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Abstract

Nuclear receptors are a class of transcriptional factors. Together with their co-regulators,

they regulate development, homeostasis, and metabolism in a ligand-dependent manner.

Their ability to respond to environmental stimuli rapidly makes them versatile cellular com-

ponents. Their coordinated activities regulate essential pathways in normal physiology and

in disease. Due to their complexity, the challenge remains in understanding their direct asso-

ciations in cancer development. Basal-like breast cancer is an aggressive form of breast

cancer that often lacks ER, PR and Her2. The absence of these receptors limits the treat-

ment for patients to the non-selective cytotoxic and cytostatic drugs. To identify potential

drug targets it is essential to identify the most important nuclear receptor association net-

work motifs in Basal-like subtype progression. This research aimed to reveal the transcrip-

tional network patterns, in the hope to capture the underlying molecular state driving Basal-

like oncogenesis. In this work, we illustrate a multidisciplinary approach of integrating an

unsupervised machine learning clustering method with network modelling to reveal unique

transcriptional patterns (network motifs) underlying Basal-like breast cancer. The unsuper-

vised clustering method provides a natural stratification of breast cancer patients, revealing

the underlying heterogeneity in Basal-like. Identification of gene correlation networks

(GCNs) from Basal-like patients in both the TCGA and METABRIC databases revealed

three critical transcriptional regulatory constellations that are enriched in Basal-like. These

represent critical NR components implicated in Basal-like breast cancer transcription. This

approach is easily adaptable and applicable to reveal critical signalling relationships in other

diseases.

Introduction

Nuclear receptors (NRs) are ligand induced transcriptional factors that regulate essential path-

ways in normal physiology and in disease. With the advantage of next generation sequencing
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technology, researchers are beginning to comprehend the innate complexity of signalling path-

ways involving NRs and their involvement in tumour development and progression [1]. In

this work, we used an unsupervised clustering method to stratify breast cancer into classes

with distinct NR expression patterns and identified three critical modules that are enriched in

Basal correlation networks. Network-based modules provide a robust description of transcrip-

tional characteristics underlying Basal-like breast cancer, and also take into account dynamic

properties and collaborative behaviours of NRs.

Basal-like breast cancer

Breast cancer is not a single disease and consists of a high degree of genomic heterogeneity [2].

Consequently, diversification of therapeutic treatments is required for all breast cancer

patients. Previous work has disambiguated the heterogeneity, Perou et al. and Sørlie et al.
revealed five molecular subtypes (Luminal A, Luminal B, ERBB2(Her2), Basal-like and nor-

mal-like) with each representing a distinct molecular portrait and prognostic outcome [3–6].

Debate continues as to whether normal-like subtype represent cancerous tissue. Identification

of the other four molecular subtypes provides useful insight into understanding the tumour

development and helps to tailor clinical decisions [7, 8]. Luminal A, Luminal B and Her2 sub-

type are defined by the presence of oestrogen receptor (ER), progesterone receptor (PGR) and

the human epidermal growth factor receptor 2 (HER2) and respond to selective treatments

that target these markers [9]. Tumours lacking these three receptors are referred to as triple

negative breast cancer (TNBC) and such patients receive conventional cytostatic and cytotoxic

chemotherapy that is non-selective typically systemic. Moreover, most tumours with TNBC

status are classified as Basal-like subtype based on PAM50 subtype prediction scheme [10, 11].

Basal-like subtype has a high expression of cytokeratin (CK 5/6, CK14, and CK17) and genes

involved in cell proliferation. Compared to other breast cancer subtypes, Basal-like is particu-

larly aggressive and patients are at high risk for relapse and death within the first 2 to 5 years of

diagnosis [12, 13]. Among all the molecular subtypes, Basal-like remains a greatest clinical

challenge due to its aggressive nature and poorly-characterised molecular pathogenesis. The

devastating clinical outcome and limited treatment options have motivated this research. The

aim of this work is reveal the unique transcriptional characteristics underlying Basal-like

subtype.

The significance of nuclear receptor in breast cancer

Nuclear receptors (NRs) are a superfamily of ligand-induced transcription factors, regulating

both physiological and pathological processes. Previous studies have demonstrated the

involvement of individual NRs in breast cancer initiation and progression [14, 15].

NR expression data can also be interpreted together to provide a valuable estimation on

breast cancer recurrence and prognosis [16]. It has been demonstrated that NRs have distinct

expression levels in different breast cancer subtypes, suggesting that the transcriptional activity

underlying different breast cancer subtypes are distinct and require different therapeutic strat-

egies [17–19].

NR co-regulators interact with both NRs and other transcription factors to facilitate tran-

scription of target genes. They are essential for recruiting protein complexes that are involved

in NR-regulated signalling pathways. As transcriptional events are specific and tightly regu-

lated, an aberrant alteration (over or under-expression) of NRs or their co-regulators can lead

to pathogenesis [20]. Early work established that the expression level of NR co-regulators mod-

ulate tumour cell responsiveness to hormonal therapy in breast cancer [16]. It is clear that

understanding the functions and transcriptional dynamics of NR co-regulators will improve
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treatment response prediction and open up more opportunities for targeting oncogenic path-

ways modulated by NRs.

Biological networks

Understanding the genetic diversities underlying breast cancer tumours is crucial for targeted

treatment development and it should be recognised that biological systems are complex, and

phenotypic diversity is indeed a reflection of a combination of subtle dynamic interactions

rather than individual genetic alterations (eg mutations, transcriptions, regulation events).

