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ABSTRACT 8 

 9 

Researchers, practitioners, and public health organisations from around the world are 10 

becoming increasingly interested in using data from wearable activity trackers, from 11 

companies such as Fitbit Inc, Garmin Ltd, Xiaomi, and Apple Inc, to measure physical activity. 12 

Indeed, large-scale, easily accessible, and autonomous data collection concerning physical 13 

activity as well as other health behaviours is becoming ever more attractive. There are several 14 

benefits of using wearable activity trackers to collect physical activity data, including the 15 

ability to obtain big data, retrospectively as well as prospectively, to understand individual-16 

level physical activity patterns over time and in response to natural events. However, there 17 

are challenges related to representativeness, data access, and proprietary algorithms that, at 18 

present, limit the utility of this data in understanding population-level physical activity. In this 19 

brief report we aim to highlight the benefits, as well as the limitations, of using existing data 20 

from wearable activity trackers to understand large-scale physical activity patterns and 21 

stimulate discussion amongst the scientific community on what the future holds with respect 22 

to physical activity measurement and surveillance.  23 
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INTRODUCTION 27 

Physical activity (PA) and exercise have pronounced positive effects on physical, mental, and 28 

social health and wellbeing  and, according to recent estimates, prevent 3.9 million premature 29 

deaths worldwide annually (Strain et al., 2020). Accordingly, global PA guidelines recommend 30 

all adults to undertake 150–300 min of moderate-intensity, or 75–150 min of vigorous-31 

intensity PA, or some equivalent combination per week (Bull et al., 2020). Such guidelines rely 32 

on population level surveillance methods to regularly monitor PA indicators and inform public 33 

health policy, and the most common approach in this regard is to assess PA using self-report 34 

methods. Self-report remains an accepted method of large-scale data collection due to its 35 

cost effectiveness, unobtrusiveness and adaptability to different country contexts (Troiano et 36 

al., 2020). This is despite the accepted limitations of self-reporting with respect to accuracy, 37 

recall bias and social-desirability (Brenner & DeLamater, 2014; Prince et al., 2008). Advances 38 

in technology over the last two decades have, however, created new possibilities for PA 39 

measurement, not only for population-level surveillance but at an individual-level in terms of 40 

cohort studies, intervention research, and the evaluation of public health promotion 41 

programs. Research-grade devices such as wrist, hip, and thigh worn accelerometers have 42 

been used widely in such studies as they remove the biases associated with self-reporting and 43 

are able to provide a more granular quantification of PA. Nevertheless, research-grade 44 

accelerometers are costly to use at scale and cannot assess the domain or context in which 45 

PA takes place. Furthermore, accelerometers, as with self-report methods, only offer a 46 

‘snapshot in time’ to infer usual PA behaviour (typically a 7-day period) meaning assessment 47 

of longer-term dynamic patterns of PA, particularly in response to natural events, is either 48 

not possible or not feasible.  Over the last 15 years, the emergence of consumer-grade 49 

devices, such as smartphones and wearable activity trackers, has opened new doors in the 50 



field of PA measurement. These devices gather rich activity data continuously in a free-living 51 

setting thus providing large-scale and low-cost datasets that could advance our 52 

understanding of PA patterns in a way that was never possible before. While this seems an 53 

exciting prospect, as with any other PA measurement tool, the use of wearable activity tracker 54 

data should be carefully considered before being used in PA research.  55 

 56 

Comparing and contrasting all the available PA measurement methods available to 57 

researchers, practitioners, and public health professionals is beyond the scope of this brief 58 

report. Instead, we focus on the emerging opportunities offered by consumer grade devices, 59 

including smartphones and wearable activity trackers, and how these may be utilised in the 60 

fields of PA surveillance, cohort studies, intervention research, and evaluation of public health 61 

promotion programs. 62 

 63 

Consumer-grade devices: too good to ignore? 64 

Technological advancements over the last decade, allied to the rapid proliferation of 65 

smartphone use in both developed and developing regions globally (Deloitte, 2017), have 66 

provided new possibilities in monitoring, understanding, and influencing human movement 67 

at scale. Compared to traditional approaches, objective, real-world PA data sets with very 68 

large sample sizes have become relatively low cost for researchers to collect or access. 69 

