^{+}	
A_{3}	$0-0$	$2 T$	D_{4}	$0-0$	E_{6}^{+}	$0-0-0-0$
B_{3}	$0-4_{0}^{4}$	$2 O$	F_{4}	$\circ-4 \circ-0$	E_{7}^{+}	$0-0-0-0$
H_{3}	$0-5$	$2 I$	H_{4}	$\bigcirc-0-1$	E_{8}^{+}	

An indirect connection between E_{8} and H_{3} ?

- Trinities:
$(12,18,30)$
$\left(A_{3}, B_{3}, H_{3}\right)$
(2T,2O,2I)
$\left(D_{4}, F_{4}, H_{4}\right)$
$\left(E_{6}, E_{7}, E_{8}\right)$

4D geometry is surprisingly important for HEP

- 4D root systems are surprisingly relevant to HEP
- A_{4} is $S U(5)$ and comes up in Grand Unification
- D_{4} is $S O(8)$ and is the little group of String theory
- In particular, its triality symmetry is crucial for showing the equivalence of RNS and GS strings
- B_{4} is $S O(9)$ and is the little group of M-Theory
- F_{4} is the largest crystallographic symmetry in 4D and H_{4} is the largest non-crystallographic group
- The above are subgroups of the latter two
- Spinorial nature of the root systems could have surprising consequences for HEP

Overview

（1）Root systems and Clifford algebras
－Root systems
－Clifford Basics
（2） H_{4} as a rotation group I：3D to 4D spinor induction，Trinities and McKay correspondence
－3D to 4D spinor induction
－Trinities and McKay correspondence
（3）E_{8} from the icosahedron

4 H_{4} as a rotation group II：The Coxeter plane

Exceptional E_{8}

- E8 root system has 240 roots, H_{3} has order 120

Root systems and Clifford algebras
H_{4} as a rotation group I: 3D to 4D spinor induction, Trinities and
E_{8} from the icosahedron
H_{4} as a rotation group II: The Coxeter plane

Exceptional E_{8} - from the icosahedron

- Saw even products of the 30 roots of H_{3} gave 120 spinors which in turn gave H_{4} root system
- Taking all products gives group of 240 pinors with 8 components
- Essentially the inversion / just doubles the spinors

$$
\underbrace{\{1\}}_{1 \text { scalar }} \underbrace{\left\{e_{1}, e_{2}, e_{3}\right\}}_{3 \text { vectors }} \underbrace{\left\{e_{1} e_{2}, e_{2} e_{3}, e_{3} e_{1}\right\}}_{3 \text { bivectors }} \underbrace{\left\{I \equiv e_{1} e_{2} e_{3}\right\}}_{1 \text { trivector }}
$$

$R=a_{0}+a_{1} e_{2} e_{3}+a_{2} e_{3} e_{1}+a_{3} e_{1} e_{2} \& I R=b_{0} e_{1} e_{2} e_{3}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}$

- Most intuitive inner product on the pinors gives only $H_{4} \oplus H_{4}$
- But slightly more technical inner product gives precisely the E_{8} root system from the icosahedron!
- Order 120 group H_{3} doubly covered by 240 (s)pinors
- Essentially $\mathrm{H}_{4}+\mathrm{IH} H_{4}$, two sets of 120
- Multiply second set by $\tau /$, take inner products, taking into account $\tau^{2}=\tau+1$, but THEN: set $\tau \rightarrow 0$! Each inner product is $\left(\alpha_{i}, \alpha_{j}\right)=a+\tau b \rightarrow\left(\alpha_{i}, \alpha_{j}\right)_{\tau}:=a$ (R. Wilson's reduced inner product)
- Like the other exceptional geometries, E_{8} is actually hidden within 3D geometry!