The development of next generation sequencing (NGS) has provided rapid identification of

genetic variations implicated in cancer. However, initial studies often focussed on identifying

differential expression or molecular alterations of individual biomolecules (e.g. DNA, mRNA

or protein) and less so on the dynamic properties and collaborative behaviours in the biologi-

cal complexity at the system level [21, 22]. Therefore, to develop and improve the efficiency of

cancer-targeted treatment, more effort is required to model the cellular transcription signalling

dynamics and capture the underlying molecular state driving oncogenesis [23, 24].

Network-based approached have emerged as powerful approaches for interpreting biologi-

cal data, including expression data (e.g. genome, transcriptome). They can provide a system-

level understanding of the biological mechanisms and constituent relationships in diseases

including breast cancer [25–27].

In this work, gene correlation networks are described for Basal-like breast cancer, from two

independent patient cohort databases of invasive breast carcinoma: TCGA (www.cbioportal.

orgstudysummary?id=brca_tcga_pub) [28] and METABRIC (www.cbioportal.

orgstudysummary?id=brca_metabric) [29]. From these networks, we identified hub-associated

modules that are enriched and conserved across two independent breast cancer cohorts. These

modules contain critical NRs that are operating in functional units, annotated as small net-

work motifs. Graphically, these hub-associated NR motifs are topologically central with a max-

imal number of connections, representing critical positions in the network for targeting.

Biologically, these motifs are network-based indicators of essential components underlying

Basal-like transcriptional regulatory signalling, providing a mechanistic understanding of

Basal-like breast cancer characteristics.

Materials and methods

In this work, mRNA gene expression data from individual patients were clustered using a

computational pipeline written in R. Cluster analysis required R (v3.5.3), R Studio(v1.2.5019),

R/Bioconductor (3.10), R/BHC (v1.38.0) [30, 31]. Code used for the clustering is provided in

S3.6 File in S1 Appendix, for reproducibility. Network modelling required R/GeneNet (1.2.13)

[32–34], and R/Graphiz (v2.26.0). Terminology and abbreviations used in the paper are

described in S1 Appendix.

Overview of the unsupervised clustering analysis protocol

The unsupervised clustering method used here revealed a natural stratification of breast can-

cers from two large independent breast cancer patient cohorts. By combining an unsupervised

clustering method with network modelling, we identified critical 3-node motifs that are

enriched in Basal-like. These network motifs represent critical modules in the Basal-specific

networks, providing fundamental knowledge for developing more targeted therapeutics for

Basal-like patients. The overview of our strategy is shown in Fig 1.
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TCGA expression data

TCGA (The Cancer Genome Atlas Program) breast tumour mRNA gene expression data from

825 patients was accessed from cBioportal, [28]. Three hundred and eleven tumour samples

were not assigned to any PAM50 subtype were therefore eliminated from the analyses. The

remaining samples totalled 514 breast tumour samples, consisting of 231 Luminal A samples,

127 Luminal B samples, 58 Her2 samples and 98 Basal-like samples (Table 1). The subtype of

each tumour sample was based on the PAM50 molecular subtypes proposed by Parker [10].

The mRNA expression data from the TCGA study is organised into levels and level 3 was used

in this study. Level 3 includes the least processed. The expression signals were median-centred

to account for the potentially skewered distributions of the differentially expressed genes. Out

of the 178 NR-associated genes, 171 were available in TCGA and included in the TCGA

Fig 1. Overview of our approach for revealing critical modules in Basal-specific networks. Our method has three main steps, including (a) data collection and

preparation, (b) breast cancer stratification from unsupervised clustering and (c) network modelling and analysis. Pictures on the left show a typical outcome from each step.

https://doi.org/10.1371/journal.pone.0252901.g001

Table 1. Patients subtype distribution in TCGA and METABRIC. Subtypes considered in this study are highlighted in bold.

Luminal A Luminal B Her2 Basal-like

TCGA 231 127 58 98

METABRIC 679 461 220 199

https://doi.org/10.1371/journal.pone.0252901.t001
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analyses and their mRNA expression are referred to as NR-associated gene signals throughout

this paper. The 178 genes contain 46 NR genes and 132 genes that code for their binary inter-

acting partners (NR co-regulators). The gene list is described in S2 Appendix) and the known

NR co-regulators were described and annotated in the STRING database (v11.0 https://string-

db.org/).

METABRIC expression data

The METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) mRNA

gene expression data from 1565 patients was also obtained from cBioportal (data_expression.
txt from the compressed file) [29]. Six patients were eliminated from the analysis due to insuf-

ficient clinical information, leaving a total number of 1559 breast tumour samples. This

included 679 Luminal A samples, 461 Luminal B samples, 220 Her2 samples and 199 Basal-

like samples (Table 1). The subtype of each tumour was based on PAM50 molecular subtypes

and the assignment can be found from the file: data_clinical_supp_patient.txt in the publicly

available compressed file: brca_METABRIC.tar.gz. To make the analyses compatible with

TCGA, patients with claudin-low and normal-like subtypes were not considered in the analy-

ses. Unlike the TCGA data, these expression signals were median-centred in R, to account for

the potentially skewered distributions of the differentially expressed genes. Out of the 178 NR-

associated TCGA genes, from above, 169 were available in METABRIC and included in the

METABRIC analyses and their mRNA expression are referred to as NR-associated gene signals

throughout this paper. As above, the 178 genes contain 46 NR genes and 132 genes that code

for their binary interacting partners (NR co-regulators) (see S2 Appendix) and the known NR

co-regulators were described and annotated in the STRING database (v11.0 https://string-db.

org/).

