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One-sentence summary: The signaling proteins and pathways involved in lymphatic endothelial 
cell migration are identified.  
 
Editor’s summary: 
Moving lymphatic endothelial cells about 
Lymphatic vessels return fluid and immune cells from peripheral tissues back to the circulation. 
The growth of new lymphatic vessels and their remodeling are critical for clearing infection and 
for metastasis of many cancer subtypes. Williams et al. compared the results of their functional 
siRNA screens with previously published mRNA datasets to identify genes that regulated 
lymphatic endothelial cell migration, a process critical for lymphatic vessel growth and 
remodeling, and genes that functioned in both lymphatic and blood endothelial cell migration. 
One of the top candidates to emerge from these analyses, the glycan-binding protein Galectin-1, 
not only promoted lymphatic vessel growth, but was also important for maintaining lymphatic 
endothelial cell identity. Further analyses of the authors’ results may reveal lymphatic vessel–
associated proteins that could be targeted to prevent edema, improve infection outcomes, or limit 
metastasis. 
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Abstract 

Lymphatic vessels constitute a specialized vasculature that is involved in development, 

cancer, obesity and immune regulation. The migration of lymphatic endothelial cells 

(LECs) is critical for vessel growth (lymphangiogenesis) and vessel remodelling, 

processes that modify the lymphatic network in response to developmental or 

pathological demands. Using the publicly accessible results of our genome-wide siRNA 

screen, we characterized the migratome of primary human LECs and identified individual 

genes and signaling pathways that regulate LEC migration. We compared our dataset 

with mRNA differential expression data from endothelial and stromal cells derived from 

two in vivo models of lymphatic vessel remodeling, viral infection and contact 

hypersensitivity-induced inflammation, which identified genes selectively involved in 

regulating LEC migration and remodeling.  We also characterized the top candidates in 

the LEC migratome in primary blood vascular endothelial cells to identify genes with 

functions common to lymphatic and blood vascular endothelium. Based on these 
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analyses, we showed that LGALS1, which encodes the glycan-binding protein Galectin-1, 

promoted lymphatic vascular growth in vitro and in vivo and contributed to maintenance 

of the lymphatic endothelial phenotype. Our results provide insight into the signaling 

networks that control lymphangiogenesis and lymphatic remodeling and potentially 

identify therapeutic targets and biomarkers in disease specific to lymphatic or blood 

vessels. 

 

Introduction 

The lymphatic vasculature is a unidirectional system of vessels with essential roles in 

normal and pathological physiology. The endothelial cells (ECs) lining lymphatic vessels 

regulate many of these functions, including fluid resorption, secretion of proteins into 

lymph fluid (1), and interaction with immune cells (2). Sprouting growth 

(lymphangiogenesis) and remodelling of lymphatic vessels are essential during both 

embryonic development of the differentiated lymphatic vasculature and in adult 

pathological contexts such as wound healing, inflammation, immune responses and 

cancer (3, 4). During immune responses, growth and remodelling of lymphatics at the 

primary site and its draining lymph node (LN) enhance trafficking of dendritic cells, with 

implications for generating effective antigen-specific immune responses (2, 3). In cancer, 

however, increased lymphatic vessel density in tumours is correlated with disease 

progression and decreased survival (4), indicating that expansion of the lymphatic 

vasculature enables metastatic spread of tumour cells to the draining LNs and potentially 

to distant organs (1, 5, 6). The sprouting growth, remodelling, and early developmental 

separation and differentiation of lymphatics, all require coordinated migration of 
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lymphatic endothelial cells (LECs) (7, 8). 

Cell migration requires the complex coordination of multiple individual processes within 

and between cells (9, 10), including extension and depolymerisation of actin- and tubulin-

comprised cytoskeletal structures, formation and vesicular recycling of adhesion 

complexes, and regulatory signal transduction in response to guiding stimuli. To better 

understand the complex signalling networks regulating cell migration, and to discover 

previously unidentified components, several groups have conducted RNA interference 

screens in various cell types using the scratch wound assay of collective cell migration 

(11-15). Whilst these studies have successfully identified genes and signalling networks 

that regulate cell migration in vitro, the findings are not often validated in diverse 

experimental systems, and the relevance of these findings to human disease is rarely 

directly explored. Although various signalling pathways have been identified as key 

drivers of LEC migration through various experimental systems, including the vascular 

endothelial growth factor (VEGF) pathways involving VEGFC, VEGFD, VEGFR3 and 

Neuropilin 2 (NRP2) (8, 16-19), the broader lymphatic endothelial “migratome” remains 

unmapped and represents an untapped pool of potential therapeutic targets for controlling 

lymphangiogenesis. 

Here we describe an unbiased siRNA functional screening approach aimed at 

understanding the LEC migratome. As well as successfully identifying genes that have 

already been linked to cell migration or vascular development, the screen also identified 

genes not previously associated with cell migration or lymphatic biology. Knockdown of 

the validated gene set in blood vascular endothelial cells (BECs) identified subsets of 

genes that had either common or distinct roles in each EC type. Comparison with 
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microarray data derived from two in vivo models of lymphatic growth and remodelling 

confirmed the biological relevance of several of these genes and the screen globally. 

Futhermore a particular candidate, LGALS1 (encoding Galectin-1; Gal-1), played a role in 

regulating lymphangiogenesis and LEC phenotype. This study provides insight into the 

signalling networks that control the migration of both lymphatic and blood vascular ECs, 

and has identified a pool of potential new therapeutic targets.  

 

Results 

A genome-wide siRNA screen identifies high confidence genes required for LEC 

migration. 

To identify genes and signalling pathways that regulate migration of LECs we have 

conducted a genome-wide siRNA functional screen involving 18,120 SMARTpools 

targeting protein-coding genes using primary human dermal microvascular neonatal 

lymphatic endothelial cells (HDLECs) (fig. S1, A to C; Data File S1). We have published 

a technical description of this screen and deposited the datasets in publicly accessible 

databases (20). Using high-throughput cell culture robotics, microscopy and image 

analysis, this screen measures the migration of siRNA-transfected HDLECs into a scratch 

wound created in the cell monolayer (15) (Fig. 1A; fig. S1, D to G; S2, A to F; S3). 

Genes that impair cell proliferation and viability rather than migration are identified using 

nuclear counting, and 438 genes classified as “Low Cell Count” are thus excluded from 

further analysis in the migration screens (Fig. 1B). This list included FLT4, encoding 

VEGFR3, which is central for LEC growth and survival, as well as several genes 

encoding other growth factor receptors and key downstream signalling kinases such as 



 

 - 7 -  

PI3K.  

Quantification of the wound area covered by migrating cells after 24 hours (fig. S2, E and 

F) relative to mock-transfected controls provides an index of cell migration capacity, 

which is then normalized to generate z scores (21). A threshold of |robust z score| >2 (a 

robust z score >2 or <−2, representing the top and bottom 2.3% of scores) is used to 

identify biologically and statistically relevant candidate genes for further rounds of 

screening  (20). Consequently a total of 650 genes have been classified with regard to 

siRNA-mediated migration outcome as “Impaired” (robust z score <-2), and 385 as 

“Accelerated” (robust z score >2; Fig. 1B).  

To technically validate the results of the primary screen 500 candidate genes have been 

analysed in a secondary screen in which the four component siRNAs of the SMARTpools 

are assayed individually (20). The list comprises 401 “Impaired” and 99 “Accelerated” 

candidates, curated according to highest robust z scores, greater expression in lymphatic 

than in blood endothelium, and protein-protein interactions with the products of other 

candidate genes. The greater representation of “Impaired” compared to “Accelerated” 

candidates reflected the higher representation of the “Impaired” phenotype in the primary 

screen, and our focus on identifying positive regulators of HDLEC migration 

(knockdown of which would generate an “Impaired” phenotype).  The secondary screen 

has validated 154 genes with medium to high confidence (with 2-4 duplexes reproducing 

the primary screen phenotype) (Data File S2). All of these candidates impair cell 

migration when knocked down. For a further 5 “Accelerated” and 117 “Impaired” 

candidates from the primary screen, the original phenotype was reproduced 

unambiguously by only 1 of the 4 individual siRNAs (Data File S2); these genes were 
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considered to be validated with low confidence. The higher rate of validation for 

“Impaired” than “Accelerated” phenotypes highlighted the selectivity of our assay system 

for identifying positive regulators of HDLEC migration, but may also indicate that 

relatively more genes expressed in HDLECs function to promote than to restrict 

migration.  

To determine the biological relevance of the genes identified in the first two stages of the 

siRNA screen, we subsequently assessed the data at multiple levels to identify important 

genes and signalling networks (Fig. 1C). At the most stringent level, the 154 genes 

validated in the secondary screen – the “highly-validated” migration candidates – were 

carried forward into a tertiary screen to assess their effects on cell morphology and in 

blood vascular ECs, as well as more detailed functional cell biological analyses. The 

1035 genes with |robust z score| >2 in the primary screen - the “migration candidates” – 

provided a broader analysis of signalling pathway and gene ontology (GO) enrichment. 

Finally, the “expanded migration candidate” gene set, including all genes from the 

primary screen with |robust z score| ≥1.6449 (representing the top 5% and bottom 5% of 

robust z scores), was used for comparison to independent in vivo-derived datasets.  

 

Candidate migration genes in lymphatic endothelium are associated with EC biology, 

migration and key signalling networks. 

Signalling pathway enrichment analysis of the “migration candidates” (|robust z score| 

>2) showed that these were significantly over-represented in pathways related to 

cytoskeleton remodelling and development (Data File S3). Analysis of gene ontology 

(GO) processes also revealed over-representation of genes assigned to terms such as 
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“regulation of endothelial cell migration” and “regulation of positive chemotaxis”, as 

well as terms broadly associated with phosphorylation and signalling (Data File S4). The 

range of impaired migration phenotypes indeed suggested that multiple different cell 

processes had been perturbed (fig. S1G).  

