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Abstract: Most modern mobile cyber-physical systems such as smartphones come equipped with
multi-processor systems-on-chip (MPSoCs) with variant computing capacity both to cater to perfor-
mance requirements and reduce power consumption when executing an application. In this paper,
we propose a novel approach to dynamic voltage and frequency scaling (DVFS) on CPU, GPU and
RAM in a mobile MPSoC, which caters to the performance requirements of the executing application
while consuming low power. We evaluate our methodology on a real hardware platform, Odroid
XU4, and the experimental results prove the approach to be 26% more power-efficient and 21% more
thermal-efficient compared to the state-of-the-art system.

Keywords: CPU; GPU; RAM; memory; DVFS; power consumption; multi-processor system-on-chip;
MPSoC; peak temperature; thermal behaviour

1. Introduction and Motivation

Mobile cyber-physical systems such as smartphones (mobile phones) have become
an integral part of our daily life and we use them for a range of applications: browsing
the internet, playing games, capturing and editing videos, staying connected with friends
and family over social media, etc. To improve the versatility of mobile phones to be able
to cater to any type of application being executed on such a device, mobile phones come
equipped with heterogeneous multi-processor systems-on-chip (MPSoCs), which consist
of different types of processing elements (PEs) such as CPU (big and LITTLE varieties,
with big CPUs traditionally having a powerful computational capacity and LITTLE CPUs
being comparatively more power-efficient with a lower computational capacity [1]) and
GPUs with different processing capabilities. These heterogeneous multi-processor systems
have proven to provide more benefits in terms of area and core-to-application matching
for improved performance, power and workload coverage [2,3]. On the other hand, given
the fact that these mobile devices are battery-operated and that users expect such devices
to be operable without the need for frequent charging, optimised power consumption
on such devices is an important concern [4,5]. Furthermore, the PEs in these MPSoCs
support dynamic voltage and frequency scaling (DVFS), which can be used to reduce
dynamic power consumption (P ∝ V2f , where P represents dynamic power consumption,
V represents the voltage of the CMOS and f represents the operating frequency) [5–7]. This
helps to reduce the power consumption by executing the workload over extra time at a
lower voltage and frequency.

In most modern MPSoCs, CPU, GPU and RAM support DVFS, with each of these
components affecting the total power consumption of the device differently for different
types of applications. For example, when we observed the power consumption due to the
effects of DVFS in CPU, GPU and RAM (denoted as memory only) in an Odroid XU4 [8],
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utilizing Exynos 5422 MPSoC [9], when it was idle (when no other application was being
executed other than the background processes of the OS), we noticed that big CPUs, LITTLE
CPUs, GPU and memory consumed 34%, 8%, 9% and 3% of the total power consumption,
respectively, of the device on average (as shown in Figure 1a). The total power consumption
of the MPSoC when idle was 3.534 W. In this case, the Exynos 5422 MPSoC utilised ARM’s
big.LITTLE processor technology [10], in which two different types of CPUs (big and
LITTLE) are utilised to cater for the performance and power consumption requirements
of executing applications. In order to observe the effect of DVFS on each of the major
components (big CPUs, LITTLE CPUs, GPU and memory) of the MPSoC we recorded the
power consumption during the operation of each of these components in their maximum
operating frequency and then in their minimum operating frequency, consecutively, to
measure the percentage of total power consumption that is attributed to the maximum and
minimum frequency. Figure 1b illustrates the percentage of total power consumption of
big CPUs, LITTLE CPUs, GPU and memory in the Exynos 5422 MPSoC when executing
the Streamcluster benchmark (in native mode) from the PARSEC benchmark suite [11]. We
chose the Streamcluster benchmark because it reflects a mixed workload (both compute-
intensive and memory-intensive) [12] to mimic the workload of most of the popular
applications used by users. The maximum power consumption of the MPSoC when
executing Streamcluster was 10.11 W. As shown in Figure 1, one interesting observation
was that in a mixed workload application the memory can contribute to 19% of the total
power consumption, which is still a significant amount, and hence, DVFS in memory plays
an important role in regard to the total power consumption of the device.

(a) Idle (b) Executing streamcluster

Figure 1. Percentage of average power consumed by the big CPUs, LITTLE CPUs, GPUs, memory
and the rest of the components such as the fan (active cooling), hardware storage and on-chip com-
munication network of the Exynos 5422 MPSoC when idle vs executing the streamcluster benchmark.