Consequently, we are now beginning to witness the emergence of big data on PA in the 70 

literature. For example, Althoff and colleagues (2017) recently used minute-by-minute step 71 

count data, collected from the smartphone’s inbuilt inertial unit, from over 700,000 72 

individuals across 111 countries, to identify variability in PA levels across the world.  With this 73 



data they revealed city walkability as a factor associated with PA levels as well as associations 74 

between PA inequalities and obesity.  75 

 76 

The questions that could be addressed, and the new insights afforded, by large-scale PA data 77 

from smartphones is an exciting prospect. However, concerns remain over the quality of the 78 

PA data that can be obtained from smartphones, including the validity and reliability of step 79 

detection, the restriction to only ambulatory activity, and their reliance on the individual 80 

carrying the smartphone (Brodie et al., 2018). Wearable activity trackers, although currently 81 

less prevalent than smartphones, are growing in popularity (Deloitte, 2017; Thompson, 2019) 82 

and can address some of these pitfalls. Activity trackers have progressed beyond simple 83 

pedometers and can now provide data on pulse rate, distance covered, moderate-to-vigorous 84 

PA minutes, stair flights climbed, energy expenditure, and sleep. Unlike research grade 85 

devices such as accelerometers, they also blend attractive design with invisible and effort-86 

free data capture. This combination often results in high adherence (in terms of daily wear 87 

time) for extended periods of time. Additionally, while synchronisation of the activity tracker 88 

to a smartphone application displays summary information to users, these summary data are 89 

calculated from extensive intra-day data gathered at high frequency (e.g., 1 Hz), which are 90 

also stored. High adherence alongside high frequency data capture means individuals 91 

accumulate an extensive data resource that could be utilised to answer important PA 92 

questions. 93 

 94 

Big data analyses from smartphones and wearable activity trackers have, thus far, been cross-95 

sectional which limits our understanding of PA to a single point in time. However, longitudinal 96 

data from smartphones and wearable activity tracker could also be analysed prospectively or 97 



retrospectively, given its perpetual collection and long-term storage. Of note is the unique 98 

opportunity offered by smartphones and wearable activity trackers to analyse data 99 

retrospectively and in response to natural events without the need for foresight. This has had 100 

obvious implications during the coronavirus pandemic when objective accelerometery was 101 

not possible, or feasible, due to the speed and variability with which restrictions were 102 

imposed across the world. As a result, the need for remote and scalable means to both 103 

measure and support PA has become more prominent since the coronavirus pandemic. 104 

Although the use of wearable activity trackers is not without inherent limitations (discussed 105 

further below), we feel they are unique in their ability to be utilised in retrospective cohort 106 

study designs (i.e., when the start of the study is only known after the event). 107 

 108 

Interestingly, to date, there has been almost no independent large-scale reporting of existing 109 

data from wearable activity trackers. This might be due to the complexity of large-scale data 110 

access and processing from commercial wearables. A cross-sectional study of pulse rate data 111 

from over 8 million Fitbit users was recently published by the Fitbit Research team (Natarajan 112 

et al., 2020), reporting a positive relationship between heart rate variability and step count. 113 

Regardless of the study findings, it seems that collecting, processing, and interpreting this 114 

volume of data is possible, but requires an interdisciplinary team including data scientists, 115 

database analysts, and cardiovascular and behavioural scientists, which has so far been 116 

limited to large proprietary companies such as Fitbit. Furthermore, accessing this volume of 117 

data is, so far, only feasible for companies such as Fitbit because they require all users to give 118 

them permission to use the data collected by the device. For independent researchers it is 119 

possible to request access to the data from the user directly. But this would be on an 120 



individual basis, therefore, to amass a dataset of 8 million users would require 8 million 121 

individual access requests. The issue of data access is discussed on more detail below.  122 