Unsupervised Bayesian Hierarchical Clustering

In this work, patients were grouped into clusters by Bayesian Hierarchical Clustering (BHC)

based on their transcriptome variation [35, 36]. To simplify the patient groupings, the resulting

clusters were further enumerated into classes, defined according to the final or penultimate

fusions in the dendrogram. The original clusters revealed and the clusters-to-classes simplifica-

tion process are provided and illustrated in S3.2 File in S3 Appendix. Importantly, the choice

of classes still produces clear groups. However indications of uncertainty, compared to a null

model from a background population giving a probability for statistical significance, are not

available from R/BHC.

Groups of patients in the classes reflect the distribution of the patients in the clinical sub-

types. Depending on the patients present within a class, classes were defined as either a subtype
dominant class or an ambiguous class. Subtype dominant classes are said to be homogeneous,

containing patients predominantly of one subtype. Ambiguous classes are heterogenous con-

taining a similar number of patients from more than one subtype. For the purpose of this

work, only Basal dominant classes were considered and analysed. Overlaps between different

Basal dominant classes are illustrated in S3.4 and S3.5 Files in S3 Appendix.

BHC can be performed in two-dimensions giving rise to alternative Cluster Analysis Strate-

gies, with one using the transform of the data. This work only considers the patients clustered

according to the distributions of mRNA gene expression. A complementary analysis uses the

transform of the data, resulting in clustering mRNA gene expression. The two clustering strat-

egies are explained in S3.4 File in S3 Appendix. The analyses including both patients clustered

by genes and genes clustered by patients are provided in S3.4 and S3.5 Files in S3 Appendix.
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Partial correlation networks

To identify critical NRs and their associated functional units in Basal-like, the partial correla-

tion networks were derived from the Basal-like dominant classes using the R/GeneNet library

[32]. The function R/GeneNet:network.test.edges was used to create a pairwise partial correla-

tion matrix containing all possible correlations, listed by order of magnitude. Marginalised

thresholding of 1% was used to reveal the stronger correlations and to eliminate the weaker

correlations. R/Graphiz was used to generate networks for visualisation. The partial correlation

networks presented in this work are signed (containing positive and negative correlations) and

undirected. Each node in the network represents a gene and the lines between them represent

a strong (top 1%) correlation. Each node was marked with its degree, defined as the number of

connections that a given node makes in its network. The node degrees were obtained from

GeneNet::node.degree and the total degree being the sum of degrees each node makes across

the eight Basal-specific networks. All nodes were then ranked by their total degree. The total

degree distribution of the nodes was also plotted for hub identification. Hubs are the top three

nodes with the highest degree. Code used for network analysis were adapted from this Gene-

Net example (http://www.strimmerlab.org/software/genenet/download/ecoli-net.R).

Hub-associated local networks and 3-node motifs

Once hubs are identified, the hub-associated local network can be defined by 3-node network

motifs. Hub-associated local networks are defined by the inclusion of all possible 3-node

motifs within the radial proximity of two edges from a given hub node. In this work, 3-node

motifs centred around the top two most connected nodes were annotated and compared for

all networks derived from Basal dominant classes (see S5 Appendix). Motifs and hub-associ-

ated local networks were curated manually and systematically checked to eliminate human

error in the annotation process.

Results

This work employed a nonparametric multinomial Dirichlet process clustering algorithm,

Bayesian Hierarchical Clustering (BHC) to stratify breast cancer patients and discriminate the

Basal-like patients based on the mRNA expression signals of nuclear receptors and their

immediate co-regulators. In order to reveal characteristics that are unique to Basal-like, pair-

wise comparisons were performed. Individually, Basal-like was compared with Luminal A,

and with Luminal B and with Her2 subtypes. The aim of this study was to uncover unique

transcriptional regulatory constellations that suggest dynamic relationships between critical

NRs and their co-regulators underlying Basal-like breast cancer only, given the data from the

two independent datasets, TCGA [28] and METABRIC [29].

Breast cancer stratification and pairwise subtype comparison

When two subtypes are compared, patients are expected to fall into either a subtype dominant
class or an ambiguous class. In a subtype dominant class the majority of patients will have the

same PAM50 subtype and in an ambiguous class patients have a mixture of both subtypes. The

patients in the subtype dominant class were expected to have distinct and relatively simple

characteristics whereas the patients in the ambiguous classes were considered to have more

complex transcriptional activities. This work focuses on revealing distinct characteristics of

patients found in the most homogenous Basal dominant classes.
Our script with BHC produced colour plots (modified heatmaps) with hierarchies (dendro-

grams) on both axes revealing the latent structure the data. The clustering produces a more
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natural stratification of the patients, according to the NR expression patterns. In the following

analyses, a corresponding 2D colour plot aligned with the dendrograms giving the hierarchy of

the patient clusters. Each gene is a considered as a continuous variable and its distribution was

discretised into three (an upper-bound indicating the highest expression, the marginal-likeli-

hood representing the signal, and a lower-bound indicating the lowest expression) prior to

clustering.

Basal-like vs Luminal A. In the Basal-like vs Luminal A analysis, 329 patients (98 Basal-

like and 231 Luminal A) from TCGA database were grouped into 5 classes (Fig 2, Left).