There has been a series of published studies on the effects of performing DVFS
on CPU or GPU or memory separately or using a combination of two of these compo-
nents [4,5,13–15]; however, to the best of our knowledge there have not been any studies on
the effects of performing DVFS on CPU, GPU and memory together in order to optimise the
performance and power consumption of the execution of applications in mobile MPSoCs.
Moreover, it is quite attractive to employ methods such as reinforcement learning (RL)
to perform CPU/GPU/Memory DVFS since such methods could be application-agnostic.
However, for dynamic applications in which the CPU, GPU and memory usage vary
dynamically, if RL methods are not allowed to explore the system long enough then the
achieved power consumption could be sub-optimal [16]. We utilised the RL method (de-
noted as RL (CPU-GPU)) in [4] to perform CPU-GPU DVFS and extended the method to
perform CPU-GPU-memory DVFS (denoted as RL (CPU-GPU-RAM)) to compare the power
consumption with our proposed method, denoted as CGM-DVFS, to perform CPU-GPU-
memory DVFS. Figure 2 shows the average power consumption in Watts on the Exynos
5422 MPSoC when executing different benchmark applications on different approaches.
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The benchmark applications were object detection using YOLO (yolo) [17], the blackscholes
benchmarkfrom PARSEC [11] and fft from Splash-2 [18]. From Figure 2, it is evident that
application-agnostic approaches to performing DVFS on CPU-GPU-memory might not
lead to close-to-optimal power consumption and therefore indicates that DVFS in the CPU,
GPU and memory in mobile MPSoCs more challenging.

Figure 2. Average power consumption (Watts) when executing different benchmark applications
using different approaches.

In this paper, we study the effect of DVFS on memory towards the total power
consumption in a mobile MPSoC for different types of applications and we also propose
a novel approach, called CGM-DVFS (CPU-GPU-Memory DVFS), to perform DVFS on
CPU (big and LITTLE), GPU and memory in mobile MPSoCs to cater for the performance
requirements of the execution of applications while consuming the least amount of power.
To this extent, the concrete contributions of this paper are as follows.

1. Studying the effect of DVFS on memory in regard to the total power consumption
and performance of executing applications in a mobile MPSoC.

2. Proposing a novel approach—CGM-DVFS—to perform DVFS on CPU-GPU-memory
in a mobile MPSoC to cater for the performance requirements of executing applica-
tions, while consuming the least amount power.

3. An experimental evaluation of CGM-DVFS on a real hardware platform, Odroid XU4,
and a comparative study between CGM-DVFS and state-of-the-art approaches to
optimise power consumption.

4. A comparative study and analysis between CGM-DVFS and state-of-the-art delayed
reinforcement learning approaches to show that CGM-DVFS is better suited to achiev-
ing close-to-optimal power consumption.

The rest of the paper is organised as follows. In Section 2, we show the effect of DVFS
on memory in terms of power consumption as a motivational case study. In Section 3,
we mention the related works, whereas in Section 4 we provide details of the hardware
and software infrastructure used in this study, along with the problem formulation, on the
basis of which our proposed method was designed. In Section 5, we provide details on
our proposed methodology–CGM-DVFS, whereas in Section 6 we show the efficacy of our
proposed method through an experimental evaluation, along with a comparative study
with the state-of-the-art approach. Finally, we conclude the paper in Section 7.

2. Effect of DVFS on Memory

To observe the effect of DVFS on memory in regard to the total power consumption
and performance of different types of executing applications in a mobile MPSoC, we
chose benchmark applications from PARSEC [11], Whetstone [19,20] and Splash-2 [18]
benchmark suites, as well as RSA encryption [21] and streaming Youtube videos in the
Chromium browser. Given the fact that streaming video on Youtube is one of the most
popular applications/workloads on mobile devices [22], we chose this workload along
with the other benchmark applications. Due to the popularity of RSA encryption for
key exchange [23] in most of the secured applications, we chose to perform RSA for 512,
1024, 2048 and 4096 bit encryption and observed the effect of DVFS on memory. Based
on the parallelisation, the size of the working set and the data usage of the different
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types of benchmark applications from PARSEC and Splash-2, the applications (workload)
were segregated into three types [12]: compute-intensive (denoted as Compute), memory-
intensive (denoted as memory) and mixed-workload (denoted as Mixed), in which the
workload is both compute- and memory-intensive. Table 1 shows the abbreviations of the
different types of benchmark applications for our study of the effect of DVFS on memory.
Note: Given the compute- and memory-intensive nature of RSA encryption and Youtube
video streaming based on [12], both of these applications were also considered to be part of
the mixed-workload category.