We grouped the “highly-validated” migration candidate genes into functional categories 

based on GO terms and previous studies describing their known or proposed role in the 

cell using the Metacore database (Fig. 2). Mapping to GO processes showed that many of 

these 154 candidates were linked to specifically relevant terms such as “locomotion” 

(~23% of the candidates), “response to wounding” (~23%), “cell migration” (~17%) and 

“vasculature development” (~15%) (Data File S5). Enrichment analysis also revealed 

statistically significant over-representation in pathways linked to cytoskeleton 

remodelling, cell adhesion and VEGF-driven signalling cascades (fig. S4, Data File S6). 

Ten “highly-validated” HDLEC migration genes had been previously associated with 

canonical aspects of cytoskeletal remodelling or migration pathways (AKT3, GNAS, 

IL1B, JUN, LIMK1, PDGFRB, PLCG1, MYL7, CALM2 and CDC42; Data File S6). 

Developmental signalling pathways were also over-represented, including signalling 

cascades downstream of FGF and PDGF receptors and growth hormone and 

erythropoietin (EPO) signalling pathways, which have been previously reported to be 

important for lymphatic vessel growth (22, 23). The receptor tyrosine kinase PDGFRβ 

and the growth factor ANGPT2 have also been defined as regulators of 

lymphangiogenesis (24, 25), thus further emphasizing the ability of the screen to identify 

biologically relevant genes.  

Other signalling pathways over-represented in the “highly-validated” gene set included 
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those connected to directed migration of neuronal sprouts (axon guidance); and the 

immune response, reflecting the interconnectedness of lymphatic remodelling and 

immunity (Data File S6). Components of inositol phosphate and glycerophospholipid 

metabolism pathways were also enriched (Fig. 2 and fig. S4), supporting the importance 

of these molecules in signalling pathways leading to cell migration (26). 

 

Morphology analysis gives insight into function of highly-validated genes in cell 

migration. 

The process of cell migration affects cell morphology due to dynamic remodelling of the 

cytoskeleton and regulation of cell-substrate adhesion (10, 14). To gain further insight 

into the specific subcellular functions of the 154 “highly-validated” migration candidate 

genes, images of the respective siRNA-transfected cells have been analysed in a tertiary 

screen to assess various cellular and cytoskeletal parameters, including area and other 

dimensional measurements (indicative of cell-substrate adhesion and spreading), cell 

shape (reflecting spreading or lateral polarisation), average actin intensity (reflecting 

overall abundance of filamentous actin) and actin texture (variability in intensity, 

reflecting discrete actin structures) (Fig. 3, A and B) (20). Distinct morphological 

changes in siRNA-transfected HDLECs were visibly evident in images of the cell 

monolayers 24 h post-wounding (Fig. 3C, fig. S5A). Hierarchical clustering of the 

normalized morphology parameter datasets has identified six clusters of gene-specific 

siRNA SMARTpools that induce similar morphological phenotypes (Fig. 3, B and D; fig. 

S5A and B; Data File S2).  

Silencing of genes in cluster 1 did not significantly alter HDLEC morphology compared 
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to mock transfected cells, suggesting that proteins such as PIK4A and PIK4B (Fig. 3D; 

Data File S2) regulate HDLEC migration in ways that do not influence morphology. In 

contrast, knockdown of genes such as  IL1B, MICAL2, GPR84 and LGALS1 in cluster 2 

led to cells that were more elongated, and had increased and uniform actin staining (Fig. 

2, B to D; Data File S2). Galectin-1 (encoded by LGALS1) disturbs the integrity of the 

cortical cytoskeleton (involving a decrease in VE-cadherin-mediated cell-cell junctions) 

and promotes stress fibre formation in HUVECs by binding to NRP1 at the cell 

membrane and activating downstream Rho kinase signalling (27). A similar mechanism 

in HDLECs may explain the diffuse actin staining pattern typical of knockdown of genes 

in this cluster. Cluster 2 also included HOXC5, which encodes a transcription factor, 

PLCG1 and BTK (Fig. 3B to D; Fig. S5A, Data File S2). BTK and PLCγ2 regulate 

chemokine-controlled, integrin-mediated migration in B lymphocytes (28, 29), which 

likely involves the ability of BTK to promote actin nucleation and polymerization (30). 

The inhibition of this pathway in our HDLEC screen may thus be responsible for the 

observed migration and morphology phenotypes. Notably, knockdown of genes in cluster 

2 also resulted in significantly more impaired migration compared to knockdown of those 

in cluster 1, which did not alter morphology, thus highlighting the connection between 

cell morphology and migration (fig. S5C). 

Targeting of genes in cluster 6 led to cells that were more elongated, but also larger in 

area than control cells. This phenotype was characteristic of siRNA SMARTpools 

targeting CDC42 and the gene encoding the downstream kinase LIMK1 (Fig. 3, B and D; 

fig. S5A). Similarly, silencing of genes in cluster 3 such as ANGPT2 and EPOR led to 

larger cells with low average actin staining (Fig. 3, B and D; fig. S5A). ANGPT2 
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regulates developmental lymphatic migration and remodelling (25, 31), and triggers 

stress fibre formation at the expense of cell-cell junction integrity in BECs by activating 

integrin-β1 (32). EPOR (EPO receptor) can induce lymphangiogenesis when activated by 

EPO (23) or potentially through transactivation by VEGFA-activated VEGFR2 as is 

shown in blood vascular endothelium (33).  Other genes that clustered with this 

phenotype included carbohydrate sulfotransferases (CHST5, CHST8), cytoskeleton 

interacting proteins (FLCN, MYL7, and TUBA1B), and several uncharacterized genes not 

previously known to regulate cell morphology (C2orf28, C7orf55, C17orf59, C11orf63). 

Knockdown of genes in cluster 5 (which included SETD2 and KANSL1), increased cell 

area but did not affect actin intensity or distribution (Fig. 3B and D; fig. S5A). SETD2 is 

a histone H3 lysine 36 methyltransferase that has been implicated in remodelling of the 

embryonic vasculature (34). KANSL1 is also a component of a histone acetyl transferase 

complex (35), suggesting that these factors may control the expression of suites of genes 

involved in regulating EC size and migration. Lastly, knockdown of genes in cluster 4 

such as TPST2, RTKN and JUN led to elongated cells, with lower intensity actin staining 

but higher texture difference of actin staining, potentially indicating stress fibre formation 

(Fig. 3B and D; fig, S5A). TPST2 encodes a tyrosylprotein sulfotransferase that is 

activated in ECs under shear stress conditions (36), while RTKN regulates actin 

remodelling pathways by inhibiting the GTPase activity of Rho family proteins (37). JUN 

encodes the AP-1 transcription factor subunit c-Jun, which is annotated to multiple 

signaling pathway and processes related to cell migration (Data Files S3 and S6). For 

example, it promotes sheet migration of epithelial cells through inducing transcription of 

pro-migratory factors such as EGF (38). 
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Screening of BEC migration reveals common regulators of EC migration and 

identifies distinct migration machinery in LECs. 

To understand the conservation of functional pathways between different EC types, the 

“highly-validated” migration candidates have been reassessed in a tertiary siRNA screen 

for migration effects in both human microvascular blood endothelial cells (HMBECs) and 

HDLECs (Fig. 4A) (20). To minimise differences due to vessel calibre or anatomical 

location, HMBECs isolated from neonate dermis are used to match the source of the 

HDLECs. HMBECs lacked the LEC molecular markers PROX1, Podoplanin and LYVE1 

but produced more von Willebrand factor (fig. S6A; compare to fig. S1, B and C) (39). 

The migration of primary HMBECs in the scratch wound assay was faster than HDLECs, 

such that the wound was 50% closed after 16 h (fig. S6B).  

The similarity of the siRNA target-specific phenotypes between the two cell types was 

high, despite the difference in wound closure dynamics. Using a cut-off of <65% of 

mock-transfected cell migration, 111 of the 154 siRNA pools have resulted in impaired 

migration in at least one cell type (Fig. 4A). The comparison demonstrated that while a 

substantial portion (61.3%) of the gene candidates derived from the genome-wide 

HDLEC migration screen also affected HMBEC migration, a subset had cell-type 

specific effects (Fig. 4, A and B; Fig. S7, A to C). Analysis of the HMBEC migration 

screen results allowed grouping of candidate genes into 68 “Common EC” migration 

genes important for the migration of both EC types, 23 “BEC dominant” genes with a 

greater effect on the migration of HMBECs, and 20 “LEC dominant” genes with a greater 

effect on HDLECs (Fig. 4, A and C, Data File S2). 
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The morphological attributes of the siRNA-transfected HMBECs largely resembled those 

of the HDLECs (Fig. 4D, compare to Fig. 3B). This result not only confirmed the 

robustness of the morphological changes observed, but further emphasized the functional 

importance of these genes for both cell types. The clustering of genes with similar 

morphological phenotypes suggested possible inter-connected signalling pathways 

controlling specific aspects of cytoskeletal remodelling and cell migration. However, 

there were also some differences between the morphologies caused by gene silencing in 

HMBECs and HDLECs (Fig. 4, C to E; fig. S7, A to C).  For example, silencing of SGK3 

in HMBECs caused an increase in cell size and elongation that was not seen in HDLECs 

(fig. S7, A and C) and inhibited migration more strongly than in HDLECs (Fig. 4C). 

Silencing of CDC42 in HMBECs did not result in a decreased shape factor (namely 

elongation; fig. S7, B to C). This finding supported the increased impairment of 

migration by CDC42 silencing in HDLECs compared to HMBECs (Fig. 4, B and C; Data 

File S2), emphasizing the differential function of this protein in the different cell types. 

Assessment of lymphatic (CEACAM-1, identified by microarray analysis as HDLEC 

enriched) and blood (CD146) EC marker abundance after depletion of CDC42 or LIMK1 

confirms the linkage of these differential effects to each distinct cell lineage (fig. S7D). 