Fig 2. Extracted results from Basal-like vs Luminal A comparison show a natural stratification of Basal-like vs Luminal A patients (columns)

according to the NR-associated gene expression signals (rows). See S3.4 and S3.5 Files in S3 Appendix for the complete results. Left: Patients from

TCGA dataset were grouped into 5 classes. Class 1 is considered as a Basal dominant class. Right: Patients from METABRIC dataset were grouped into

6 classes. Class 1 is considered as a Basal dominant class. Yellow lines highlight the classes (simplified from the clusters) and the corresponding

expression pattern in the colour plot. The tables show the number of Basal-like and Luminal A patients in each class. The Basal dominant classes are

highlighted in red boxes in the table and colour plots. The colour bar indicates the lowerbound (green), likelihood (black) and upperbound (red).

https://doi.org/10.1371/journal.pone.0252901.g002
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Similarly, 878 patients (199 Basal-like and 679 Luminal A) from METABRIC were grouped

into 6 classes (Fig 2, Right). The classes are simplifications of the clusters revealed by BHC,

representing patient groups with distinct NR expression patterns. In both analyses, class 1 are

considered as Basal dominant classes, as they consist mostly Basal-like patients with only a sin-

gle Luminal A patient in TCGA class 1. Class 3, 4 and 5 from both the TCGA cluster analysis

and the METABRIC cluster analysis are considered as Luminal A dominant classes as the

majority of the patients in these classes are Luminal A patients. TCGA Class 2 and METABRIC

classes 2 and 6 are considered as ambiguous classes as they consist a similar number of Basal-

like and Luminal A patients within a class. The hierarchy (in the top dendrograms) shows that

Basal dominant classes from both analyses are separated from the Luminal A dominant classes
at the top divisions, indicating that the patients in Basal dominant classes have very distinct

nuclear receptor expression patterns compared to those in the Luminal A dominant classes.

Basal-like vs Luminal B. Similar results were obtained in the Basal-like vs Luminal B

comparisons. Patients were clustered into 3 classes from the TCGA analysis and 7 classes from

METABRIC analysis (Fig 3). TCGA class 1 and METABRIC classes 1 and 2 were considered

as Basal dominant classes. However, METABRIC class 1 is more heterogeneous as it contains

50 Basal-like patients and 13 Luminal B patients compared to class 2 that contains 111 Basal-

like patients and only 3 Luminal B patients. Consequently, we therefore considered METAB-

RIC class 1 to be an insubstantial Basal dominant class. In both TCGA and METABRIC analy-

ses, there is discrimination at the top division of the hierarchy between the Basal dominant
classes from Luminal B dominant classes and the ambiguous classes. This indicates that in gen-

eral, Basal-like and Luminal B patients have very distinct nuclear receptor expression signals.

Basal-like vs Her2. In the Basal-like vs Her2 comparisons, some Basal-like patients are

distinguishable from Her2 patients. However, the separation of Basal-like and Her2 are not as

distinct as the Basal-like vs Luminal type comparisons. In the TCGA analysis (Fig 4 Left),

patients clustered into 4 classes and two of which were Basal dominant classes (class 1 and class

3). Interestingly, the two Basal dominant classes emerge from different descenders at the top

division of the hierarchy, suggesting distinct characteristics. Class 1 is from the left descender

and is separated from the rest of the classes, whereas class 3 is from the right descender with

the Her2 dominant class (class 2) and the ambiguous class (class 4). TCGA class 3 shares more

similarity with Her2 therefore is considered as an insubstantial Basal dominant class. In the

METABRIC analysis (Fig 4 Right), patients clustered into 7 classes. More than half of the

Basal-like patients (115 out of 199 Basal-like patients) appear in Basal dominant class (class 2),

the remainder of Basal-like patients were distributed across the other six classes. In particular,

46 out of 199 Basal-like patients were grouped into the Her2 dominant class, suggesting that

these patients have similar nuclear receptor expression characteristics to Her2 patients. The

clustering shows clearly that while most Basal-like patients have distinct NR expression pat-

terns from Luminal type patients, a fraction of Basal-like patients have more similar NR

expression patterns to Her2 compared to Basal-like. This observation is consistent in both the

TCGA and METABRIC datasets used in this work.

Basal-specific nuclear receptor networks

To reveal the distinct characteristic for Basal-like patients, we developed partial correlation

networks for each of the Basal dominant classes revealed from the analysis. The networks were

developed based on the available NR-associated genes and only the strongest 1% of the correla-

tions were included in the networks. The networks are undirected and signed, containing posi-

tive and negative correlations between the nodes (genes). The positive correlations are shown

in red and the negative correlations are shown in black in the networks. Fig 5 shows an
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example of a partial correlation network, developed for the Basal dominant class from the

TCGA Basal-like vs Luminal A comparison. Partial correlation networks derived from other

Basal dominant classes can be found in S4 Appendix. To identify the critical genes across net-

works, a frequency analysis was performed to summarise the degree of connectivity of a given

node in all eight Basal-specific networks. All nodes are ranked according to the magnitude of

total degree (connection) across networks. Fig 6A shows the distribution of total degree of the

Fig 3. Extracted results from Basal-like vs Luminal B comparison show a natural stratification of Basal-like vs Luminal B patients (columns)

according to the NR-associated gene expression signals (rows). See S3.4 and S3.5 Files in S3 Appendix for the complete results. Left: Patients from

TCGA dataset were grouped into 3 classes. Class 1 is considered as a Basal dominant class. Right: Patients from METABRIC dataset were grouped into

7 classes in which class 1 and class 2 are considered as Basal dominant classes. Yellow lines highlight the classes (simplified from the clusters) and the

corresponding expression pattern in the colour plots. The tables show the number of Basal-like and Luminal B patients in each class. The Basal
dominant classes are highlighted in red boxes in the table and colour plots. The colour bar indicates the lowerbound (green), likelihood (black) and

upperbound (red).

https://doi.org/10.1371/journal.pone.0252901.g003
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nodes and the table in Fig 6B shows the top 15 most connected nodes. The complete summary

table containing all 178 nodes and their corresponding degrees across networks is shown in S6

Appendix. FOS and STAT1 are the most connected nodes across the networks and are defined

as hubs. Hub genes occupy central positions in the network, representing a stronger capacity

to modulate adjacent genes than the genes with the lower degrees. Therefore, correlations

around FOS and STAT1 were explored further in this work.