Table 1. Abbreviations of different types of benchmark applications.

Benchmark Applications
Type Name (Execution Option) Abbreviation

Compute Whetstone wht.
Compute blackscholes (native) blks.
Memory x264 (simlarge) x264
Memory dedup (simlarge) ded.
Memory canneal (simlarge) cann.
Mixed FFT (simlarge) fft
Mixed facesim (simlarge) fsim.
Mixed streamcluster (native) strm.
Mixed Youtube in Chromium browser ytub.
Mixed RSA rsa

In Odroid XU4, there are nine available operating frequencies for memory and we
chose the highest (825 MHz), the middle (413 MHz) and the lowest (138 MHz) operating
frequency levels to observe the effect of DVFS on the power consumption and performance
(execution time) of the executed benchmark applications mentioned in Table 1. We executed
the benchmark applications five times on the aforementioned three operating frequencies
of the memory and observed the average power consumption and performance (execution
time), which are shown in Table 2. We also observed the power consumption for the
aforementioned three operating frequencies of the memory while the system was idle (only
executing the background processes of the OS), which is also denoted as idle, running with
a Linux performance governor.This serves as a baseline to evaluate the effect of DVFS on
memory in an idle Odroid XU4 system running with a performance governor. In Table 2
we can note that using DVFS in the memory can improve the power savings by 25.124%
based on the type of application being executed and hence this calls for an approach that
is capable of performing DVFS on CPU, GPU and memory to cater for the performance
requirements of the applications, while consuming the least power.



Future Internet 2022, 14, 91 5 of 14

Table 2. Power consumption (Pow. max) of different benchmark applications (App) when executing
the application on the maximum operating frequency of the memory. Pow. save middle (%) and Pow.
save min (%) are the improvements in power savings when executing the application on the middle
operating frequency and minimum operating frequency, respectively. Perf. middle (%) and Perf. min
(%) indicate the loss in performance for executing the application on the middle operating frequency
and minimum operating frequency, respectively.

App Pow. Max (W) Pow. Save. Middle (%) Pow. Save. Min (%) Perf. Middle (%) Perf. Min (%)

idle 3.313 5.192 5.886 - -
wht. 3.556 4.415 5.202 −2.121 −3.638
blks. 5.474 5.298 9.81 −2.483 −7.823
x264 8.748 13.649 20.085 −6.486 −16.993
ded. 7.893 11.136 18.282 −7.674 −14.598
cann. 7.919 10.317 16.782 −7.847 −12.773
fft 7.41 4.575 14.008 −2.939 −15.834
fsim. 5.378 4.574 9.967 −3.475 −7.558
strm. 10.11 1.82 25.124 −2.116 −16.883
ytub. 7.014 1.725 7.214 - -
rsa 6.119 1.994 4.935 −1.032 −1.894

3. Related Works

Power-saving mechanisms within performance constraints utilizing DVFS capabilities
on heterogeneous MPSoCs have been considered in many studies [4–6,13,14,24–36]. Given
the fact that power consumption in a heterogeneous MPSoC can be significantly affected by
big CPUs, LITTLE CPUs, GPUs and memory, most of the published studies have proposed
power-saving approaches utilizing DVFS of different aforementioned components of the
MPSoC but have not considered performing DVFS on all these components to achieve
more reduced power consumption while catering to performance constraints.

In [5,6,24,25,28], different approaches to performing DVFS on CPUs to contribute to the
reduction of power consumption were proposed. On the other hand, many
studies [4,13,14,25,26,30] have considered utilizing DVFS in CPU and GPU to achieve
power efficiency in MPSoCs. In [28], David et al. proposed an on-line power management
algorithm based on DVFS in a single-chip cloud computer (SCC) platform with multiple
cores, in which voltage and frequency could be scaled for each individual tiles. In [29],
Bogdan et al. examined a DVFS-based power optimisation mechanism in which a controller
for fractal workloads with precise constraints on state and control variables and specific
time bounds was utilised. In [6], Reddy et al. performed thread-to-core mapping and DVFS
on the cores in relation to workloads that were classified based on a metric, memory reads
per instruction (MRPI), and in our study we denoted this methodology as MRPI.In [7],
Dey et al. performed DVFS on cores based on the desired reward, which was chosen to be
reduced power consumption on the device in our case, and we denoted this methodology
as RewardProfiler. In [4], Dey et al. proposed Next, which performs DVFS on CPU and
GPU based on the user’s interaction with the device using Q-Learning (reinforcement
learning). In [25], Mandal et al. proposed an imitation-learning-based framework for
dynamically controlling the big and LITTLE CPUs, CPU number and the frequencies of
active cores in heterogeneous mobile processors. Additionally, there have been extensive
studies [31–33], in which DVFS was performed on memory to improve power efficiency
either in general-purpose computers or server systems. Only a handful of studies [34–36]
have performed DVFS on CPU and memory together to benefit from combined power
efficiency in a mobile platform. However, none of these studies attempted to combine
the benefits of performing DVFS on CPUs, GPUs and memory in conjunction in a mobile
MPSoC to improve power efficiency while catering for performance constraints and hence,
this paper addresses this gap in the literature.
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4. System Model and Problem Formulation