New, explicit connections

Overview

(1) Root systems and Clifford algebras

- Root systems
- Clifford Basics
(2) H_{4} as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence
- 3D to 4D spinor induction
- Trinities and McKay correspondence
(3) E_{8} from the icosahedron
(4) H_{4} as a rotation group II: The Coxeter plane

Projection and Diagram Foldings

$$
s_{\beta_{1}}=s_{\alpha_{1}} s_{\alpha_{7}}, s_{\beta_{2}}=s_{\alpha_{2}} s_{\alpha_{6}}, s_{\beta_{3}}=s_{\alpha_{3}} s_{\alpha_{5}}, s_{\beta_{4}}=s_{\alpha_{4}} s_{\alpha_{8}} \Rightarrow H_{4}
$$

- E_{8} has a H_{4} subgroup of rotations via a 'partial folding'
- Can project $240 E_{8}$ roots to $H_{4}+\tau H_{4}$ - essentially the reverse of the previous construction!
- Coxeter element \& number of E_{8} and H_{4} are the same

The Coxeter Plane

- Can show every (for our purposes) Coxeter group has a Coxeter plane.
- A way to visualise Coxeter groups in any dimension by projecting their root system onto the Coxeter plane

Coxeter Elements, Degrees and Exponents

- Like the symmetric group, Coxeter groups can have invariant polynomials. Their degrees d are important invariants/group characteristics.
- Turns out that actually degrees d are intimately related to so-called exponents $m m=d-1$.

Coxeter Elements, Degrees and Exponents

- A Coxeter Element is any combination of all the simple reflections $w=s_{1} \ldots s_{n}$, i.e. in Clifford algebra it is encoded by the versor $W=\alpha_{1} \ldots \alpha_{n}$ acting as $v \rightarrow w v= \pm \tilde{W} v W$. All such elements are conjugate and thus their order is invariant and called the Coxeter number h.
- The Coxeter element has complex eigenvalues of the form $\exp (2 \pi m i / h)$ where m are called exponents:
$w x=\exp (2 \pi m i / h) x$
- Standard theory complexifies the real Coxeter group situation in order to find complex eigenvalues, then takes real sections again (the unfortunate standard procedure in many situations)
- without any insight into the complex structure (or in fact, there are different ones).

Coxeter Elements, Degrees and Exponents

- The Coxeter element has complex eigenvalues of the form $\exp (2 \pi m i / h)$ where m are called exponents
- Standard theory complexifies the real Coxeter group situation in order to find complex eigenvalues, then takes real sections again (the unfortunate standard procedure in many situations) - without any insight into the complex structure(s)
- In particular, 1 and $h-1$ are always exponents
- Turns out that actually exponents and degrees are intimately related ($m=d-1$). The construction is slightly roundabout but uniform, and uses the Coxeter plane.

The Coxeter Plane

- In particular, can show every (for our purposes) Coxeter group has a Coxeter plane
- Existence relies on the fact that all groups in question have tree-like Dynkin diagrams, and thus admit an alternate colouring
- Essentially just gives two sets of mutually commuting generators

The Coxeter Plane

- Existence relies on the fact that all groups in question have tree-like Dynkin diagrams, and thus admit an alternate colouring
- Essentially just gives two sets of orthogonal = mutually commuting generators but anticommuting root vectors α_{w} and α_{b} (duals ω)
- Cartan matrices are positive definite, and thus have a Perron-Frobenius (all positive) eigenvector λ_{i}.
- Take linear combinations of components of this eigenvector as coefficients of two vectors from the orthogonal sets $v_{w}=\sum \lambda_{w} \omega_{w}$ and $v_{b}=\sum \lambda_{b} \omega_{b}$
- Their outer product/Coxeter plane bivector $B_{C}=v_{b} \wedge v_{w}$ describes an invariant plane where w acts by rotation by $2 \pi / h$.