Fig 4. Extracted results from Basal-like vs Her2 comparison show a stratification of Basal-like vs Her2 patients (columns) according to the NR-

associated gene expression signals (rows). See S3.4 and S3.5 Files in S3 Appendix for the complete results. Left: Patients from TCGA dataset were

grouped into 4 classes. Class 1 and class 3 are considered as Basal dominant classes. Right: Patients from METABRIC dataset were grouped into 7

classes. Class 2 is considered as a Basal dominant class. Yellow lines highlight the classes (simplified from the clusters) and the corresponding expression

pattern in the colour plot. The tables show the number of Basal-like and Her2 patients in each class. The Basal dominant classes are highlighted in red

boxes in the table and colour plots. The colour bar indicates the lowerbound (green), likelihood (black) and upperbound (red).

https://doi.org/10.1371/journal.pone.0252901.g004
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Critical 3-node motifs

In order to reveal critical modules from Basal-specific networks, the hub nodes (FOS and

STAT1) were examined further. From the partial correlations hub-associated undirected

3-node motifs were identified that were self-consistent within and between the analyses.

Three-node network motifs can be considered as the smallest functional units, often used as

indicators for revealing functional properties in complex transcription networks.

Fig 7A lists the configurations of 3-node motifs from the signed correlation networks. We

adopted a triad census, proposed by Davis and Leinhardt [37] to classify the 27 3-node motifs

into 10 groups, where each group is given a unique NPU (Negative, Positive, Un-associated)

code [38, 39]. The first number represents the number of Negative correlations (black), the

second number is the number of Positive correlations (red) and the third number represents

the number of Un-associated correlations in a given 3-node motif. NPU code 003 represent

Fig 5. An example of Basal-specific partial correlation networks constructed from Basal dominant class TCGA class

1 from the Basal-like vs Luminal A comparison. Each node represents a gene and the lines between the nodes represent

a correlation. Red lines represent positive correlations and black lines represent negative correlations. The numbers next

to the lines represent the strength of the partial correlations. Node FOS, STAT1 are the most connected nodes across the

Basal-specific networks, highlighted in yellow.

https://doi.org/10.1371/journal.pone.0252901.g005
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three un-associated nodes seemingly independent. In this work, the correlations in the motifs

represent paired associations between three nodes that are stronger than the 1.0% threshold to

justify being included as edges. The 3-node motifs can have isomorphs for example NPU code

111 has six variants. NPU codes 021, 201 and 111 contain 3 nodes and 2 edges, representing 12

Fig 6. Node degree summary. A: The histogram shows the distribution of total degree of the nodes. FOS and STAT1 are the most

connected nodes across networks with total degree of 28 and 26, respectively. They are defined as hubs and co-expression around the

hubs was explored. B: The 15 most connected genes listed by the total number of connections in all Basal-specific networks.

https://doi.org/10.1371/journal.pone.0252901.g006

Fig 7. Classification of 3-node motifs adopted from the triad census proposed by Davis and Leinhardt [37]. Nodes are labelled A, B, C clockwise to

represent non-redundant NRs. Edges are illustrated as positive correlations (stronger than +1.0%) in red or as negative correlations (stronger than

-1.0%) in black. (A) The 27 NPU configurations of non-redundant nodes. (B) The 12 configurations of the linear motifs based on the position of the

hub (labelled A and in yellow). Top row: node A is connected to both B and C. Middle row: node A is connected to C via B. Bottom row: node A is

connected to B via C. (C) The 8 configurations of the non-redundant complete 3-node network motifs. These motifs are divided into two groups based

on the position of the hub (labelled A and in yellow). Top row: Node A and associated nodes B and C and are considered to have coherent behaviour.

Bottom row: Node A and associated nodes B and C and are considered to have incoherent behaviour.

https://doi.org/10.1371/journal.pone.0252901.g007
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linear topologies (Fig 7B). NPU codes 120, 210, 030 and 300 all contain 3 nodes and 3 edges,

representing 8 complete topologies (Fig 7C).

The hub-associated local networks are defined by 3-node motifs around the hubs, including

two levels of edges from the hub (see S5 Appendix). Table 2 summarises the occurrence of all

the linear (021, 201, 111) and complete (120, 210, 030, 300) motifs centred around FOS and

STAT1 in each of the Basal-specific networks. In most networks, type 021 is the most common

type of 3-node motif followed by type 111 and then type 030. Three 3-node motifs JUN-

FOS-NR4A2, PML-STAT1-GCH1 and STAT1-LCK-NR1H3 were found to be enriched in the

Basal-specific networks from both the TCGA and METABRIC datasets (Fig 8, Table 3).

Table 2. Occurrence of the 7 types of NPU motifs centred around FOS and STAT1 from Basal-specific networks. Numbers in the table indicate the frequency of each

NPU motif occurring in the corresponding hub-associated local networks.

FOS 021 201 111 120 210 030 300

Basal-like vs Luminal A TCGA Class1 8 0 0 0 0 2 0

METABRIC Class 1 8 0 0 0 0 2 0

Basal-like vs Luminal B TCGA Class1 7 0 1 0 0 0 0

METABRIC Class 1 4 0 2 0 0 0 0

METABRIC Class 2 8 0 6 0 0 1 0

Basal-like vs Her2 TCGA Class1 14 0 2 0 0 0 0

TCGA Class3 0 0 0 0 0 0 0

METABRIC Class 2 9 0 1 0 0 2 0

STAT1 021 201 111 120 210 030 300

Basal-like vs Luminal A TCGA Class1 9 0 0 0 0 0 0

METABRIC Class 1 8 0 1 0 0 1 0

Basal-like vs Luminal B TCGA Class1 2 0 0 0 0 0 0

METABRIC Class 1 2 0 3 0 0 0 0

METABRIC Class 2 8 0 0 0 0 1 0

Basal-like vs Her2 TCGA Class1 6 0 0 0 0 1 0

TCGA Class3 4 0 0 0 0 1 0

METABRIC Class 2 6 0 1 0 0 0 0

https://doi.org/10.1371/journal.pone.0252901.t002

Fig 8. Three critical 3-node motifs embedded in the cropped Basal-specific networks from the Basal-like vs Luminal A comparison (TCGA and