LPL siRNA also led to impaired migration and elongated morphology (reduced shape 

factor) in HDLECs but not in HMBECs (Fig. 4, C to E). Lipoprotein lipase (LPL) is 

important for the hydrolysis of lipoproteins (for example low-density lipoprotein) to fatty 

acids, and their uptake into cells (40). This cell-type specific effect may reflect the 

important role that the lymphatics play in absorption of fatty acids from the gut, and a 

role for LPL in LEC migration could relate to the association between lymphatic function 
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and fat deposition (1). Knockdown of LPL inhibits migration of glioma cells (41), an 

effect that may relate to its interaction with heparan sulfate proteoglycans that are closely 

linked with components of the actin cytoskeleton (42). Furthermore exogenous LPL 

regulates inflammatory responses in aortic ECs, suppressing TNFα-induced gene 

expression by activation of IκBα whilst enhancing IFNγ-induced gene expression (43).  

 

Identification of genes involved in LEC migration enables construction of a migration 

signalling network. 

To better understand the molecular mechanisms required for EC migration, we utilized a 

protein–protein interaction database (Metacore) to map the signalling pathways of the 

genes identified in our screen. Construction of a signalling network using both “Common 

EC” migration genes and “LEC dominant” genes demonstrated that many of these 

proteins were closely connected (Fig. 5). Indeed, some of these molecules were key 

nodes of the EC migratome network (such as PLCG1, JUN, and PDGFRB). The network 

also revealed connections with various proteins associated with predominant migration 

phenotypes in HDLECs. These included CDC42, PPP1CA and BTK, which were 

identified as LEC nodal signalling points, suggesting that they may play central roles in 

coordinating migration signalling in LECs. The network also provided insight into anti-

migratory signalling pathways. While much of the positive signalling (Fig. 5, green lines) 

converged on PLCG1, CDC42 and PPP1CA, inhibitory signals (Fig. 5, red lines) passed 

through GSK3B. Indeed, this is consistent with the role of GSK3B as an inhibitor of key 

cellular functions such as protein translation and motility (44). 
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Candidate genes identified by siRNA screening overlap significantly with genes 

differentially expressed during lymphatic remodelling in vivo. 

We next sought to validate that our functional in vitro siRNA screen had identified genes 

that were also relevant in pathological lymphangiogenesis in vivo. To this end, we 

compared the primary siRNA screen results to a list of genes that are differentially 

expressed in remodelling lymphatic endothelium from an in vivo model of viral infection 

(45). Sprouting growth and remodelling of both lymphatic and blood vascular networks 

in LNs downstream of an infection site is integral to supporting effective immune 

responses (3, 45). LECs, BECs and fibroblastic reticular cells (FRCs) are freshly isolated 

from LNs six days after cutaneous infection with Herpes Simplex Virus (HSV)-1 and 

their expression profiles as determined by microarray analysis compared to those of 

equivalent cell populations from uninfected (day 0) controls (45). We further applied a 

fold-change threshold (day 6 compared to day 0) of ≥ |1.8| to enrich for genes whose 

mRNA abundance had changed to a degree that would suggest a functional biological 

consequence. The “expanded migration candidate” list from the siRNA screen (|robust z 

score|  ≥ 1.6449) was selected for comparison to the microarray results. siRNA targets 

with a robust z score of 1.6449 in the primary screen had migration scores approximating 

145% of the median (“Accelerated”), whilst a robust z score of -1.6449 corresponded to 

migration scores of ~55% of the median (“Impaired”). Genes classified as “Low Cell 

Count” were excluded as previously to focus the analysis on genes involved in migration. 

This expanded list was generated to potentially enable retrieval of candidates for which 

the conditions of the in vitro assay did not capture maximal functional impairment, and to 

accommodate differences in species, timeframe, stimulation factor and output 
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measurement between the two experimental systems.   

Five days after infection, all cell subpopulations in the LN had expanded, and lymphatic 

growth and remodelling were evident (Fig. 6A) (45). The list of genes differentially-

expressed in LN LECs at day 6 (both increased and decreased in day 6 compared to day 0 

LNs) was tested for size and significance of overlap with the “expanded migration 

candidate” list from our migration screen using simulated null distributions (Fig. 6B) and 

hypergeometric distributions.  This analysis revealed a statistically significant overlap of 

133 genes common to the siRNA screen and LN microarray results (Fig. 6, B and C; D, 

row labelled “LEC total”; Data File S7). These included several genes validated in the 

secondary and tertiary siRNA screens, including LGALS1, COPB2, and ANGPT2. The 

statistical significance of this overlap was supported by the more conservative estimates 

given by hypergeometric analysis (Fig. 6D). A similar analysis of genes commonly 

differentially regulated in both LN LECs and BECs showed a significant overlap of 20 

genes (Fig. 6D, “EC-common total”; Data File S7). 

To better determine the ability of the siRNA screen to identify genes selectively involved 

in LEC migration, the microarray data was filtered to create lists of genes selectively 

differentially-expressed in LECs, BECs and FRCs. Genes were designated as “selective” 

for a given cell type or types (with reference to the day 6 timepoint and the three cell 

types analysed) if they were significantly differentially-expressed over the 1.8-fold 

threshold only in that cell type or types whilst being unchanged or differentially-

expressed in the opposite direction in the other cell types. Lists of EC-selective 

differentially-expressed genes (those differentially-expressed in both BECs and LECs but 

not FRCs); and genes differentially expressed in all cell types (Fig. 6D) were derived 
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according to the same criteria. The LEC-selective differentially-expressed gene list 

overlapped significantly with the “expanded migration candidate” list, revealing 90 genes 

that were identified above the respective thresholds in both experiments (Fig. 6, D and E; 

Data File S7). This included “highly-validated” genes such as EPOR, SMURF2 and 

USP25, mapped within the LEC migration signalling network (Fig. 5), and MICAL2, a 

less extensively characterised gene. Comparison of the siRNA screen results to EC-

selective differentially-expressed genes also revealed a statistically significant overlap 

(Fig. 6D and E). In contrast, overlap with BEC-selective gene lists and genes commonly 

regulated in all cell types was not statistically significant (Fig. 6D).  

As additional validation, we used the same method to compare the expanded migration 

candidate list to an independent publicly-available microarray dataset derived from 

mouse ear dermal LECs in a model of contact hypersensitivity (CHS; 46). In this model, 

mice are first sensitised to oxazolone, then a CHS (delayed-type hypersensitivity) 

reaction is induced by topical application of oxazolone to the ears.  This treatment results 

in expansion and remodelling of the lymphatic network at the site of the second 

oxazolone challenge, beginning within 24 hours (47). The list of genes that were 

differentially-expressed in CHS-activated compared to unstimulated LECs 24 hours post-

challenge also overlapped significantly with our expanded migration candidate list (Fig 

6F; Data File S8). Il1b mRNA was highly increased in expression in CHS-derived LECs, 

and its human ortholog was an EC common migration candidate (Fig. 5; Data File S8). 

IL1B is an inflammatory cytokine which induces cell-surface presentation of leukocyte 

adhesion molecules and impaired barrier function in LECs (48, 49). Furthermore IL1B 

may indirectly promote lymphangiogenesis by increasing autocrine or paracrine 
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production of VEGFC or VEGFA, and VEGFR2 in endothelium (50, 51). Overall, these 

analyses further validate the biological relevance of the siRNA screen by illustrating its 

selective ability to identify genes with enriched importance in LECs, and confirming that 

these genes are implicated by other methods in pathological lymphatic remodelling in 

vivo, both in dermal settings and in other relevant tissues.   

 

In vitro and in vivo assays of lymphangiogenesis and lymphatic remodelling identify 

Galectin-1 as a regulator of LEC function and phenotype  

We next sought to confirm the role of our “highly-validated” migration candidates in 

LEC migration, remodelling and lymphangiogenesis. LGALS1 and MICAL2 (microtubule 

associated monoxygenase, calponin and LIM domain containing 2) were also identified 

in the LN remodelling microarray analysis, and exhibited the highest fold-change in 

expression in LECs (with the exception of the well-characterised ANGPT2). MICAL2 

served as a representative candidate that was selectively differentially-expressed in LECs 

in the LN microarray analysis, whereas LGALS1 was the only “highly-validated” gene 

differentially-expressed in both LN EC types (Data File S7).   

Galectins are a family of widely-distributed, secreted glycan-binding proteins with roles 

in regulating cell-cell adhesion and signalling in diverse biological processes, including 

angiogenesis and immune cell trafficking (52). Western blot analysis showed abundant 

Gal-1 protein in HDLECs, comparable to its abundance in HMBECs (Fig. 7A). Silencing 

of LGALS1 efficiently reduced Gal-1 protein in HDLECs (Fig. 7, B and C), and 

significantly impaired HDLEC migration in the scratch wound assay (fig. S8A), 

recapitulating the migration phenotype observed in the screens. Further, silencing of 
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LGALS1 in a collagen overlay tube formation assay demonstrated that Gal-1 was also 

required for proper HDLEC tubule remodelling (Fig. 7D, fig. S8B). LGALS1 knockdown 

led to significantly reduced tubule area and thickness, and qualitative failure to establish a 

network. In an alternative tubule formation assay, Gal-1 knockdown also reduced average 

tubule length, size, total junctions and total tubule length of HDLECs cocultured with 

fibroblasts (Fig. 7 E to G and fig. S8C). Similarly knockdown of MICAL2, but not the 

related MICAL1 (fig. S9C), impaired LEC scratch wound healing (fig. S9, A, B and F) 

and tubule formation (fig. S9 D to E and G to H), without affecting monolayer integrity 

or pan-endothelial identity as determined by VE-cadherin at intercellular junctions (fig. 

S9F). These findings are consistent with the roles of MICAL family proteins in migration 

and morphogenesis through depolymerisation of actin (53). Together, these results 

provide further evidence that both MICAL2 and Gal-1 promote LEC migration and 

vessel assembly. 