In this section, we provide details on the hardware and software infrastructure used in
this study, along with the problem formulation on the basis of which our proposed method
was designed.

4.1. Hardware and Software Infrastructure

We chose the Odroid XU4 [8] development board to implement our CPU-GPU-Memory
DVFS. Odroid XU4 employs the Samsung Exynos 5422 [9] MPSoC, which is popularly
used in Samsung mobile devices, especially the Samsung Galaxy S5. The Odroid XU4
is a representational development board of the Galaxy S5 smart-phone. The Exynos
5422 MPSoC contains clusters of big (4 Cortex A-15) and LITTLE CPU cores (4 Cortex A-7).
This MPSoC provides DVFS features per cluster, with the big CPU cluster having nineteen
frequency scaling levels, ranging from 200 MHz to 2000 MHz with steps of 100 MHz, and
the LITTLE CPU cluster having thirteen frequency scaling levels ranging from 200 MHz to
1400 MHz with steps of 100 MHz. Exynos 5422 comes equipped with a GPU cluster, called
Mali-T628 MP6 GPU, consisting of six shader cores and has seven frequency-scaling levels
as follows: 600, 543, 480, 420, 350, 266 and 177 MHz, respectively. This MPSoC supports
2 GB RAM, which has the following nine frequency scaling levels: 825, 728, 633, 543, 413,
275, 206, 165 and 138 MHz, respectively. DVFS in big and LITTLE CPUs in Exynos 5422 is
performed cluster-wise and the voltage value for a particular frequency is fixed for that
frequency. It should also be noted that below some frequencies, voltage remains the same,
but above a certain point, the voltage increases linearly [37]. Examples of this include that
for A7 (LITTLE) CPUs frequencies of 200–500 MHz have the voltage of 0.913 V, whereas for
A15 (big) CPUs, frequencies of 200–700 MHz have a voltage of 0.9125 V.

The Exynos 5422 MPSoC also has five temperature sensors, four of which are located
on four big CPUs and one on the GPU. The Odroid XU4 board does not have an internal
power sensor on-board; hence, Odroid SmartPower2 [38], which is an external power
monitor with networking capabilities over WIFI, was used in this study to take power
consumption readings.

The Odroid XU4 was running on UbuntuMate version 14.04 (Linux Odroid Kernel:
3.10.105) and executing the performance governor. During the time of implementing and
conducting our experiments the average ambient temperature of the room was 21 ◦C.

4.2. Problem Formulation

In this subsection, we define the problem formulation on which our proposed method
was based.

Given: Let us consider a system that has a set of applications, SApp = {App1, App2, . . .
Appi}, where Appi is the ith application and Appi consists of a set of tasks, Stask =
{tsk1, tsk2, . . . tski}, where Stask always generates a fixed performance output Pr fi for the
fixed DVFS configuration values Ri while executing Appi on the system. Here, Ri consists of
the combination of the DVFS values for big CPUs (DVFSbi

), LITTLE CPUs (DVFSLi ), GPUs
(DVFSgi ) and memory (DVFSmi ) such that Ri =< DVFSbi

, DVFSLi , DVFSgi , DVFSmi >
leads to a fixed performance output Pr fi. Now, we can consider Pr fdesired as the desired
value of the performance output for the execution of Appi.

Find: The desired DVFS configuration values (Rdesired) are the combination of the de-
sired DVFS values for big CPUs (DVFSbdesired

), LITTLE CPUs (DVFSLdesired ), GPUs
(DVFSgdesired ) and memory (DVFSmdesired ).