METABRIC). The 3-node network motifs are highlighted in bold in each network and are observed in the other four Basal-specific networks. See S7

Appendix for details of the networks from the other comparisons. (A) Motif JUN-FOS-NR4A2. (B) Motif PML-STAT1-GCH1. (C) Motif

STAT1-LCK-NR1H3.

https://doi.org/10.1371/journal.pone.0252901.g008
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Both motifs JUN-FOS-NR4A2 and PML-STAT1-GCH1 form a 021 linear topology and

were found in six out of eight networks. The motifs were absent from METABRIC class 1 from

the Basal-like vs Luminal B comparison and from TCGA class 2 from the Basal-like vs Her2

comparison. Importantly, both classes were insubstantial Basal dominant classes from the cor-

responding comparisons.

Motif STAT1-LCK-NR1H3 forms a positive linear topology (type 021) and positive com-

plete topology (type 030) in two and three Basal-specific networks, respectively. It must be

noted that the 030 coherent (positive) complete motif represents a positive coordination

between the three gene expressions, suggesting a tight positive transcriptional regulation. The

same group of nodes in different arrangements are seen with STAT1, LCK and NR1H3 form-

ing a STAT1-NR1H3-LCK 021 motif in the METABRIC class 1 from the Basal-like vs Luminal

B comparison. The inconsistency of motif type observed with STAT1, LCK and NR1H3 could

be caused by our choice of 1% threshold on the partial correlation networks. This could mean

that an edge between STAT1, LCK and NR1H3 that fell out of this range could be excluded

from the network, resulting in a change of the network motif topology (eg from type 030 to

type 021). The 1% thresholding was found empirically, assigned after testing a series of thresh-

old levels.

In summary, however, the correlations revealed here from our networks could be directly

related to mRNA-mRNA interactions or could be an indication of protein-protein interactions

(PPIs).

Discussion

This work used a Dirichlet Process clustering to stratify breast cancer subtypes based on

nuclear receptor expression from two independent breast cancer cohorts. The clustering uses a

probabilistic approach to model the hierarchical organisation of the data according to its latent

or natural structure [36], and therefore is expected to reveal a less biased stratification [35].

The Basal dominant classes identified in this work are distinct groups of patients that represent

the Basal-like breast cancer subtype. To identify unique characteristics for Basal-like at the

transcription system level, partial correlation networks were developed for each of the Basal-
dominant classes. From the Basal-specific networks, hubs and the hub-associated local net-

works were identified. Three 3-node undirected network motifs were found to be consistent

and enriched in the Basal-specific networks derived from the two datasets, representing critical

network modules in Basal-like tumours. The consistency highlights the robustness of the

observed patterns. While conventional drug target identification studies reveal individual can-

didates for targeting, this approach provides a system-level understanding of the hub NR

genes [40] and their co-regulators. This partial correlation approach can help in identifying

Table 3. Occurrence of the critical 3-node motifs enriched in Basal-specific networks. Motif type is described in the bracket.

Basal-like vs Luminal A Basal-like vs Luminal B Basal-like vs Her2

TCGA class

1

METABRIC class

1

TCGA

class1

METABRIC class 1 METABRIC class

2

TCGA class

1

TCGA class 3 METABRIC class

2

JUN-FOS-NR4A2 Present

(linear, 021)

Present

(linear, 021)

Present

(linear, 021)

Absent Present

(linear, 021)

Present

(linear, 021)

Absent Present

(linear, 021)

PML-STAT1-GCH1 Present

(linear, 021)

Present

(linear, 021)

Present

(linear, 021)

Absent Present

(linear, 021)

Present

(linear, 021)

Absent Present

(linear, 021)

STAT1-LCK-NR1H3 Present

(linear, 021)

Present

(complete, 030)

Absent STAT1-NR1H3-LCK

(linear, 021)

Present

(complete, 030)

Absent Present

(complete,

030)

Present

(linear, 021)

https://doi.org/10.1371/journal.pone.0252901.t003
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distinct and critical biological processes associated with the hub NRs and co-regulators impli-

cated in Basal-like breast cancer development.

Heterogeneity in Basal-like breast cancer

Based on the NR expression patterns, our clustering results are consistent with the PAM50

subtype classification [10]. In particular, the majority of Basal-like patients have distinct NR

expression patterns compared to Luminal A and Luminal B patients. Surprisingly, in both the

TCGA and METABRIC datasets used, a fraction of Basal-like patients (43/89 from TCGA, 46/

199 from METABRIC) were shown to share more similarity with Her2 patients than to other

Basal-like patients. This supports the well-recognised hypothesis that Basal-like subtype

defined by the PAM50 sub-typing scheme is based on molecular heterogeneity [41–43]. While

the PAM50 classification developed by Parker et al. has provided a foundation for breast can-

cer categorisation, most attention has been focussed on refining breast cancer subtypes [43–

45]. For example, Sabatier et al. used a 368-gene expression signature to classify Basal-like

breast cancer patients into two prognostic subgroups, with one group having better clinical

outcomes than the other [46]. At the cellular level, Basal-like cell lines are classified into Basal-

A and Basal-B, with Basal-A being more Luminal-like and Basal-B more Basal-like [44, 45].