An important aim of this study was to identify potential targets for therapeutic control of 

pathological lymphangiogenesis and lymphatic remodelling. Gal-1 mediates resistance to 

VEGFA-targeted anti-angiogenic cancer therapies, related to its promotion of BEC 

migration by potentiating VEGFA signaling through NRP1 and VEGFR2 (54, 55). It also 

regulates cell-cell and cell-matrix interactions more broadly, and hence is furthermore 

implicated in cancer metastasis and immune cell trafficking (52, 56).  Indeed, targeting of 

Gal-1 using inhibitory antibodies or the Gal-1-directed inhibitory peptide Anginex can 

reduce VEGFA-dependent angiogenesis and tumour growth, as well as altering 

recruitment of certain leukocyte subsets (55, 57, 58). Thus, targeting Gal-1 in cancer 

could potentially restrict multiple aspects of tumour progression, including 
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lymphangiogenesis which is associated with metastasis, and angiogenesis that promotes 

tumour growth. As further evidence for its role in pathological lymphangiogenesis, 

Lgals1 mRNA is increased up to 5-fold (unlike Mical2 mRNA, which was decreased) in 

LECs from inflamed compared to normal ears in the independent CHS microarray dataset 

(unadjusted p value = 0.0123) (46).  

To validate whether Gal-1 also regulated lymphatic vessel remodelling in vivo, we 

injected mouse ear skin with Gal-1 protein. Ears injected with Gal-1 exhibited both a 

significantly increased lymphatic vessel density and a 30% increase in vessel width 

compared to control (Fig. 7H). This increase was abrogated by the addition of the Gal-1-

inhibitory peptide Anginex (Fig. 7H). In confirmation, an in vitro assay of 

lymphangiogenic sprouting from explants of thoracic duct (the major lymphatic trunk) 

revealed enhancement of lymphangiogenic sprouting by exogenous Gal-1 protein and 

inhibition of VEGFA-induced lymphangiogenesis by Anginex (fig. S8, D and E). Gal-1 

also promoted an increase in CD146-positive blood vessel density in our mouse ear skin 

model (fig. S10A; Fig. 7H). In an aortic ring explant assay, Anginex inhibited VEGFA-

induced angiogenic (BEC) sprouting, although promotion of sprouting by Gal-1 did not 

reach statistical significance (fig. S10, B and C). Overall, our data suggest that targeting 

Gal-1 may also be effective at inhibiting tumour-associated lymphangiogenesis or 

lymphatic remodelling. 

In human LN tissue, immunohistochemistry showed that Gal-1 was localized to the 

endothelium of lymphatic vessels as defined by co-staining with Podoplanin (Fig. 7I). 

This distribution pattern also validated the detection of Lgals1 mRNA by microarray in 

the Podoplanin+CD31+ LECs isolated from mouse LNs, as well as in purified LN BECs 
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and FRCs (Data File S7). Furthermore, bioinformatic data-mining of the Oncomine™ 

database revealed a significant increase in LGALS1 mRNA expression in tumour stroma 

from patients with invasive breast cancer (Fig. 7J). Collectively our data point to a role 

for Gal-1 in promoting lymphangiogenesis and lymphatic remodelling, with potential 

clinical implications. 

Based on the potentiation of VEGFR2 signalling by Gal-1 in BECs (55, 59), we next 

examined whether Gal-1 depletion influenced HDLEC responses to VEGFA. Compared 

to control-transfected LECs, HDLECs transfected with LGALS1 siRNA exhibited 

enhanced VEGFR2 phosphorylation at Tyr1175 (required for downstream MAPK 

signalling (60)) when stimulated with VEGFA, along with significant increases in 

phosphorylated ERK2 and AKT (Fig. 8, A and B). Phosphorylation of Src family kinases 

after VEGFA stimulation was slightly but not significantly increased in Gal-1-depleted 

HDLECs (Fig. 8A; fig. S11, A and B). Gal-1 abundance in LGALS1-depleted and Control 

HDLECs remained relatively constant over the timecourse (fig. S11C). Whilst VEGFC, 

but not VEGFA, induced phosphorylation of VEGFR3 as expected (fig. S11D), total 

VEGFR3 abundance was decreased in Gal-1-depleted HDLECs, irrespective of VEGFA 

stimulation (Fig. 8C). Because VEGFR3 abundance is decreased in BECs postnatally, but 

maintained at high amounts in LECs (61) (fig. S11E), this result suggested a switch 

toward a BEC phenotype. 

To explore this notion further, we next assessed LGALS1 siRNA-targeted HDLECs for 

mRNA and protein of typical LEC- and BEC- selective markers (Fig. 8, D to G; fig. 

S11F). Knockdown of LGALS1 was associated with reduced CEACAM1 

immunofluorescence and loss of cells with high LYVE1 immunofluorescence (these 
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being LEC markers), whereas the immunofluorescent signal for the VEGFR2 coreceptor 

CD146, which is more abundant in BECs than LECs (fig. S11E) (62, 63) was increased 

(Fig. 8D, fig. S12A). qRTPCR analysis confirmed significantly reduced expression of 

LYVE1 and increased expression of CD146 mRNA in LGALS1-depleted compared to 

control-transfected HDLECs (fig. S11F). This analysis also revealed a general trend 

towards decreased expression of mRNA encoding LEC markers (such as PROX1 and 

ITGA9) and increased expression of genes typically more abundantly expressed in BECs 

than LECs (such as TEK, which encodes TIE2, and CD146). This pattern was confirmed 

by Western blot analyses, which showed that compared to control-transfected HDLECs, 

LGALS1-depleted HDLECs exhibited significantly decreased abundance of LEC-

characteristic proteins VEGFR3, CEACAM1, Podoplanin and the central LEC identity 

regulator Prox1 (Fig. 8, E to G). In contrast, CD146 and VEGFR2, which are typically 

more abundant in BECs than LECs (Fig. S11E), were increased (Fig. 8, E to G). Notably, 

LGALS1 siRNA induced a greater increase in CD146 protein than did siRNAs targeting 

SOX18 and CEACAM-1, both of which can induce LEC identity in ECs (Fig. 8, E to G; 

fig. S12, B and C) (64, 65). Given that lower abundance of Prox1, LYVE1, ITGA9 and 

VEGFR3 compared to initial (microvascular) lymphatics is also characteristic of large 

collecting lymphatic vessels (66), LGALS1 knockdown could possibly have induced 

HDLEC differentiation towards a collecting LEC phenotype, although high CD146 

abundance has not apparently been reported in collecting lymphatic endothelium. 

Interrogation of our microarray analysis of collecting vessel LECs (67) suggested that 

Cd146 was expressed at very low abundance in these cells (fig. S11G). Furthermore, 

LGALS1 depletion in HDLECs reduced the abundance of Podoplanin (encoded by PDPN 
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in humans and Pdpn in mice), a LEC marker expressed robustly in collecting lymphatic 

endothelium (fig. S11G) (67). Our data therefore suggest that loss of endogenous 

LGALS1 expression induces differentiation of HDLECs towards a blood vascular 

phenotype. LGALS1 siRNA-treated HDLECs also maintained CDH5 (VE-cadherin) cell-

cell contacts at the wound border that were typically diminished during migration in 

control-treated HDLECs (Fig. S13A). This corroborated the inhibitory effect of Gal-1 on 

migration and confirmed, alongside CD31 staining, that endothelial cell identity was 

maintained (fig. S13, A to B). Together, our results indicate that Gal-1 not only promotes 

HDLEC migration and remodelling, and modifies VEGFR2 signalling, but also 

contributes to the maintenance of the lymphatic endothelial phenotype. 

 

Discussion 

EC migration is a critical component of sprouting vessel growth and vessel remodelling 

during development and disease. The scratch wound assay provides a tractable and 

relevant in vitro model of angiogenesis, as it can replicate both “pioneer” and “follower” 

modes of migration (13), with potential analogy to “tip” cells and “stalk cells” in three-

dimensional angiogenesis (9). Previous siRNA and shRNA screens for regulators of 

migration in epithelial and endothelial cells cover only a subset of the genome (11-13), 

while one screen in a fibroblast cell line has interrogated the full genome (68). Our 

whole-genome approach has revealed multiple signalling pathways and individual genes 

that control collective migration in a specialized primary human lymphatic EC, the 

HDLEC.  

Of the 154 highly-validated candidate migration genes a proportion have well-
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characterised roles in migration across various cell lineages, such as the small GTPase-

encoding CDC42 (69). Further confirmation of the effectiveness of the screen was the 

high confidence validation of genes with known roles in LEC biology, such as ANGPT2, 

which encodes a ligand for the TIE2 (TEK) receptor. In mice lacking Angpt2, lymphatic 

filopodial sprouting is impaired, and the primary lymphatic plexus fails to remodel into 

the mature lymphatic hierarchy (25, 31). Furthermore, ANGPT2 promotes tumour 

lymphangiogenesis (70, 71). Angpt2 expression was selectively increased in LN LECs 

during viral-induced remodelling (Data File S7), indicating that it may promote 

lymphangiogenesis in multiple adult pathological settings. 

The biological validity of our siRNA screen was also confirmed by substantial global 

overlap of our candidate genes with those identified by differential expression in 

microarray analysis of viral-induced or CHS-associated lymphatic remodelling (Fig. 6). 

The identification of overlapping genes across differences in species, biological and 

experimental context, measurement methodology and timeframe gives confidence to their 

biological relevance in LECs. Genes that were highly validated in the siRNA screens but 

not detected as differentially expressed in the in vivo models may represent those that are 

functionally important but are expressed in constant amounts during LEC migration and 

remodelling. Furthermore, our in vitro migration screen provided evidence of specific 

gene function that the in vivo microarray analysis alone could not. Notwithstanding that 

many genes are multifunctional, our screen enabled distinction of siRNA targets that 

primarily influence proliferation or survival from those chiefly regulating migration. 

Other siRNA screens using the scratch wound migration assay confirm that cell 

proliferation does not contribute substantively to wound closure (12, 13). Together, these 



 

 - 26 -  

analyses suggest that our screening approach identified genes that are relevant to 

pathological lymphangiogenesis that can be further investigated.  