Subject to: Meeting the desired performance Pr fdesired while consuming the least
power (Pleast) during the execution of Appi on Rdesired.

5. Proposed Methodology: CGM-DVFS
5.1. Overview of CGM-DVFS

Figure 3 presents a block diagram of our proposed CGM-DVFS methodology. CGM-
DVFS is not just an approach, but also an automated agent that sets the appropriate
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DVFS on CPU, GPU and memory to achieve the desired performance of the execut-
ing application while consuming the least amount of power. For each Appi in SApp,
the profiling of Appi (this step is denoted as Profiling) is performed such that for differ-
ent combinations of DVFSbi

, DVFSLi , DVFSgi and DVFSmi , the corresponding value of
Pr fi, the corresponding peak temperature instance (Ti) and the corresponding power con-
sumption (Pi) of the device are recorded and stored on the disk storage memory. More
on Profiling is provided in Section 5.2. From the set containing the profiled values of
SPr f = {Pr f1, Pr f2, . . . Pr fi}, the desired performance Pr fdesired is searched based on the
equation: Pr fdesired ∈ SPr f ; where Pr fi ≥ Pr fdesired. Now, for all the possible values of
Pr fi that are equal or greater than Pr fdesired from SPr f , the agent searches for the value
with the least power consumption such that Pleast = min(SP); where SP = {P1, P2, . . . Pi}
(P1, P2, . . . Pi are the corresponding power consumption of Pr f1, Pr f2, . . . Pr fi). The agent
then fetches the associated DVFSbi

, DVFSLi , DVFSgi and DVFSmi configuration (this
step is denoted as Fetch desired config), and then the desired DVFS values of big CPUs
(DVFSbdesired

), LITTLE CPUs (DVFSLdesired ), GPUs (DVFSgdesired ) and memory (DVFSmdesired )
are set to this configuration (this step is denoted as Set desired DVFS).

Appi

Profile (Prfi) 
Performance, 
Power, CPU 

Freq, GPU Freq, 
Memory Freq, 
Temperature

Find the desired 
performance 

(Prfdesired) 
coinciding Prfi

Find CPU, GPU, 
Memory Freq 

confirguration for 
Prfdesired

Set the CPU, 
GPU, Memory 

Freq 
confirguration for 

Prfdesired

Profiling Fetch desired config Set desired DVFS

Figure 3. Block diagram illustrating the CGM-DVFS methodology.

Note: During Profiling, if the executing application (Appi) is not executed for a long
enough time to observe all the DVFS combinations of CPU, GPU and memory to profile
the performance and power consumption, then the profiled values will be a subset of SPr f ,
denoted by S′Pr f , where S′Pr f = {Pr f1, Pr f2, . . . Pr f j} and S′Pr f ⊂ SPr f . In such a case, the
agent searches Pr fdesired from S′Pr f based on the value with the least power consumption.

5.2. Steps in Detail: Profiling, Fetch Desired Config and Set Desired DVFS

In the profiling step, we utilise the concept of clustering performance for a range of
DVFS, as introduced in [7], in which Dey et al. proposed that for a group of DVFS values
for the same processing element the performance outcome remains similar. For example,
for Appi a set of consecutive DVFS values could lead to more or less the same performance
output Pr fi and hence, instead of selecting each of these DVFS values during the design
space exploration (Profiling), only one representative DVFS value from the set is selected
and then profiled only for that value. In this way, the agent can reduce the number of
configurations that it has to profile. For our experimental device, Odroid XU4, we chose the
following DVFS configurations: four DVFS levels for big CPUs (2 GHz, 1.4 GHz, 0.8 GHz,
0.2 GHz); four DVFS levels for LITTLE CPUs (1.4 GHz, 1 GHz, 0.8 GHz, 0.2 GHz); three
DVFS levels for GPUs (600 MHz, 420 MHz, 177 MHz) and three DVFS levels for memory
(825 MHz, 413 MHz, 138 MHz). In [7], the equation for the combined design point (CDP) is
provided for an MPSoC where DVFS capability is only considered in big CPUs, LITTLE
CPUs and GPUs. Since, in this paper, we also consider DVFS in the memory, the equation
for CDP is modified to incorporate the operating frequency levels of memory as well and
is represented in Equation (1). In Equation (1), nb and nL represent the number of big
CPUs and LITTLE CPUs respectively, whereas, fb, fL, fGPU , fmem represent the number of
operating frequency levels for big CPUs, LITTLE CPUs, GPUs and memory, respectively.