Sotiriou et al. revealed a similar findings to this work using an unsupervised clustering from

the statistical package BRB-ARRAYTOOLS software, observing the distinctive characteristics

only between Basal-like and Luminal subtypes. Their clustering results revealed two natural

Basal-like subgroups (Basal-1 and Basal-2), in which Basal-1 showed more similar gene expres-

sion signatures to Her2 compared to Basal-2 [47]. The Basal heterogeneity observed from

Sotiriou et al. and in this work might reflect different cell origins, mutations or a combination

of the two. Identifying factors that drive the Basal-like subtype diversity will be the next chal-

lenge. Importantly, while Sotiriou et al. revealed distinct Basal-like subgroups by analysing the

whole genome pattern (7,650 probes), we obtained a similar stratification by using a much

smaller and functionally focused subset of genes (NRs and co-regulators). Moreover, our

approach using pairwise comparisons of Basal-like with other PAM50 breast cancer subtypes

reveals similar or distinct characteristics within and between subtypes, providing insight into

the different heterogeneous breast cancers.

Furthermore, it is important to recognise the presence of ambiguous cases (patients that fall

into either an ambiguous class or group with other subtypes in our analyses), as they represent

tumours with a greater heterogeneity and are often more difficult to treat [48]. A major chal-

lenge in understanding these ambiguous cases is that the sample size of these cases is often too

small to establish sufficient detail. While the motifs identified in this work do not give indica-

tions of survival, or prediction measures for patients’ clinical outcome, a complementary anal-

ysis pursuing the second clustering strategy is discussed in S3.1 File in S3 Appendix. This

second clustering approach uses the transform of the dataset to cluster NR gene expressions

according to the patient profiles, resulting in NR clusters with distinct expression patterns.

Clustering according to a non-parametric multinomial Dirichlet process stratification (using

for example R/BHC) opens up novel avenues of transcriptome research offering opportunities

in a number of fields.

Critical network modules enriched in Basal-like NR expression correlation

networks

In the eight correlation networks derived from the Basal dominant classes, FOS and STAT1 are

the two most connected nodes. They are topologically central in the networks with maximal

number of informative connections, representing important positions in the networks. It is
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evidenced that both FOS and STAT1 are significantly involved in various type of cancers and

are well-known oncoregulators (FOS reviewed in [49], and STAT1 reviewed in [50]). To fur-

ther evaluate these two hubs, we identified 3-node network motifs around FOS and STAT1.

Three 3-node motifs (JUN-FOS-NR4A2, PML-STAT1-GCH1 and STAT1-LCK-NR1H3) were

found to be enriched in Basal-specific networks across the two patient cohort databases, repre-

senting the core modules in the networks.

The network motif JUN-FOS-NR4A2 was found in most Basal-specific networks apart

from the METABRIC class1 from Basal-like vs Luminal A comparison (Fig 2, Right) and

Her2-like Basal dominant class from TCGA (Basal-like vs Her2 comparison, class3, Fig 4,

Left). This is a linear motif with FOS in the middle. This suggests that FOS acts as a mediator

and is critical for the JUN and NR4A2 association. Sotiriou et al. observed a similar breast can-

cer stratification to this work and reported that Basal-2 (the Basal-like Basal group) showed

higher expression of FOS compared to Basal-1 (the Her2-like Basal) and other breast cancer

subtypes [47]. FOS is a proto-oncogene and has been identified as a survival predictor [51] and

a driver for breast cancer metastasis formation [52]. At the genetic level, gene FOS, JUN and

NR4A2 are all classified as immediate early genes (IEGs) [53]. IEGs are activated rapidly in

response to external stimuli, and are found to be over expressed in many cancers, including

breast cancer [54]. IEGs over expression is thought to be caused by unchecked, the constitu-

tively active MAPK signalling pathway in cancers [55]. At the protein level, gene FOS codes

for functional protein c-FOS that dimerises with c-JUN proteins to form transcription factor

complex AP-1 promoting breast cancer growth [56]. The dimerisation of JUN and FOS could

explain the strong correlation between JUN and FOS revealed from the co-expression net-

works. Gene NR4A2 codes for NURR1 (nuclear receptor related 1 protein), a steroid thyroid

hormone retinoid receptor. In breast cancer, it has been suggested that NR4A2 has a dichoto-

mous role [57]. Although, currently no literature has provided a clear explanation for the

FOS-NR4A2 correlation. Individually, FOS and NR4A2 have been identified as potential drug

targets and biomarkers for breast cancer [57–59].

In this work, two network motifs were associated with STAT1, the other hub from the

Basal-specific networks. Both STAT1 motifs are made up with genes that are involved in

immune responses or in associated regulatory events. Specifically, in the PML-STAT1-GCH1

motif, all three genes have been shown to have an important role in the IFNγ-related defence

response [60]. This result is in agreement with a recent study done by Thorsson et al. where

they showed 60.5% Basal-like breast cancer displayed an IFNγ immune response signature,

whereas only 22.8% of Luminal A, 46.6% of Luminal B, 49.3% of Her2 and 33.3% of normal-

like patients displayed this signature [61]. IFNγ is an interferon produced by T helper cells

(specifically, Th1 cells), cytotoxic T cells and macrophages in response to cytokine and antigen

stimulation. Results from Thorsson et al. suggested that the tumour microenvironment of

Basal-like breast cancer may be composed of a higher proportion of immune cells, cytokines

and stroma than other breast cancer subtypes. This could explain the strong associations

among the immune-related genes PML, STAT1 and GCH1 in Basal-like samples revealed in

this study. Previous studies have also observed PML-STAT1 and STAT1-GCH1 associations,

independently. For example, it has also been evidenced by Hsu et al. in preclinical models that

PML can positively regulate STAT1/2 isgylation and transcriptional activity [62]. Moreover,

previous studies have also demonstrated that the transcription of the GCH1 gene is mediated

by the JAK2/STAT1 pathway [63] and positively regulated by STAT1 [64].