Clifford Algebra and the Coxeter Plane - 2D case

$$
I_{2}(n) \quad \stackrel{n}{0}_{0}
$$

- For $I_{2}(n)$ take $\alpha_{1}=e_{1}, \alpha_{2}=-\cos \frac{\pi}{n} e_{1}+\sin \frac{\pi}{n} e_{2}$
- So Coxeter versor is just

$$
W=\alpha_{1} \alpha_{2}=-\cos \frac{\pi}{n}+\sin \frac{\pi}{n} e_{1} e_{2}=-\exp \left(-\frac{\pi I}{n}\right)
$$

- In Clifford algebra it is therefore immediately obvious that the action of the $I_{2}(n)$ Coxeter element is described by a versor (here a rotor/spinor) that encodes rotations in the $e_{1} e_{2}$-Coxeter-plane and yields $h=n$ since trivially $W^{n}=(-1)^{n+1}$ yielding $w^{n}=1$ via $w v=\tilde{W} v W$.

Clifford Algebra and the Coxeter Plane - 2D case

- So Coxeter versor is just $W=-\exp \left(-\frac{\pi I}{n}\right)$
- $I=e_{1} e_{2}$ anticommutes with both e_{1} and e_{2} such that sandwiching formula becomes

$$
v \rightarrow w v=\tilde{W} v W=\tilde{W}^{2} v=\exp \left(\pm \frac{2 \pi I}{n}\right) v \text { immediately }
$$

yielding the standard result for the complex eigenvalues in real Clifford algebra without any need for artificial complexification

- The Coxeter plane bivector $B_{C}=e_{1} e_{2}=/$ gives the complex structure
- The Coxeter plane bivector B_{C} is invariant under the Coxeter versor $\tilde{W} B_{C} W= \pm B_{C}$.

Clifford Algebra and the Coxeter Plane - 3D case

- In 3D, A_{3}, B_{3}, H_{3} have $\{1,2,3\},\{1,3,5\}$ and $\{1,5,9\}$
- Coxeter element is product of a spinor in the Coxeter plane with the same complex structure as before, and a reflection perpendicular to the plane
- So in 3D still completely determined by the plane
- 1 and $h-1$ are rotations in Coxeter plane
- $h / 2$ is the reflection (for v in the normal direction)
$w v=\tilde{W}^{2}=\exp \left(\pm \frac{2 \pi l}{h} \frac{h}{2}\right)=\exp (\pm \pi I) v=-v$

Clifford algebra: no need for complexification

- Turns out in Clifford algebra we can factorise W into orthogonal (commuting/anticommuting) components

$$
W=\alpha_{1} \ldots \alpha_{n}=W_{1} \ldots W_{n} \text { with } W_{i}=\exp \left(\pi m_{i} l_{i} / h\right)
$$

- Here, l_{i} is a bivector describing a plane with $l_{i}^{2}=-1$
- For v orthogonal to the plane descrbed by I_{i} we have $v \rightarrow \tilde{W}_{i} v W_{i}=\tilde{W}_{i} W_{i} v=v$ so cancels out
- For v in the plane we have

$$
v \rightarrow \tilde{W}_{i} v W_{i}=\tilde{W}_{i}^{2} v=\exp \left(2 \pi m_{i} I_{i} / h\right) v
$$

- Thus if we decompose W into orthogonal eigenspaces, in the eigenvector equation all orthogonal bits cancel out and one gets the complex eigenvalue from the respective eigenspace

Clifford algebra: no need for complexification

- For v in the plane we have

$$
v \rightarrow \tilde{W}_{i} v W_{i}=\tilde{W}_{i}^{2} v=\exp \left(2 \pi m_{i} I_{i} / h\right) v
$$

- So complex eigenvalue equation arises geometrically without any need for complexification
- Different complex structures immediately give different eigenplanes
- Eigenvalues/angles/exponents given from just factorising $W=\alpha_{1} \ldots \alpha_{n}$
- E.g. B_{4} has exponents $1,3,5,7$ and $W=\exp \left(\frac{\pi}{8} I_{1}\right) \exp \left(\frac{3 \pi}{8} I_{2}\right)$
- Here we have been looking for orthogonal eigenspaces, so innocuous - different complex structures commute
- But not in general - naive complexification can be misleading

4D case: B_{4}

- E.g. B_{4} has exponents 1,3,5,7
- Coxeter versor decomposes into orthogonal components

$$
W=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}=\exp \left(\frac{\pi}{8} B_{C}\right) \exp \left(\frac{3 \pi}{8} I B_{C}\right)
$$