CDP = {((nb × fb) + (nL × fL)) + (nb × fb

×nL × fL)} × fGPU × fmem
(1)
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Since, in our chosen platform and methodology, DVFS in big and LITTLE CPUs
is performed cluster-wise, the total number of reduced CDPs for the aforementioned
configuration, as per Equation (1), is 216 ({((1× 4) + (1× 4)) + (1× 4× 1× 4)} × 3× 3).
The agent starts the profiling process by selecting the maximum DVFS level for big CPUs,
LITTLE CPUs, GPUs and memory; records the performance output, temperature and
power consumption for that configuration and then selects the next-lowest DVFS level
in the configuration to record the same. The agent uses a waterfall method in which the
DVFS levels are selected from high to low on big CPUs first, then on the LITTLE CPUs,
then on the GPUs and then on the memory. Based on our empirical data, we noticed that
to profile accurately it is best to profile each of the reduced CDPs every 100 milliseconds
for 1 s and hence the total number of profiling points become 2160 (216× 10). Once all
the 2160 profiling points are traversed and configurations are recorded and stored on the
disk memory, these configurations will be used (as in the “Fetch desired config” and “Set
desired DVFS” steps) by the agent to find Pr fdesired, in which the system consumes the least
amount of power (Pleast) and set the DVFS values accordingly.

5.3. Justification of the Design Choices

In the majority of commercial smartphones utilizing MPSoCs, due to constraints on
the display size, most consumers utilise one application at any time period [39]. Henceforth,
we have considered profiling one application at a time to make the proposed method more
commercially applicable. Moreover, later in Section 6.3 we also show that application-
agnostic approaches such as delayed reinforcement learning could lead to sub-optimal or
worse power consumption than application-specific profiling approaches such as CGM-
DVFS. Additionally, since different DVFS configurations for dynamic applications (tasks)
could lead to dynamic profiling outputs such as performance and power consumption, we
invoke CGM-DVFS at random time periods to update the profiling configurations and save
them on the memory to perform the Fetch desired config & Set desired DVFS steps.

6. Experimental Results
6.1. Experimental Applications

To evaluate the efficacy of CGM-DVFS, we modified some of the existing popular
applications, thus mimicking a mixed workload as utilised by users, such that the agent
is capable of recording the performance output during the profiling step. The following
applications were chosen for the experimental evaluation:

Face detection: Face detection using a Haar-cascade [40] is utilised, in which faces are
detected based on the presence of Haar features in the video image frame. This application
is denoted as face.

YOLO object detection: Object detection using the You Only Look Once (YOLO)
approach [17] is utilised, in which objects are detected based on different regions in the
video image frame. This application is denoted as yolo.

Video rendering: A video rendering program is utilised, in which each video image
frame is converted to a greyscale image and then the text, “Hello, World¡‘ is rendered on top
of the video image frame to be shown as the output. This application is denoted as render.

On-device streaming: A video streaming application is utilised, in which the video is
streamed from the on-device storage. This application is denoted as stream.

Traffic sign detection: An application to detect traffic signs using a Haar cascade [41]
is utilised, in which Haar features for traffic signs are being detected. This application is
denoted as traffic.

MobileNet object classification: An application to classify dogs and cats in video
image frames using the MobileNet CNN model [42] is utilised. This application is denoted
as classify.

For the aforementioned applications (face, yolo, render, stream, traffic and classify),
since all of them are computer-vision-based, we chose frames per second (FPS) to be the
performance output and therefore the CGM-DVFS agent recorded the FPS as Pr fi, as
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mentioned in the profiling step. In our experiments, we chose the desired FPS (Pr fdesried)
to be 60.

Additional benchmark applications: Since benchmark applications from PARSEC
and SPLASH-2 benchmark suites do not allow one to observe the intermediate performance
(execution time) of the application when executing it without the use of a performance
counter, we executed blackscholes (denoted as blks.) from PARSEC, streamcluster (denoted
as strm.) from PARSEC and fft from SPLASH-2 216 times (as per reduced CDP) such
that each execution was performed on each configuration from the reduced CDP. The
minimum execution time out of 216 executions of the respective benchmark application
(228.18 seconds for blks., 368.15 seconds for strm.& 12.58 seconds for fft) was chosen as the
Pr fdesired for that application. We chose to perform this experimentation method to prove
the scalability and efficacy of CGM-DVFS across different types of applications and not just
for computer-vision-based applications.
Note: Since we chose the minimum (best) execution time for the additional benchmark
applications and given the fact that the media-based benchmark applications such as face,
yolo, render, stream, traffic and classify do not have a specific execution time since they
are continuously executed, the power consumption here is proportional to the energy
consumption (energy = power × execution time) for executing the respective applications,
since the execution time is constant in this case.