 123 

Balancing feasibility against validity, reliability, and sensitivity 124 

When choosing a PA data collection tool or methodology, researchers must balance validity, 125 

reliability, and sensitivity of the approach with the costs and feasibility of its deployment in 126 

the target population. Despite their known limitations (Brenner & DeLamater, 2014; Prince 127 

et al., 2008), self-report methods remain an accepted means by which to collect large-scale 128 

and population-level PA data, particularly where cost and sample size make accelerometery 129 

an unfeasible approach. However, the volume and detail of information that can be obtained 130 

from self-report surveys can be limited, preventing more nuanced analysis of PA patterns. 131 

Device-based methods, such as accelerometery, provide a more valid and reliable estimate 132 

of PA than do self-report measures (Dowd et al., 2018), but also have several limitations. Not 133 

only are accelerometers costly, but their data also must be extracted from each device 134 

individually, making them unfeasible for large-scale use. Data from wearable activity trackers 135 

on the other hand should be considered feasible for large-scale use. Suitable activity trackers 136 

are generally cheaper than accelerometers and their attractive design should translate into 137 

greater wear time. Like accelerometers, they provide continuous data capture, but with the 138 

additional advantage of these data being stored on a central server meaning data retrieval 139 

and analysis can occur remotely and at scale. Thus, in principle, it is possible to analyse the 140 

PA data of thousands of participants worldwide in a manner that is simply not possible with 141 

current research grade accelerometers. Research has shown wearable activity trackers to 142 

have high interdevice reliability for measuring steps, energy expenditure, and sleep (Evenson 143 

et al., 2015), and despite ongoing concerns, the accuracy of wearable activity trackers also 144 



continues to improve. In a recent systematic review of 67 studies, Fitbit devices were found 145 

to provide a relatively accurate measure of free-living steps (within ± 10%, 50% of the time) 146 

when compared to research-grade accelerometers (Feehan et al., 2018). Garmin activity 147 

trackers are also reported to have good-to-excellent correlation coefficients and acceptable 148 

(<10%) mean absolute percentage errors with respect to step count (Evenson & Spade, 2020). 149 

While the accuracy of wearable activity trackers in measuring step count in free-living settings 150 

is considered to be acceptable for normal walking pace (Evenson & Spade, 2020; Feehan et 151 

al., 2018; Fokkema et al., 2017), they do not yet provide a valid measure of moderate-to-152 

vigorous PA (Redenius et al., 2019) or walking at very slow or very fast speeds (Fokkema et 153 

al., 2017). However, considering this evidence is based on devices manufactured up to 2015, 154 

refined algorithms over the past 5 years have likely further improved accuracy.  155 

 156 

For intervention research the responsiveness, or sensitivity, to change in PA over time may 157 

be a more important consideration than the validity of the tool. When examining the 158 

effectiveness of an intervention in changing PA it is paramount that the measurement tool 159 

employed is capable of detecting change. Research has shown the responsiveness indices for 160 

self-report and device-based methods to vary not just by tool, or device, but by PA variable 161 

measured. Reeves et al. (2010) compared the responsiveness of the Community Health 162 

Activities Model Program for Seniors (CHAMPS) questionnaire, the Active Australia 163 

Questionnaire (AAQ), and two items on exercise from the US National Health Interview Survey 164 

(USNHIS), and reported responsiveness indices ranging from 0.15 (AAQ) to 0.27 (USNHIS) for 165 

walking duration and 0.25 (AAQ) to 0.32 (CHAMPS) for moderate to vigorous intensity PA 166 

duration per week. Swartz et al. (2014) compared two research-grade accelerometers, the 167 

Actigraph GTX3 (ActiGraph LLC, Pensacola, Florida, USA) and the activPAL (PAL Technologies 168 