4D case: A_{4}

- E.g. A_{4} has exponents 1,2,3,4
- Coxeter versor decomposes into orthogonal components

$$
W=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}=\exp \left(\frac{\pi}{5} B_{C}\right) \exp \left(\frac{2 \pi}{5} I B_{C}\right)
$$

4D case: D_{4}

- E.g. D_{4} has exponents $1,3,3,5$
- Coxeter versor decomposes into orthogonal components

$$
W=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}=\exp \left(\frac{\pi}{6} B_{C}\right) \exp \left(\frac{3 \pi}{6} I B_{C}\right)
$$

- E.g. F_{4} has exponents $1,5,7,11$
- Coxeter versor decomposes into orthogonal components

$$
W=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}=\exp \left(\frac{\pi}{12} B_{C}\right) \exp \left(\frac{5 \pi}{12} I B_{C}\right)
$$

H_{4} as a rotation group II: The Coxeter plane

4D case: H_{4}

- E.g. H_{4} has exponents $1,11,19,29$
- Coxeter versor decomposes into orthogonal components

$$
W=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}=\exp \left(\frac{\pi}{30} B_{C}\right) \exp \left(\frac{11 \pi}{30} I B_{C}\right)
$$

Clifford Algebra and the Coxeter Plane - 4D case summary

rank 4	exponents	W-factorisation
A_{4}	$1,2,3,4$	$W=\exp \left(\frac{\pi}{5} B_{C}\right) \exp \left(\frac{2 \pi}{5} I B_{C}\right)$
B_{4}	$1,3,5,7$	$W=\exp \left(\frac{\pi}{8} B_{C}\right) \exp \left(\frac{3 \pi}{8} I B_{C}\right)$
D_{4}	$1,3,3,5$	$W=\exp \left(\frac{\pi}{6} B_{C}\right) \exp \left(\frac{\pi}{2} I B_{C}\right)$
F_{4}	$1,5,7,11$	$W=\exp \left(\frac{\pi}{12} B_{C}\right) \exp \left(\frac{5 \pi}{12} I B_{C}\right)$
H_{4}	$1,11,19,29$	$W=\exp \left(\frac{\pi}{30} B_{C}\right) \exp \left(\frac{11 \pi}{30} I B_{C}\right)$

Actually, in 2, 3 and 4 dimensions it couldn't really be any other way

Clifford Algebra and the Coxeter Plane - D_{6}

- For D_{6} one has exponents $1,3,5,5,7,9$
- Coxeter versor decomposes into orthogonal bits as

$$
W=\frac{1}{\sqrt{5}}\left(e_{1}+e_{2}+e_{3}-e_{4}-e_{5}\right) e_{6} \exp \left(\frac{\pi}{10} B_{C}\right) \exp \left(\frac{3 \pi}{10} B_{2}\right)
$$

- Now bivector exponentials correspond to rotations in orthogonal planes
- Vector factors correspond to reflections
- For odd n, there is always one such vector factor in D_{n}, and for even n there are two

8D case: E_{8}

- E.g. H_{4} has exponents $1,11,19,29, E_{8}$ has

$$
1,7,11,13,17,19,23,29
$$

- Coxeter versor decomposes into orthogonal components

$$
W=\alpha_{1} \ldots \alpha_{8}=\exp \left(\frac{\pi}{30} B_{C}\right) \exp \left(\frac{7 \pi}{30} B_{2}\right) \exp \left(\frac{11 \pi}{30} B_{3}\right) \exp \left(\frac{13 \pi}{30} B_{4}\right)
$$

Imaginary differences - different imaginaries

So what has been gained by this Clifford view?