6.2. Evaluation and Comparative Study

We evaluated CGM-DVFS for each aforementioned experimental application fifteen
times and observed the average power consumption of the MPSoC and the average peak
temperature of the big CPUs. We chose to observe the peak temperature of the big CPUs
since they tend to be the hottest hot spot in the MPSoC [43]. We also evaluated the average
power consumption of the MPSoC and the average peak temperature of big CPUs achieved
using the performance governor (denoted as performance), the interactive governor (de-
noted as interactive) and the state-of-the-art approaches as proposed in [4,6,7] (mentioned
in Section 3). In [4], the proposed Q-Learning (reinforcement learning)-based DVFS is based
on a reward function, as shown in Equation (2), which is based on Equation (3). We also
denote this methodology as Next in our comparative study. In Equation (2), the reward func-
tion attempts to maximise the value of PPDW, which is a metric, performance per degree watt,
incorporating the performance (FPSi), temperature (∆T, where ∆T is the difference between
the current temperature, Ti, and the ambient temperature, Ta) and power consumption (Pi)
of the device. The agent in Next has the following states: big_CPU f req, LITTLE_CPU f req,
GPU f req, FPScurrent, Target_FPS, Powercurrent, Temperaturebig and Temperaturedevice; where
big_CPU f req is the frequency of the big CPU, LITTLE_CPU f req is the frequency of the
LITTLE CPU, GPU f req is the frequency of the GPU, FPScurrent is the current performance
in terms of FPS, Target_FPS is the desired performance in terms of FPS, Powercurrent is the
current power consumption and Temperaturebig and Temperaturedevice are the temperature
of the big CPU and the whole device, respectively. The actions performed by the Next
agent are as follows: big frequency up, big frequency down, do not change big frequency,
LITTLE frequency up, LITTLE frequency down, do not change LITTLE frequency, GPU
frequency up, GPU frequency down and do not change GPU frequency. We modified
Equation (3) to incorporate the performance of all types of applications, not only FPS-based
ones, and the modified equation for PPDW is Equation (4). Moreover, we also extended [4],
denoted as Next_Mod, to incorporate memory DVFS along with CPU and GPU such that
we could undertake a comparative study between Next and CGM-DVFS. In Next_Mod, the
agent has a new state, RAM f req, frequency of memory, and three more new actions: RAM
frequency up, RAM frequency down and do not change RAM frequency. Both Next and
Next_Mod were invoked every 100 ms. Exploration sessions for face, yolo, render, stream,
traffic and classify applications for Next and Next_Mod were 5 min, whereas blks., strm.
and fft were executed for their execution lifespan for Next and Next_Mod to explore. [4,6,7]
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and Next_Mod were chosen for the comparative study because these methods perform
DVFS on a combination of CPU, GPU and memory or all of the above.

max R(si, ai) = max(PPDWi),

where

max(PPDWi) = PPDWbest ≥ PPDWi > PPDWworst

(2)

PPDWi =
FPSi

∆T × Pi
, where ∆T = Ti − Ta (3)

PPDWi =
Per fi

∆T × Pi
, where ∆T = Ti − Ta (4)

Figure 4 shows the average power consumption of the device (see Figure 4a) and
the average peak temperature of big CPUs (see Figure 4b) while executing the afore-
mentioned benchmark applications using different DVFS methodologies: performance,
interactive, MRPI, RewardProfiler, Next, Next_Mod and CGM-DVFS. Tables 3 and 4 show
the improvement in power-savings (%) and the reduction in peak temperature (%), respec-
tively, of CGM-DVFS compared to performance, MRPI, RewardProfiler, interactive, Next
& Next_Mod. Based on the tables, CGM-DVFS is capable of saving 33.476% more power
compared to the performance governor, whereas it is capable of saving 26.796% more
power compared to the state-of-the-art approach, MRPI. On the other hand, CGM-DVFS is
also capable of reducing the peak temperature of big CPUs by 25.567% compared to the
performance governor and by 21.238% compared to MRPI.

(a) Average power consumption in Watts

(b) Average peak temperature in ◦C

Figure 4. Average power consumption (Watts) and average peak temperature (◦C) when executing
different applications on different methodologies: performance, interactive, MRPI, RewardProfiler,
Next, Next_Mod and CGM-DVFS.