Our siRNA screen uncovered both common and distinct gene functions in LECs and 

BECs, including some genes that are considered important central regulators of cell 

migration. Targeting of CDC42 and LIMK1 impaired HDLEC migration, but only mildly 

inhibited HMBEC migration. Similarly, silencing of CDC42 caused morphological 

changes in HDLECs that were not seen in HMBECs. This suggests that Rho family 

GTPases (and their downstream effectors) are differentially regulated in these two related 

cell types, possibly by the adaptor molecule Afadin (72). Knockdown of certain key 

migration genes such as WASF2 and PTK2 in HDLECs resulted in lowered cell count, 

obscuring an observable migration effect. That RHOA and RAC1 were not identified in 

this screen may reflect insufficient gene silencing or functional depletion; however, it is 

also possible that these genes may be redundant and therefore not functionally required 

for migration in HDLECs. For example, RHOC expression was selectively increased in 

remodelling LN LECs (Data File S7) and its knockdown generated moderate inhibition of 

migration in the primary screen. Notably, a considerable subset of the candidate genes 

identified have not previously been associated with cell migration, thus representing an 

untapped resource for future studies to identify new gene functions.  

siRNA targeting of several genes (KANSL1, USP25, UGT1A7 and C7orf55) reduced the 

cell density of HMBECs but not HDLECs. These differences may be critical in 

optimizing the therapeutic targeting of either, or both, EC types. Indeed, genes classified 

in our screens as “Low Cell Count” may represent important regulators of survival, 

proliferation and adhesion. Understanding signalling pathways that trigger EC death may 
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be important for chemotherapy or radiation therapy in the context of cancer, and as such 

warrants further investigation. 

A goal of this siRNA screen was to identify new therapeutic targets for controlling 

pathological lymphangiogenesis. To this end, we demonstrated that LGALS1 and 

MICAL2 are required for HDLEC migration and tube formation. We further confirmed 

the importance of Gal-1 in supporting LEC migration, remodelling and in vivo 

lymphangiogenesis. Gal-1 also has an immunological function in the lymphatics in 

preferentially inhibiting the transmigration of immunogenic rather than tolerogenic 

dendritic cells into lymphatic vessels (56). A related molecule, Galectin-8, promotes 

VEGFC-induced lymphatic sprouting and pathological corneal lymphangiogenesis (73, 

74). This effect is independent of VEGFR3 and is mediated instead by Podoplanin and 

α1β1 and α5β1 integrins, in spite of direct interaction of Galectin-8 with VEGFR3. In 

contrast, Gal-1 does not potentiate VEGFC-induced sprouting (73). In our study Gal-1 

promoted VEGFA-induced lymphangiogenesis and lymphatic remodelling through 

VEGFR2. In BECs, Gal-1 promotes VEGFR2-mediated pro-angiogenic signalling by 

binding to specific branched N-glycans on VEGFR2 and/or its coreceptors NRP1 (54) 

and CD146 (59, 75-77). Dimeric Gal-1 can effectively cross-link the receptor complex, 

thereby inducing VEGF-independent signalling and also increasing retention of receptors 

on the cell surface, thus prolonging VEGFA-induced signaling (55). Accordingly, we 

showed that inhibition of Gal-1 activity by siRNA or Anginex impaired 

lymphangiogenesis (Fig. 7; fig. S8). Possible mechanisms of this effect include 

interfering with Gal-1-mediated potentiation and prolongation of VEGFR2 signaling 

and/or blocking Gal-1-mediated interactions with the extracellular matrix (54). Anginex 
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also binds to Galectins -2, -7, -8N and -9N (78). The role of Gal-1 in promoting 

lymphangiogenesis was evident in models of Gal-1-mediated lympangiogenic sprouting 

(thoracic duct explants) and in circumferential expansion of lymphatic vessels (mouse ear 

model), both of which may involve some LEC proliferation as well as migration given 

the importance of VEGFR2 signalling in both these processes (18, 79). Whilst CD146 

and NRP1 have been implicated in Gal-1’s pro-angiogenic activity in BECs, these 

receptors are typically much less abundant in LECs (62), which suggests that Gal-1’s 

activity on LECs may be predominately mediated through its interaction with VEGFR2, 

and/or through an alternate receptor yet to be defined. Candidate coreceptors in LECs 

might include NRP2, or integrins such as α1β1 which are required for VEGFA-induced 

LEC migration (79). 

While exploring the role of Gal-1 in LEC responses to VEGFA signalling we observed 

that LGALS1-depleted HDLECs had increased protein abundance of VEGFR2 and its co-

receptor CD146. The HDLECs apparently were concomitantly sensitised to VEGFA 

signalling through VEGFR2, showing enhanced phosphorylation of the receptor and its 

downstream signalling effectors ERK2 and AKT at 10 minutes after addition of VEGFA 

(Fig. 8, A to B). This enhanced VEGFR2 signaling in LGALS1-depleted HDLECs may be 

a consequence of increased VEGFR2 and CD146 protein abundance. However, the 

absence of Gal-1’s crosslinking effect could also accelerate VEGFR2 internalisation and 

subsequent degradation upon VEGFA stimulation, leading to an amplified but shorter-

lived burst of VEGFR2-initiated signaling from endosomes (55, 60). Depletion or 

blockade of Gal-1 sensitises resistant tumours to VEGFA-blocking antiangiogenic 

therapy (55), likely by preventing the VEGFA-independent VEGFR2 signaling induced 
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by Gal-1-mediated receptor crosslinking, thus restoring VEGFA dependency in tumour 

ECs. Our data therefore indicate that Gal-1 could similarly influence the sensitivity of 

tumour lymphatics to VEGFA. 

Increased VEGFR2 abundance following LGALS1 knockdown in our HDLECs also 

appeared to be part of a broader alteration in LEC phenotype (Fig. 8). LGALS1 depletion 

decreased protein abundance (albeit modestly) of the master LEC identity regulator 

PROX1, of which a certain threshold amount is required to maintain LEC identity (80, 

81). Future studies will determine whether Gal-1 contributes to LEC specification during 

development, or in the phenotypic plasticity observed in some pathologies (82, 83).  

Given the association of Gal-1 with VEGFR2, it is possible that Gal-1 sustains LEC 

phenotype by regulating the balance between endogenous VEGFR2 and VEGFR3-

mediated signalling. VEGFC signaling through VEGFR3 engages in a positive feedback 

loop with PROX1 expression during mouse development and in cultured HDLECs (84), 

implicating this axis in LEC migration, proliferation and identity. Gal-1 stimulation can 

induce VEGFR3 phosphorylation in trophoblasts (85), but apparently not in HUVECs 

(54), which may be due to differences in receptor glycosylation (55). A tentative link 

between Gal-1 and LEC identity is also suggested by the reprogramming of BECs 

towards a lymphatic phenotype by Kaposi’s Sarcoma Herpesvirus (KSHV) infection (86, 

87), and the high abundance of Gal-1 in KS-infected cells (58). Alternatively, 

intracellular, glycan-independent functions of Gal-1 in Ras localisation or pre-mRNA 

processing could also be involved in this phenotypic change (88), invoking pathways 

potentially independent of the VEGFC/VEGFR3/Prox1 axis. CD146 could also be 

involved in the LEC phenotypic change; depletion of Gal-1 may remove an inhibitory 
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autocrine feedback loop resulting in increased CD146 abundance. However, several of 

the Gal-1 receptors present on BECs - CD146, NRP1, integrin α1β5 and VEGFR2 – are 

less abundant or absent on LECs, with some suppressed by PROX1 (89, 90). Therefore, 

while Gal-1 may have common functions in LECs and BECs with regard to endothelial 

migration and vessel formation, our data suggest that it may signal in LECs through other 

pathways that remain to be elucidated. 

Our findings, including the identification of several genes not previously implicated in 

migration and of cell type-specific effects of gene knockdown, elucidate future avenues 

for research into the biology of lymphatic endothelial cell signalling and anti-

lymphangiogenic therapeutic targeting. We also characterised Gal-1 as a positive 

regulator of LEC migration and lymphangiogenesis. Together with Gal-1’s roles in 

promoting tumour angiogenesis and its implication in promoting a tolerogenic immune 

environment (52, 56), our data therefore present a rationale for targeting Gal-1 to inhibit 

both angiogenesis and lymphangiogenesis in cancer and to enhance anti-tumour 

immunity. 

 

Materials and Methods 

Cell culture  

HDLECs (#CC2812, Lonza) and HMBECs (#CC2813, Lonza) were cultured in 

endothelial basal medium (EBM)-2 media supplemented with endothelial growth medium 

(EGM)-2-MV Singlequots (Lonza) and 10 mM 4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES; Life Technologies). These cells were from a single donor 

and guaranteed free of pathogens and contaminants by the manufacturer. Tissue culture 
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treated plates were coated before use with 5 μg/ml human fibronectin solution (BD 

Bioscience). Cells were used at passage number 5. Primary human dermal fibroblasts 

isolated from foreskins, kindly provided by Dr. Pritinder Kaur (Peter MacCallum Cancer 

Centre), were grown in DMEM supplemented with 10% fetal calf serum (FCS; v/v), non-

essential amino acids, 10 mM HEPES and penicillin-streptomycin (Life Technologies).  

 

siRNA screen and scratch wound assay. 

Detailed Minimum Information About an RNAi Experiment (MIARE)-compliant 

screening procedures are outlined in Data File S1, and complete protocols are described 

elsewhere (20). The genome-wide siRNA screen is performed in 96 well plates in 

technical duplicate (Corning Costar). HDLECs (15000/well) are reverse transfected using 

DharmaFECT transfection reagent #1 (0.2 μl/well) with 40 nM siRNA (Human 

siGENOME SMARTpool library [2009 ed.], Dharmacon RNAi Technologies). siRNA 

pools targeting CDC42 and CDH5 were included as positive controls (fig. S1, D to F). At 

48 h post-transfection cells are loaded with Celltracker Green 5-chloromethylfluorescein 

diacetate (CMFDA) live cell stain (5 μM; Life Technologies) before a 96-pin wounding 

device with ‘FP’ pins (V&P Scientific) controlled using a workstation robot (Sciclone 

ALH 3000, Caliper Life Sciences) is used to create uniform scratches (approximately 3.8 

mm long × 0.38 mm wide) in the cell monolayer (fig. S2, A to F). Cells are washed, and 

medium replaced. An image of the initial scratch area (A0) is then obtained as described 

in High content, high throughput imaging, before incubating at 37°C for a further 24 h. 