- There are different entities that serve as unit imaginaries
- They have a geometric interpretation as an eigenplane of the Coxeter element
- These don't need to commute with everything like i (though they do here - at least anticommute. But that is because we looked for orthogonal decompositions)
- But see that in general naive complexification can be a dangerous thing to do - unnecessary, issues of commutativity, confusing different imaginaries etc

Conclusions

- All exceptional geometries arise in 3D, root systems giving rise to Lie groups/algebras etc
- Completely novel spinorial way of viewing the geometries as 3D phenomena - implications for HEP etc?
- More natural point of view, explaining existence and perhaps automorphism groups
- Unclear how one would see this in a matrix framework might require Clifford point of view
- New view of Coxeter degrees and exponents with geometric interpretation of imaginaries
- A unified framework for doing group and representation theory: polyhedral, orthogonal, conformal, modular (Moonshine) etc

Thank you!

Modular group

- Modular group: interested in modular forms for applications in Moonshine/string theory: Monster 196883, Klein j 196884
- Modular generators: $T: \tau \rightarrow \tau+1, S: \tau \rightarrow-1 / \tau$
- $\left\langle\left\langle S, T \mid S^{2}=I,(S T)^{3}=I\right\rangle\right.$
- CGA: $T_{X}=1+\frac{n e_{1}}{2}$ and $S_{X}=e_{1} e$
- $\left(S_{X} T_{X}\right)^{3}=-1$ and $S_{X}^{2}=1$

Motivation: Viruses

- Geometry of polyhedra described by Coxeter groups
- Viruses have to be 'economical' with their genes
- Encode structure modulo symmetry
- Largest discrete symmetry of space is the icosahedral group
- Many other 'maximally symmetric' objects in nature are also icosahedral: Fullerenes \& Quasicrystals
- But: viruses are not just polyhedral - they have radial structure. Affine extensions give translations

H_{4} as a rotation group II: The Coxeter plane

Affine extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

H_{4} as a rotation group II: The Coxeter plane

Affine extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

H_{4} as a rotation group II: The Coxeter plane

Affine extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

A random translation would give 5 secondary pentagons, i.e. 25 points. Here we have degeneracies due to 'coinciding points'.
H_{4} as a rotation group II: The Coxeter plane

Affine extensions of non-crystallographic root systems

$$
\text { Translation of length } \tau=\frac{1}{2}(1+\sqrt{5}) \approx 1.618 \text { (golden ratio) }
$$

Looks like a virus or carbon onion

Extend icosahedral group with distinguished translations

- Radial layers are simultaneously constrained by affine symmetry
- Works very well in practice: finite library of blueprints
- Select blueprint from the outer shape (capsid)
- Can predict inner structure (nucleic acid distribution) of the virus from the point array

Affine extensions of the icosahedral group (giving translations) and their classification.

Use in Mathematical Virology

- Suffice to say point arrays work very exceedingly well in practice. Two papers on the mathematical (Coxeter) aspects.
- Implemented computational problem in Clifford - some very interesting mathematics comes out as well (see later).

E_{8} from the icosahedron

H_{4} as a rotation group II: The Coxeter plane

Use in Mathematical Virology

Pierre-Philippe Dechant
A new construction of E_{8} and the other exceptional root syste

Extension to fullerenes: carbon onions

- Extend idea of affine symmetry to other icosahedral objects in nature: football-shaped fullerenes
- Recover different shells with icosahedral symmetry from affine approach: carbon onions $\left(C_{60}-C_{240}-C_{540}\right)$

Extension to fullerenes: carbon onions

- Extend idea of affine symmetry to other icosahedral objects in nature: football-shaped fullerenes
- Recover different shells with icosahedral symmetry from affine approach: carbon onions $\left(C_{80}-C_{180}-C_{320}\right)$

References

- Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups with Twarock/Bœhm J. Phys. A: Math. Theor. 45285202 (2012)
- Affine extensions of non-crystallographic Coxeter groups induced by projection with Twarock/Bœhm Journal of Mathematical Physics 54093508 (2013), Cover article September
- Viruses and Fullerenes - Symmetry as a Common Thread? with Twarock/Wardman/Keef March Cover Acta Crystallographica A 70 (2). pp. 162-167 (2014), and Nature Physics Research Highlight