Expression of STAT1 has also been shown to correlate with LCK and NR1H3. While the

STAT1-LCK and STAT1-NR1H3 correlations have not been reported by previous studies, it is

possible that STAT1-LCK and STAT1-NR1H3 correlations represent immune-related cellular

communications and cross-talks between signalling pathways. Specifically, mRNA expression
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of LCK codes for lymphocyte-specific protein tyrosine kinase which is a key kinase in T cells.

Activated T cells produce interferons, including type I interferons (IFN-a, IFN-b). Type I

interferons can bind to receptor proteins and activate JAK/STAT signalling pathway, regulat-

ing a series of downstream proteins, including STAT1 [65]. Moreover, while NH1H3 (LXRα)

is not generally considered to be involved in immune responses or associated pathways, results

from Pascual-Garcı́a et al. have suggested that there is a cross-talk between IFNγ/STAT1 and

LXRs (LXRα and LXRβ) [66]. However, whether the STAT1-NR1H3 correlation revealed

from this work represents a cross-talk between STAT1 and LXRs in Basal-like tumour needs

further evaluation. Nevertheless, the two STAT1-associated motifs revealed from this study

suggested that the tumour microenvironment of Basal-like breast cancer composed of immune

cells and understanding the roles of immune system in Basal-like pathogenesis will be the next

challenge.

As a concluding note, NR transcriptional networks reflect only a fraction of the system-

wide interactome [26, 67]. This work not only revealed critical NR genes (hubs) implicated in

the Basal-like subtype, but also examined the properties of these genes in the context of partial

correlation networks. Most members of the three 3-node motifs identified from this work

have been related to breast cancer oncogenesis, highlighting the relevance of these motifs in

relation to Basal-like breast cancer. Compared to individual genes or biomarkers, hub-

enriched biological modules as small network motifs could represent more robust prognostic

signatures and provide a more meaningful context for further investigation, such as identifying

pathways to target. The Basal-like NR 3-node motifs established here could be considered

using enrichment analysis. This could further identify upstream regulators critical to these

motifs [68]. We demonstrate enumeration of the nuclear receptor 3-node motifs of interest in

Basal-like breast cancer and it is important to determine whether the same core modules can

be recapitulated from other breast cancer patient cohort datasets. Finally, the utility of our

method is not only restricted to Basal-like breast cancer but, of course, can be applied to other

more complex cancers.

Supporting information

S1 Appendix. Definitions. This file contains detailed explanations of the specific terms used

throughout this article.

(ZIP)

S2 Appendix. NR-associated genes used in TCGA and METABRIC. 171 NR-associated

genes were considered in the TCGA analyses. 169 NR-associated genes were considered in the

METABRIC analyses.

(ZIP)

S3 Appendix. Complete BHC results. This contains six sub-folders, including: S3.1 explains

the two-dimensional clustering analysis that can be performed using the patient-expression

data. S3.2 describes the process of consolidating clusters to classes. This was performed to

reduce the number of clusters and to increase the sample size within a class. S3.3 contains all

the plots produced from this work, including three from TCGA and three from METABRIC.

The blue solid lines in the dendrograms show preferred merges by BHC (clusters). Red dashed

line show merges further up the cluster hierarchy. The numbers on the branches are the log

odds for merging. S3.4 contains the clustering results from the three TCGA analyses and an

.pdf image illustrating a Venn diagram with the overlaps between the different TCGA Basal
dominant classes. Each pairwise analysis is organised into its analysis folder, containing a Data
folder (for the input files) and a Working_directory folder (for the output files). The Data folder
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contains a relevant median-centred patient expression data (.csv file). The Working_directory
folder contains two text files (.txt) describing the members of patients or genes in the resulting

clusters, two resulting plots (.pdf files) and R data (.RDa files) produced while running the

code (provided in S3.6). Each analysis folder also contains a patients_hc.pdf file that illustrates

the hierarchical structure for the patient clusters. This was generated separately for visualisa-

tion purposes using the plot() function and hc_b.Rda is in the Working_directory as the data.

S3.5 contains clustering results from the three METABRIC analyses. The folder organisations

and files contained in this supplementary are equivalent to S3.4 above. S3.6 contains the Clus-

tering_code_using_BHC.R with written descriptions and remarks in code, provided for repro-

ducible research.

(ZIP)

S4 Appendix. Basal-specific networks derived from Basal dominant classes from TCGA

and METABRIC.

(PDF)

S5 Appendix. Hub-associated local networks extracted from Basal-specific networks. This

contains hub-associated local networks centred around FOS and STAT1 from the eight Basal-

specific correlation networks. The local networks are defined by 3-node motifs, containing

two levels of edges from the hubs. Hub genes are coloured in yellow and genes associated with

hubs are coloured in blue. Positive edges (positive correlations) are in red and negative edges

(negative correlations) are in black.

(PDF)

S6 Appendix. Summary of node degree from Basal-specific networks. This summarises the

number of degrees of each node across the eight Basal-specific networks.

(XLSX)

S7 Appendix. Highlight of the three 3-node motifs embedded in Basal-specific networks.

The 3-node network motifs that are enriched in Basal-like are highlighted in the Basal-specific

networks. Hub genes are coloured in yellow, non-hub genes are coloured in blue. Correlation

between nodes are shown in red lines. Numbers on the lines indicate the strength of the partial

correlations.

(PDF)
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