This timepoint represents ~50% closure of the original wound area (fig. S1 E; fig. S3), 

and is selected to enable detection of both accelerated and inhibited wound closure. At 
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the assay endpoint, cells are fixed with 4% paraformaldehyde (PFA), then permeabilised 

and blocked in 0.2% Triton X-100/2% bovine serum albumin  (BSA) in phosphate-

buffered saline (PBS) and stained with phalloidin CF488 (20 nM, Biotium) and Hoechst 

33342 (2 µg/ml, Life Technologies). An image of the remaining scratch area (A24) is 

obtained. The area migrated over by the cells in each well is then calculated as Am = A0 – 

A24 (fig. S2, E to F). These values are normalised to the median of mock-transfected wells 

per plate and averaged across technical replicates. Robust z scores are then generated 

across all plates (utilizing the median and median absolute deviation; MAD). The “Low 

Cell Count” threshold is set at < 60% of the median density per field. 

A curated list of 500 candidates identified in the primary screen is then assayed in a 

secondary deconvolution screen, with SMARTpool siRNA duplexes assayed 

individually. The gene list comprises 350 “Impaired” (robust z score <−2.3) and 50 

“Accelerated” candidates (robust z score >2.67). In addition, 65 candidate genes (|robust 

z score| >2) are selected based on known protein–protein interactions with other 

candidate genes, as these could assist in generating and understanding signalling 

networks. A further 12 candidates (|robust z score| >2) are selected based on microarray 

data indicating higher differential expression in HDLECs compared to HMBECs (see 

Microarray comparison of HDLECs and HMBECs) as these may represent lymphatic-

specific migration genes. The list is then rounded to 500 candidates (401 “Impaired” and 

99 “Accelerated”) by including the candidates with the next highest robust z scores. 

Transfection follows the protocol of the primary screen, with final siRNA concentration 

of 25 nM. Thresholds based on mean ± 3 SD of mock-transfected wells are set at 60% 

and 130% of mock-transfected cell migration for “Impaired” and “Accelerated” binning 
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respectively. A gene candidate is deemed validated (here “highly-validated”) if two or 

more of the four siRNA duplexes reproduced the original phenotype seen in the primary 

screen. 

In the tertiary screen, siRNA SMARTpools targeting the 154 “highly-validated” genes 

identified from the secondary screen are transfected into HDLECs and HMBECs in 

parallel, following the protocol of the primary screen. The endpoint of the migration 

assay for HMBECs, at which control scratch wounds were ~50% closed, was 

experimentally defined as 16 h post-scratch (fig. S6B). The screen is performed in 

biological duplicate for each cell type, with technical duplicate plates. At the endpoint, 

cells are additionally stained with Phalloidin CF555 (Biotium).  

Official Entrez Gene IDs and gene symbols are from the Human Genome Organisation 

(HUGO) Gene Nomenclature Committee website (www.genenames.org). Custom python 

or R scripts are used to quality control, analyse and decipher the siRNA datasets.  

 

High content, high throughput imaging 

Imaging and image processing is performed as described previously (20). Image fields 

are captured using a high-throughput imaging system (Pathway 435, BD Bioscience), 

stitched together on capture using acquisition software (Attovision v1.6.1, Becton 

Dickinson), then smoothed and flattened using image analysis software (MetaMorph 

v7.7.5.0 (64-bit), Molecular Devices). A fluorescence intensity threshold based on the 

CellTracker Green and phalloidin CF488 signal is then used to create a binary mask, 

which enables measurement of the wound area devoid of cells (Fig. S2 E to F). 

For counting of cell nuclei, a high-content imaging platform (Cellomics VTI Arrayscan, 

http://www.genenames.org/
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Thermo Fisher Scientific) is used to acquire 30 adjacent fields per well of cells stained 

with Hoechst 33342. Thresholding of images is used to identify and count the number of 

cell nuclei per field.  

For cell morphology analysis, cells are additionally stained with Phalloidin CF555 to 

discriminate filamentous actin. Images are segmented into nuclei and cell body areas 

using MetaMorph. Segmented areas are then subjected to measurement of various 

parameters describing cell size and shape, and actin staining intensity as enabled by the 

Integrated Morphometric Analysis module in MetaMorph (see parameters listed in Fig. 

3B). Data for each parameter are normalized into z-scores, and the combined dataset of 

morphological parameters is then used to determine “clusters” of siRNA target genes 

whose knockdown generated similar morphologies, as described (20). Briefly, the 

normalized morphology dataset is subjected to unsupervised hierarchical clustering in 

CIMminer (http://discover.nci.nih.gov.cimminer/) using Complete linkage cluster 

method, Correlation distance algorithm and Quantile binning settings. The resulting 

dendrogram of relatedness (correlation) between genes according to their corresponding 

morphology parameters is divided into six clusters, guided by a 1-Pearson correlation 

cutoff of 1.5. 

 

Antibodies 

Antibodies used for immunofluorescence microscopy and Western Blotting were rabbit 

polyclonal antibodies against human LYVE1 (Fitzgerald RDI), PROX1 (Covance), 

CEACAM-1 (Abcam) and vWF (DAKO); mouse monoclonal antibodies against human 

VEGFR3 (clone #54703; R&D Systems), α-smooth muscle actin (α-SMA; clone #1A4, 

http://discover.nci.nih.gov.cimminer/
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Sigma), CD146 (clone #P1H12 or SHM-57; BioLegend), CD31 (clone #MEC13.3) 

PNAd (clone #MECA-79, BD Pharmingen)  and CDH5 (VE-cadherin; clone #55-7H1, 

BD Pharmingen). Rabbit polyclonal antibodies to human Podoplanin (Fitzgerald RDI) 

and mouse monoclonal antibodies to human CDH2 (clone #5C8, Sigma-Aldrich) and 

PLVAP (clone #174/2, Hycult Biotech) were used for flow cytometry. A goat polyclonal 

antibody recognising human Galectin-1 (R&D Systems) and mouse monoclonal antibody 

to Podoplanin (clone #D2-40; Genway) were used for immunohistochemistry. For 

Western Blotting, rabbit antibodies against phosphorylated VEGFR2 (Tyr1175, clone 

#19A10), total VEGFR2 (clone #55B11), phosphorylated ERK1/2 (Thr202/Tyr204), total 

ERK2, phosphorylated AKT (Ser473, clone #D9E), phosphorylated Src family kinases 

(Tyr416, clone #D49G4) and CDC42 (clone #11A11), as well as mouse antibodies to total 

Akt (clone #40D4) and total Src family kinases (clone #L4A1) were all obtained from 

Cell Signaling Technology. A mouse monoclonal antibody to human α-tubulin (clone 

#DM1A; Abcam) or rabbit antibodies to human GAPDH (clone #14C10, Cell Signaling 

Technology or FL-335, Santa Cruz) were used for loading controls. Isotype control 

antibodies used for various experiments were mouse IgG1 (BioLegend), rabbit IgG 

(Imgenex) and goat IgG (Genetex). For immunofluorescence and flow cytometry, goat 

antibodies recognizing rabbit or mouse IgG and conjugated to Alexa Fluor 488 or 546 

were used. For Western blotting, secondary antibodies recognising goat, mouse or rabbit 

IgG conjugated to IRdye 800 or IRdye 680 (LI-COR) were used.  

 

Signaling pathway analysis 

Pathway analysis software (Metacore, GeneGo, Thompson Reuters) was used to search 



 

 - 36 -  

for signaling pathways (“Pathway Maps”) and cellular processes (“GO Processes”) that 

were overrepresented in the datasets. Input datasets are compared to lists of genes within 

the database that are annotated to particular terms (such as a given “Pathway Map”). P 

values calculated in enrichment analyses indicate the probability that the number of genes 

represented in both the input dataset and the annotated term list is random, and are 

derived according to hypergeometric distributions.  

The software also allowed construction of protein–protein interaction networks using 

various algorithms as follows. A “direct interactions” or a “shortest paths” algorithm 

(maximum number of steps = 2, not canonical pathways) was used for generating 

signaling networks (Fig. 5). Networks were constructed to identify protein-protein 

interactions using direct interaction types (such as phosphorylation, binding, cleavage), 

however, indirect interactions (“transcriptional regulation” and “influence on 

expression”) were excluded. Open-source software (Cytoscape v.2.8.2; 

www.cytoscape.org) was employed for visualizing and integrating data into networks, 

following data importation from Metacore using the plugin 

“com.genego.cytplugin.NetworkLoader” (v.0.1). Construction of an ontology tree was 

performed using GOrilla (http://cbl-gorilla.cs.technion.ac.il/), which enabled comparison 

of the candidate gene list with the rest of the human genome. 

 

Isolation of LN stromal and endothelial cells in a cutaneous HSV-1 infection model. 

All animal experiments were conducted under the approval of the Animal Experimental 

Ethics Committees at Peter MacCallum Cancer Centre or the Peter Doherty Institute. 

Detailed protocols for LN stromal cell subset isolation and microarray analysis (see 

http://cbl-gorilla.cs.technion.ac.il/
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below) are described elsewhere (45, 91). Briefly, C57Bl/6 mice are inoculated with HSV-

1 onto a patch of abraded skin. Brachial LNs draining the infection site are harvested 

from uninfected mice or on day 6 after inoculation and digested to a single-cell 

suspension for flow cytometric cell sorting. After gating out residual CD45+ leukocytes, 

LECs are defined as Podoplanin+CD31+, BECs as Podoplanin-CD31+, and FRCs as 

PodoplaninlowCD31-.  

 

Microarray analysis of LN stromal cell subsets and list overlap analysis. 

Biotinylated cDNA derived from sorted LN cell subsets is hybridized to GeneChip 

MouseGene 1.0 ST chips (Affymetrix).  After processing and normalization of 

microarray probe intensity data using robust multi-array analysis (RMA) (92), differential 

expression is analyzed using the limma software package (93) in BioConductor (94). 

TREAT (T-tests RElative to A Threshold) empirical Bayes t-tests (95) relative to a fold 

change threshold of 1.1 are applied to determine significance of differential expression, 

with the false discovery rate (FDR) set at 5%. This dataset is published (45) and 

deposited in the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo; 

GSE84284). The same analysis was also applied to a publicly-available microarray 

dataset comprising LECs isolated from untreated and CHS-inflamed mouse ears (46). 