Future Internet 2022, 14, 91 11 of 14

Table 3. Improvement in power-savings (%) of CGM-DVFS compared to performance (perf.), MRPI,
RewardProfiler (RProfiler.), interactive (inter.), Next and Next_Mod (N_Mod.).

App Perf. MRPI RProfiler. Inter. Next N_Mod.

face 21.08 14.59 9.28 17.81 8.61 −3.17
yolo 24.46 8.79 4.049 19.82 2.16 1.89

render 18.00 9.40 8.39 15.34 8.12 8.89
stream 32.81 23.17 24.34 29.55 19.40 17.58
traffic 19.74 9.17 4.02 15.57 0.48 −0.03

classify 33.48 26.80 15.36 30.2 11.42 6.93
blks. 12.43 5.13 3.83 11.34 6.10 5.10
strm. 21.20 18.80 11.97 15.99 2.62 0.60

fft 12.21 9.04 9.42 11.40 3.15 4.89

Table 4. Reduction in peak temperature of big CPUs (%) of CGM-DVFS compared to performance
(perf.), MRPI, RewardProfiler (RProfiler.), interactive (inter.), Next and Next_Mod (N_Mod.).

App Perf. MRPI RProfiler. Inter. Next N_Mod.

face 25.57 14.16 13.18 19.38 11.29 3.04
yolo 19.43 8.13 6.74 15.67 6.44 5.19

render 20.80 8.06 5.38 18.80 3.90 6.27
stream 13.93 6.428 3.83 12.16 3.99 1.82
traffic 23.25 8.71 3.96 16.58 2.63 0.38

classify 24.50 21.24 4.30 22.42 4.92 2.29
blks. 12.43 5.13 3.83 11.34 4.46 2.49
strm. 21.20 18.80 11.97 15.99 13.39 11.67

fft 12.21 9.04 9.42 11.40 10.95 12.08

Overhead analysis: We also evaluated the overhead analysis of executing our pro-
posed method. In our empirical data, we noted that the average overhead to read the
profiled data (2160 profiling points) in the Fetch desired config step was 29.507 milliseconds
and the overhead to search for the desired DVFS configuration in this same step was
0.145 milliseconds.

6.3. Comparative Study between CGM-DVFS and Delayed-Reinforcement-Learning Approaches

In this subsection, we provide a comparative study of our proposed method with the
current state of the art.

In Figure 4, Tables 3 and 4 it can be noted that CGM-DVFS outperforms the Q-Learning
based reinforcement learning (RL) approach, Next, in which DVFS is only performed on
the CPU and GPU. This was expected since CGM-DVFS performs DVFS on the CPU,
GPU and RAM to reduce the power consumption even more. However, when compared
to Next_Mod, in which DVFS is performed on the CPU, GPU & RAM using Q-Learning,
CGM-DVFS outperformed this method for the yolo, render, stream, classify, blks., strm. and
fft applications. Interestingly, Next_Mod seemed to produce sub-optimal (worse) results
when compared to Next and CGM-DVFS, especially for the render and fft applications. This
is due to the fact that for delayed RL approaches such as Q-Learning the agent must explore
the dynamic system (dynamic environment) long enough to find the optimal outcome [16].
Although delayed RL approaches are beneficial to optimise the power consumption and
temperature of the system in an application-agnostic manner, often, given the number of
actions required (actions to perform DVFS on the CPU, GPU and RAM) if the agent is
not allowed to explore the dynamic environment for long enough, then the method will
result in sub-optimal power consumption. On the other hand, application-specific profiling
approaches such as CGM-DVFS will result in close-to-optimal power consumption since
these approaches are specific to certain applications.
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7. Conclusions

In this paper, we studied the effect of different frequency scaling levels on memory in
regard to the total power consumption in a mobile MPSoC. We also proposed CGM-DVFS,
an agent designed to perform DVFS on big and LITTLE CPUs, GPUs and RAM on a mobile
MPSoC and the experimental results proved the efficacy of CGM-DVFS in reducing power
consumption and peak temperature while catering to performance requirements compared
to the state-of-the-art approaches. Through our experimental results, we also showed
that application-specific profiling approaches such as CGM-DVFS outperform delayed
reinforcement learning approaches such as Q-Learning and result in closer-to-optimal
power consumption when the system (environment) is dynamic.
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