Ltd, Glasgow, Scotland, UK) and found both to have comparable responsiveness to change 169 

across a range of free living physical activity and sedentary behaviour variables (standardised 170 

response mean values between 0.159 – 0.436). Donnachie and colleagues (2020) compared 171 

a self-report PA measure (the International Physical Activity Questionnaire; IPAQ) and an 172 

accelerometer (activPAL), and found both to have comparable and moderate standardised 173 

response mean values of 0.54 (activPAL) and 0.59 (IPAQ) for total PA duration per day. There 174 

appears to be no evidence on the responsiveness to change of wearable activity trackers. This 175 

surprisingly under-researched topic warrants further attention by the PA research 176 

community. 177 

 178 

We have an array of options to measure elements of PA (such as duration, intensity, type, 179 

domain, context, and quality), but no single tool can fully capture the complexity of PA 180 

behaviour. Consumer-grade devices offer new opportunities for combining PA data collection 181 

methods. For example, passive sensing of movement using a smartphone or wearable activity 182 

tracker, combined with synchronised ‘smart’ self-report techniques, such as ecological 183 

momentary assessment, could address many of the issues outlined previously. With further 184 

evidence to support the validity, reliability and sensitivity of such methods, this approach 185 

could provide powerful insights into PA patterns and help us better understand PA behaviour. 186 

 187 

The issue of data harmonisation 188 

Another issue researchers must consider when evaluating device-based PA measurement 189 

tools is the harmonisation or comparability between devices from different manufacturers. 190 

Data harmonisation is an essential step if researchers wish to conduct analyses on data 191 

derived from different sources (Pearce et al., 2020). While all activity tracking devices gather 192 



raw uni- or tri-axial accelerations, each manufacturer applies different algorithms to process 193 

the data into its summary form thereby influencing the comparability of the data gathered. 194 

Therefore, researchers who wish to use data from multiple devices/manufacturers to 195 

increase sample representativeness and reach will need to consider data harmonisation using 196 

statistical models derived from validation studies (Pearce et al., 2020). This could be 197 

problematic when algorithms change, and validation data are no longer available. 198 

Manufacturers of research-grade devices publish open source algorithms allowing 199 

researchers to evaluate the impact of changes on measurement properties (Evenson et al., 200 

2015), however consumer-grade device manufacturers keep this information proprietary. 201 

The use of different proprietary algorithms by each consumer-grade device manufacturer is 202 

undoubtedly an issue for harmonisation too. In the longer term, this would be solved by 203 

manufacturers making raw data counts available or at least allowing researchers to apply to 204 

access this information. However, due to the proprietary nature of data processing, it is 205 

unclear if raw data or only processed data are available. In the short-term however, 206 

comparative validation between devices should enable statistical techniques that allow for 207 

between device data pooling without compromising data quality.  Finally, it is also worth 208 

noting that there is a small but growing sector of ‘hackable’ wearables. These devices are 209 

usually based on small form factor processing boards (e.g., small Raspberry Pi or Arduino 210 

boards) which include tri-axial accelerometers, heart rate measurement, WIFI and Bluetooth. 211 

These devices also support the remote storage of raw data signals, which would overcome 212 

the limitations of unknown and proprietary algorithms. Although useful for research studies, 213 

it seems unlikely that such devices will achieve the market penetration of larger 214 

manufacturers. 215 

 216 



The issue of representativeness 217 

Given the widespread use of smartphones and the growing use of activity trackers, we should 218 

not ignore the possibility that in the near future wearable activity tracker data could also be 219 

used as a population PA surveillance tool. However, at present the primary challenge relating 220 

to such data is that it likely over-represents individuals who are more physically active and 221 

more proactive in setting and meeting activity goals relative to the general population who 222 

may not be tracking their activity level (Omura et al., 2017; Strain et al., 2019). Therefore, any 223 

cohort or surveillance research exclusively involving participants who own, and wear, activity 224 

trackers will introduce selection bias. The issue of representativeness is, however, not 225 

necessarily limited to wearable activity trackers. Selection bias might also occur in data 226 

derived from public calls to self-report PA or participate in cohort studies involving self-report 227 

or device-based measures of PA. Indeed, it has previously been suggested that selection bias 228 

is a significant issue in many cohort studies including those with objective assessments 229 