The matrix file containing RMA-normalised data from the GeneChip Mouse Genome 430 

2.0 Array (Affymetrix) was downloaded from GEO (accession number GSE26229), and 

differential expression analysed using limma with TREAT criteria as above. In the case 

of multiple probes per gene, a single representative probe was chosen. 

http://www.ncbi.nlm.nih.gov/geo
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For the comparison between the microarray datasets and siRNA screen results, we 

applied a further threshold of |linear fold-change| ≥1.8 on top of the 5% false discovery 

rate (FDR; P  < 0.05 after adjustment for multiple testing) to increase stringency on the 

biological significance of changes in mRNA expression. For the LN stromal cell dataset, 

lists of genes that were selectively differentially-expressed by the three cell types (BEC, 

LEC or FRC) were also derived as described in Fig. 6D to interrogate shared and cell 

type-selective effects. Differentially-expressed genes were considered to be “-selective” 

to the designated cell type or types in this experimental context if they were either not 

differentially expressed (i.e. |fold-change|<1.8), or discordantly differentially expressed 

(i.e. |fold-change|≥1.8 in the opposite direction) in the other cell types. For the CHS 

dataset (46), only one cell type had been analysed so all genes differentially-expressed 

with |linear fold change| ≥ 1.8 and adjusted P > 0.05 were included, analogous to the LEC 

total list from the LN stromal cell dataset (Fig. 6D). Mouse gene symbols from 

microarray data were converted to human orthologs using the HUGO Gene Nomenclature 

Committee Comparison of Orthology Predictions (HCOP) retrieved from 

http://www.genenames.org/cgi-bin/hcop, selecting the ortholog predicted by the greatest 

number of databases. Sorted lists of differentially-expressed genes from the microarray 

datasets were then compared with genes identified from the siRNA screen experiments to 

derive lists of overlapping genes. Data presented are derived from pooled lists of all 

increased and decreased differentially-expressed genes fitting the above criteria compared 

to “Accelerated” and “Impaired” “expanded migration candidates” with |robust z score| 

≥1.6449 in the primary siRNA screen, representing the top 5% and bottom 5% of scores. 

http://www.genenames.org/cgi-bin/hcop
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Genes binned as “Low Cell Count” in the primary screen were excluded prior to overlap 

analysis.  

Statistical significance of overlap was determined empirically using simulated null 

distributions, a useful strategy for comparing similarity of gene lists from different 

sources (96). These were derived by determining the overlap between 10,000 pairs of 

random gene lists of the same size as derived by the criteria above, relative to the 

complete list for each different analysis platform (18,120 human genes for the Human 

siGENOME SMARTpool library; 21,041 mouse genes for the GeneChip MouseGene 1.0 

ST microarray; 21,723 genes for the GeneChip Mouse Genome 430 2.0 Array). Genes 

were indexed as integers and randomly sampled without replacement, assuming that the 

mouse microarray probes have one-to-one mapping to human siRNA targets and that the 

genes covered by the microarray are a superset of the genes targeted in the siRNA library. 

The size of the lists of overlapping genes was then assessed for significance against the 

null distribution. Analyses were performed using R statistical software. As a further 

validation, significance was also computed based on hypergeometric distribution over the 

common set of genes between the two platforms. Hypergeometric P values correlated 

with empirical P values calculated from simulated null distributions, and gave a more 

conservative estimate of significance.  

 

Tube formation and co-culture assays 

HDLECs were reverse transfected with gene-targeting siRNA SMARTpools or a control 

siRNA (ON-TARGETplus Non-targeting control pool, Dharmacon). For short-term 

overlay tube formation assays, 48 h post-transfection the cells were overlaid with 100 μl 
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neutralized collagen solution (Bovine Type 1, Gibco) and incubated at 37°C, 5% CO2 for 

8 h to allow tube formation to occur (97). Collagen overlaid cells were fixed in 4% PFA 

and permeabilized with 0.2% Triton-X 100, 1% BSA in PBS. Cells were washed with 

PBS and stained with phalloidin CF488 (20 nM, Biotium) and Hoechst 33342. Images 

were captured (Cellomics VTI Arrayscan, Thermo Fisher Scientific) using a 5× Fluar 

NA0.25 objective (Carl Zeiss), with 9 adjacent fields imaged per well. Images were auto-

contrast adjusted using Adobe Photoshop CS4 (Adobe Systems Incorporated), and 

quantified using a custom analysis protocol established in image analysis software 

(MetaMorph). The co-culture assays were performed as described previously (98) with 

the following modifications. Briefly, 104 primary dermal fibroblasts per well were grown 

in 96 well plates. 24 h after siRNA treatment, HDLECs were seeded at 1.5x103 cells per 

well onto the fibroblast feeder layer and grown for nine days before fixation and 

processing for immunofluorescence microscopy. Tubule formation was analysed using 

either ImageJ or Angioquant (http://www.cs.tut.fi/sgn/csb/angioquant/) programs. 

 

SDS-PAGE and Western blotting 

Protein abundance was assessed using SDS-PAGE and Western blotting as described 

previously (99). Briefly, for analysis of phosphorylation in VEGFA and VEGFC 

signaling pathways, siRNA-treated cells were serum-starved in MCDB-131 media (GE, 

Life Technologies) supplemented with 0.2% BSA for 2-4 h prior to stimulation with 

recombinant human VEGFA165 (R&D Systems) or mature VEGFC (Opthea) for indicated 

times. Cells were washed 3 times in ice-cold PBS prior to lysis in 2% sodium dodecyl 

sulfate (SDS) Buffer (2% SDS, 50mM Tris, 150mM NaCl, 2mM 

ethylenediaminetetraacetic acid [EDTA], 2mM  ethylene glycol-bis(β-aminoethyl ether)-
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N,N,N',N'-tetraacetic acid [EGTA], 1mM phenylmethylsulfonylfluoride) and protein 

quantification by bicinchoninic acid assay (Pierce). 10-15 µg total protein was separated 

on 4-20% Bolt gels before transfer using the iBlot system (GE, Life Technologies). 

Western blotting was performed using primary antibodies as described above and imaged 

using either Odyssey CLx Imaging System (LI-COR) for infrared fluorescence detection 

or a GelDoc (BioRad) for chemiluminescence-based development. 

 

Injection of Matrigel Plugs into Mouse Ears   

Recombinant mouse Gal-1, VEGFA, a mature form of mouse VEGFD, Anginex or BSA 

(Control) were resuspended in 30 μl of Matrigel (Matrigel Basement Membrane Matrix, 

BD Biosciences) at either 10 or 25 µg/ml final concentration and injected into the center 

of 6-8-week old female SCID/NOD (severe combined immunodeficent/nonobese 

diabetic)/Gamma mouse ears. At 5 days post injection, ears were harvested, fixed and 

processed for staining of lymphatic (LYVE-1 or Podoplanin) and blood vasculature 

(CD146 or αSMA). Images were captured on either Pathway 435 or BX61 (Olympus) 

microscope and analyzed using Metamorph and AngioTool software.  

 

Immunofluorescence staining and quantitation 

Cells were treated as for the siRNA screen and scratch wound assay and subsequently 

stained with appropriate primary and fluorescently-conjugated secondary antibodies. 

Fluorescence images were captured using the Cellomics VTI Arrayscan or Pathway 435 

automated high-throughput microscopy platforms. To quantify immunofluorescence 

staining for particular antigens, fluorescence intensity was measured using ImageJ 

following the application of a common threshold across all samples within a single 96-
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well plate. A mask was applied based on the highest-expressing sample and pixel 

intensity determined across the various conditions. Immunofluorescence staining of 

mouse LN sections is described elsewhere (45). 

 

Immunohistochemistry 

Human lymph node tissue sections were obtained from the Molecular Pathology 

Department, Peter MacCallum Cancer Centre. Samples were from breast cancer patients 

with no lymph node metastases. Samples were obtained with informed consent, and used 

under appropriate institutional approval. Microwave antigen retrieval of paraffin 

embedded sections was performed using target retrieval solution (DAKO), for 15 min on 

medium low setting. Endogenous peroxidase was blocked by washing slides in 3% 

H202/methanol for 20 min, and then adding serum-free blocking solution (DAKO) for 1 h. 

Sections were immunostained with a goat antibody recognizing human Gal-1 (1:100), or 

a mouse antibody against Podoplanin (1:100), and an appropriate biotinylated secondary 

antibody. Signal was amplified using Vectastain ABC (Vector Laboratories), and 

developed using liquid diaminobenzidine (DAB) (Peroxidase Substrate Kit, Vector 

Laboratories). Slides were subsequently visualized and imaged using a microscope 

(BX61, Olympus) with 60× UPlanSApo NA1.20 objective (Olympus) and digital camera 

(SPOT RT3 Slider, Diagnostic Instruments). 

 

qRT-PCR 

Total RNA isolated from HDLECs was reverse-transcribed using the High-Capacity 

cDNA reverse transcription kit (Applied Biosystems) according to the manufacturer’s 



 

 - 43 -  

instructions. Expression of selected genes was then assessed using Taqman gene 

expression assays and gene expression master mix (Applied Biosystems). Target 

abundance was normalized to GAPDH. 

 

Oncomine™ data analysis 

The relative expression of individual candidate migration genes in human breast tumor 

stroma samples was determined by searching the Oncomine database (version 4.4.3, 

September 2012 data release, www.oncomine.org). Target genes (for example LGALS1) 

were queried, and output data was sorted to isolate “cancer versus normal” associations, 

filtered using the tissue subtype “stroma”. Data is reported as the log2 median-centered 

expression values for normal breast and breast carcinoma samples using box-and-

whiskers plots. LGALS1 expression in normal compared to cancer groups was compared 

within Oncomine using a two sample t-test. 