Applications of affine extensions of non-crystallographic root systems

There are interesting applications to quasicrystals, viruses or carbon onions, but here concentrate on the mathematical aspects

Quaternions and Clifford Algebra

- The unit spinors $\left\{1 ; l e_{1} ; l e_{2} ; l e_{3}\right\}$ of $\mathrm{Cl}(3)$ are isomorphic to the quaternion algebra \mathbb{H} (up to sign)
- The 3D Hodge dual of a vector is a pure bivector which corresponds to a pure quaternion, and their products are identical (up to sign)

Discrete Quaternion groups

- The 8 quaternions of the form $(\pm 1,0,0,0)$ and permutations are called the Lipschitz units, and form a realisation of the quaternion group in 8 elements.
- The 8 Lipschitz units together with $\frac{1}{2}(\pm 1, \pm 1, \pm 1, \pm 1)$ are called the Hurwitz units, and realise the binary tetrahedral group of order 24 . Together with the 24 'dual' quaternions of the form $\frac{1}{\sqrt{2}}(\pm 1, \pm 1,0,0)$, they form a group isomorphic to the binary octahedral group of order 48.
- The 24 Hurwitz units together with the 96 unit quaternions of the form ($0, \pm \tau, \pm 1, \pm \sigma$) and even permutations, are called the Icosians. The icosian group is isomorphic to the binary icosahedral group with 120 elements.

Quaternionic representations of 3D and 4D Coxeter groups

- Groups E_{8}, D_{4}, F_{4} and H_{4} have representations in terms of quaternions
- Extensively used in the high energy physics/quasicrystal/Coxeter/polytope literature and thought of as deeply significant, though not really clear why
- e.g. H_{4} consists of 120 elements of the form $(\pm 1,0,0,0)$, $\frac{1}{2}(\pm 1, \pm 1, \pm 1, \pm 1)$ and $(0, \pm \tau, \pm 1, \pm \sigma)$
- Seen as remarkable that the subset of the 30 pure quaternions is a realisation of H_{3} (a sub-root system)
- Similarly, $A_{3}, B_{3}, A_{1} \times A_{1} \times A_{1}$ have representations in terms of pure quaternions
- Will see there is a much simpler geometric explanation

Quaternionic representations used in the literature

$$
A_{1} \times A_{1} \times A_{1}
$$

$$
A_{1} \times A_{1} \times A_{1} \times A_{1}
$$

H_{3}

Demystifying Quaternionic Representations

- 3D: Pure quaternions $=$ Hodge dualised (pseudoscalar) root vectors
- In fact, they are the simple roots of the Coxeter groups
- 4D: Quaternions = disguised spinors - but those of the 3D Coxeter group i.e. the binary polyhedral groups!
- This relation between 3D and 4D via the geometric product does not seem to be known
- Quaternion multiplication $=$ ordinary Clifford reflections and rotations

Demystifying Quaternionic Representations

- Pure quaternion subset of 4D groups only gives 3D group if the 3D group contains the inversion/pseudoscalar I
- e.g. does not work for the tetrahedral group A_{3}, but $A_{3} \rightarrow D_{4}$ induction still works, with the central node essentially 'spinorial'
- In fact, it goes the other way around: the 3D groups induce the 4D groups via spinors
- The rank-4 groups are also generated (under quaternion multiplication) by two quaternions we can identify as $R_{1}=\alpha_{1} \alpha_{2}$ and $R_{2}=\alpha_{2} \alpha_{3}$
- Can see these are 'spinor generators' and how they don't really contain any more information/roots than the rank-3 groups alone

Quaternions vs Clifford versors

- Sandwiching is often seen as particularly nice feature of the quaternions giving rotations
- This is actually a general feature of Clifford algebras/versors in any dimension; the isomorphism to the quaternions is accidental to 3D
- However, the root system construction does not necessarily generalise
- 2D generalisation merely gives that $I_{2}(n)$ is self-dual
- Octonionic generalisation just induces two copies of the above 4 D root systems, e.g. $A_{3} \rightarrow D_{4} \oplus D_{4}$