(Barreto et al., 2013; Folley et al., 2018; Stamatakis et al., 2021). Nevertheless, in such cohort 230 

and surveillance studies it is possible to use weighting to adjust for non-responders. This is 231 

not currently possible for data from wearable activity tracker and future research should 232 

focus on statistical approaches to estimate the population effect, and the effect in those with 233 

trackers, to help overcome this limitation. 234 

 235 

While activity tracker sales and usage are increasing, the demographic reach appears, so far, 236 

to be constrained to young adults from more affluent backgrounds (Omura et al., 2017; Strain 237 

et al., 2019). Nevertheless, the cost of activity trackers has decreased significantly in recent 238 

years making them more affordable and accessible. This, combined with the increasing 239 

interest in activity trackers as behaviour change tools, may reduce this constrained 240 



demographic reach over time. For example, recent initiatives to provide activity trackers as 241 

part of health care (NHS England, 2019), health improvement (Yao et al., 2020) or health 242 

insurance (Buckle et al., 2020) may serve to increase the breadth of the population using the 243 

devices. The more initiatives and interventions utilising activity trackers, the more they could 244 

be adopted by individuals from underserved populations, such as older adults and those with 245 

lower incomes.  246 

 247 

The issue of data access 248 

Finally, it is worth noting some of the challenges inherent in accessing data from consumer-249 

grade activity trackers. To access data, researchers can establish an industry agreement with 250 

a relevant company (e.g. Fitbit or Garmin) whose terms of service for collecting research data 251 

are different from those governing commercial access (Hicks et al., 2019).  While the specific 252 

manufacturers control access to the data repositories, the data remains the property of the 253 

individual user, therefore to access any data collected by the device, each individual user must 254 

consent and agree to share the data. Managing thousands, and possibly tens of thousands, of 255 

data sharing requests to individual users, and subsequently also having to manage their 256 

authorisation and access details, brings its own logistic challenges. The most effective 257 

approach is for participants to be directed to a project website which manages participant 258 

information, consent, and authorisation requests via the specific manufacturers API. 259 

Following successful authorisation, access codes for each user can be securely sent to the 260 

research team for subsequent processing.  It is worth noting that, even with successful 261 

authorisation, there remain additional challenges. Authorisation is usually limited to a 262 

maximum of 12 months before the user must re-approve access, which may limit follow-up 263 

assessments in very large cohorts where direct contact with participants is limited. In 264 



addition, it is users, not researchers, who define the scope of the data that can be accessed; 265 

therefore, users may allow access to all or only some of their data (e.g. only pulse rate, or 266 

step count, or some combination thereof), resulting in incomplete data sets. Additionally, 267 

most devices allow users to manually add activity to account for any activity not passively 268 

detected by the device (e.g. swimming or cycling). At present, it is unclear if such self-reported 269 

estimates affect validity. Most databases separate device collected (passive) data from user 270 

added (self-reported) data, meaning the research team have to make a decision regarding 271 

which should be regarded as the ‘canonical’ source of users’ PA.  272 

 273 

Clearly, these challenges are not trivial, and future research teams will  require multi-274 

disciplinary skills, including specialists in behavioural science, PA, data science, and software 275 

and web development to successfully manage such projects. Nevertheless, if accessed and 276 

interpreted appropriately, these data may allow understanding of PA behaviour at a scale 277 

previously unimaginable. We are in the process of using this method at a national level to 278 

understand the impact of coronavirus, but future research using this technique could examine 279 

worldwide PA patterns, both prospectively and retrospectively, using multi-site and multi-280 

lingual research teams. 281 

 282 

CONCLUSIONS 283 

As with other device-based and self-report methods, we propose that consumer-grade 284 

activity tracker data be considered with their limitations in mind rather than dismissed as a 285 

flawed approach, particularly when the feasibility of large-scale accelerometery is prohibitive. 286 

Given the rising popularity of wearable activity trackers, the volume of data collected, and 287 

the possibilities in analysing data retrospectively, we believe data from wearable activity 288 



trackers should be considered a viable PA measurement tool. To be clear, we are not 289 

advocating that other tools, particularly self-report methods, should be consigned to history 290 

or replaced by wearable activity tracker 'big data'. Quite the contrary, despite their limitations 291 

self-report methods have provided critical insights into PA behaviour and are likely to remain 292 

important in the future. Rather, our view is that if physical activity researchers, practitioners, 293 

and public health professionals can use and interpret self-report data in light of their 294 

limitations, the same should be possible for activity tracker data.  295 

 296 
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