 

Thoracic Duct and Aortic ring sprouting assay 

Thoracic ducts and aortae from male or female 6-12 week-old C57Bl/6 mice were 

isolated and processed for the assay essentially as outlined by Bruyère et al. (91) or Baker 

et al. (92) with some modifications. Briefly, small sections of upper thoracic duct or aorta 

were micro-dissected and embedded in neutralized type I rat tail collagen (1 mg/ml in 

Opti-MEM [Life Technologies] supplemented with 2% FCS). Explants were grown for 5 

days in Opti-MEM supplemented with 10% FCS for thoracic ducts or 2.5% FCS for 

aortae and either growth factors, recombinant Gal-1 or Anginex. Collagen gels were fixed 

in 4% PFA, permeabilised with 0.25% Triton-X-100 in PBS, and stained for sprouting 

http://www.oncomine.org/
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endothelium (Bandiera (Griffonia) Simplicifolia (BS)1-Lectin-FITC) and outgrowing 

supporting cells (Phalloidin-Alexa Fluor 555). Images were captured on a Pathway 435 

and collapsed z-stack images were quantified using ImageJ for endothelial outgrowth 

area and tubule length. Sprout numbers were manually scored.     

 

Microarray comparison of HDLECs and HMBECs 

Publicly available microarray dataset GSE6550-GPL570 was accessed through GEO. The 

GEO2R analysis function on the website was used to analyze the data and calculate the 

fold change in expression for each gene between blood and lymphatic ECs. The values of 

multiple probes were averaged, and a mean fold-change of ≥ 10 was used to select genes 

with differential expression. 

 

General statistical analysis 

For experiments involving comparison of treated and control groups, a two-tailed 

Student’s t-test was used. A one-way analysis of variance (ANOVA) test with Dunnett 

(comparison to control) or Tukey (comparison to all samples) post-hoc test was used for 

comparison of multiple groups in various experiments. With the exception of the list 

overlap analyses, and analyses performed within Metacore and Oncomine, statistical 

analyses were conducted using Graphpad Prism software (versions 5-7). P < 0.05 was 

considered statistically significant. The appropriateness of the tests used has been 

affirmed by Dr. E. Link, a senior statistician at Peter MacCallum Cancer Centre. 

 

Supplementary Materials 
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Figure Legends 

Fig. 1. Overview of lymphatic endothelial cell migration screen and analyses 

(A) HDLEC monolayers were transfected with CDC42 or CDH5 siRNA pools (as 

positive controls) and subjected to the scratch wounding assay. Values represent the 

percentage migration relative to the mean of mock-transfected (Control) cells. Scale bar, 

500 μm. (B) Plot of the primary screen results for each siRNA pool. Migration scores 

plotted on the x-axis are expressed as robust z scores. Each point represents the average 

of two replicate wells per gene-specific siRNA pool. Results with |robust z score| > 2 

(dashed vertical lines) were considered as “Accelerated” or “Impaired” “migration 

candidates”, and those with cell density <60% of the median per field (dashed horizontal 

line) were classified as “Low Cell Count”. (C) Schematic representation of the 

relationships between datasets, experimentally-derived gene lists and specific analyses 

within this study. Blue boxes, complete datasets. Red boxes, summaries of the siRNA 

migration screens. Other boxes, specific analyses. Bullet points, the gene list input into 

the given analysis or Data File. The gene list size and the Data File containing the results 

are indicated. MIARE, Minimum Information About an RNAi Experiment.  

 

Fig. 2. Functional categorization of highly-validated genes that promote lymphatic 

endothelial cell migration 

Annotation of the 154 “highly-validated” candidates into groups reflecting their 

functional role in the cell, based on literature and text-mining and Metacore analysis (fig. 

S4, and Data Files S5, S6). Connecting lines represent protein–protein interactions.  
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Fig. 3. Morphological changes induced by siRNAs targeting validated candidate genes 

(A) Fluorescent microscopy images of cells stained with Celltracker Green (whole-cell) 

and Phalloidin CF555 (filamentous actin) were subjected to automated high content 

analysis of cellular regions. Green lines delineate valid cell segmentation boundaries. 

Scale bar, 250 μm. (B) Unsupervised clustering of candidate genes and cell 

morphological parameters (such as size, shape, actin intensity) allows identification of 

genes that regulate similar aspects of cell morphology. Selected example candidates are 

indicated below the heatmap. (C) Examples of morphological changes observed 

following transfection with siRNA pools in cluster 2 (see also fig. S5). Scale bar, 250 μm. 

(D) Comparison of four distinguishing morphological parameters across morphology 

clusters. A schematic diagram of representative morphology, with actin in orange, is 

depicted for each cluster. 

 

Fig. 4. Evaluation of highly-validated candidate migration genes in HMBECs 

Migration was assessed in HMBECs and HDLECs transfected with siRNA pools 

targeting the 154 “highly-validated” candidate genes. (A) Dotplot comparing the 

migration screen results in HDLECs (x-axis) compared to HMBECs (y-axis). Each 

datapoint represents a gene-specific siRNA pool, represented as the average migration 

score of two biological replicates (each comprising technical duplicate wells), relative to 

mock-transfected controls. Results with migration scores below 0.65 (dotted lines) in 

HDLECs and/or HMBECs were classified into the indicated categories (quadrants). (B) 

Migration phenotypes resulting from transfection of HMBECs or HDLECs with the 

indicated siRNA pools. Cells are labelled with Celltracker Green. Scale bar, 500 μm. (C) 
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Lists of the genes identified as having LEC-dominant and BEC-dominant effects on 

migration. Inset numbers represent the morphology clusters as defined in Fig. 3. (D) 

Heatmap of HMBEC morphology parameters. Gene and parameter order was not 

subjected to hierarchical clustering, but was kept the same as in Fig. 3B to highlight the 

similarities and differences in morphological phenotypes observed between the two cell 

types. Selected example candidates are labelled below the heatmap. (E) Comparison of 

the morphological changes that are induced by transfection of HMBECs and HDLECs 

with an siRNA pool targeting LPL (see also fig. S7C).  Scale bar, 250 μm. 

 

Fig. 5. The endothelial cell migratome 

The 68 Common EC migration candidates and 20 LEC Dominant candidates were 

analysed for protein-protein interactions, identifying two-step pathways between many 

validated EC migration genes. Migration candidates are colour-coded to match Fig. 4, A 

and C. Coloured boxes with dashed outlines indicate functional categories.   

 

Fig. 6. Overlap between migration candidate genes and genes differentially-expressed 

during lymphatic remodeling in vivo 

(A) Immunofluorescence staining of LNs from uninfected control mice (Day 0) and 5 

days after subcutaneous HSV-1 infection (Day 5), to identify lymphatic vessels (LYVE-

1), high endothelial venules (PNAd) and all other endothelium (CD31). Scale bar, 200 

µm. (B) The list of genes differentially expressed (HSV-1 day 6 compared to day 0) in 

LN LECs in the microarray analysis was compared to the “expanded migration 

candidate” list from the primary siRNA screen (excluding “Low Cell Count” genes) to 
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determine the number and significance of overlapping genes. Significance of overlap was 

defined against a simulated null distribution derived from 10,000 random pairs of gene 

lists of equivalent size as described in Materials and Methods. (C) Venn diagram of the 

number of input and overlapping genes from the analysis in (B). ***Empirical P value < 

0.001; hypergeometric P value = 0.0078 (D) Filtering of differentially-expressed genes 

into cell-selective and shared categories, and comparison of these gene lists to the 

“expanded migration candidate” list. Empirical P values were determined according to 

simulated null distributions as in (B); hypergeometric P values are in footnote b. (E) 

Venn diagram of the number of overlapping genes identified between the different 

categories of differentially-expressed genes in (D) with genes identified in the primary 

siRNA screen. Intersections are exclusive of one another and colour-coded to match (D). 

*P < 0.05, **P < 0.01 empirical P values. (F) Venn diagram of overlapping genes 

between those differentially-expressed in dermal LECs during CHS (24 h compared to 

unstimulated) and the “expanded migration candidate” list. *P < 0.05 empirical P value; 

hypergeometric P value = 0.0547. 

 

Fig. 7. Galectin-1 regulates lymphatic endothelial cell migration in vitro and in vivo 

(A and B) Western blotting for Gal-1 in cultured HDLECs and HMBECs (A), and in 

HDLECs transfected with LGALS1 siRNA pool (B). “Control” indicates mock-

transfected cells in (B) and (D-G); non-targeting siRNA in (C). (C) Quantitation of Gal-1 

knockdown by Western blotting. Mean ± SEM of n = 4 independent experiments; ****P 

< 0.0001 by Student’s t test. (D) Tube network formation under Collagen I gel by 

HDLECs. Scale bar, 250 μm. Mean ± SEM of three independent experiments shown; *P 
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< 0.05 by Student’s t test. (E) HDLECs with or without LGALS1 knockdown were grown 

on a confluent fibroblast monolayer before CD31 and LYVE1immunofluorescence was 

performed to visualise HDLECs and smooth muscle actin (SMActin) to stain fibroblasts. 

Scale bar, 250 μm. (F, G) Tubule networks from (E) were quantified by the parameters 

indicated. Mean ± SEM of three independent experiments; (F) *P < 0.05 by ANOVA 

with Tukey post-hoc test; (G) P = 0.05 by Student’s t test. (H) Immunofluorescence for 

LYVE-1 (lymphatics), and CD146 (blood vessels) on mouse ears injected with the 

indicated proteins in Matrigel, with or without the Gal-1 inhibitor Anginex. Scale bar, 

250 μm. Lymphatic vessel width and density was quantitated. n = 9 mice with 9-18 ears 

per condition across two independent experiments. Mean ± SEM; *P < 0.05, **P < 0.01 

by ANOVA with Tukey post-hoc test. (I) Immunohistochemistry on serial sections of 

human LN. White arrows: lymphatic vessel (LV). Black arrowhead: blood vessel (BV). 

Scale bar, 50 μm. (J) Bioinformatic interrogation of two published gene expression 

datasets (100, 101) for LGALS1 expression in normal tissues and cancer stroma. Central 

line, median; box, interquartile range; whiskers, 90/10 percentiles; dots, 

minimum/maximum; P values determined in Oncomine using two-sample t test. 

 

Fig. 8. Gal-1 signalling maintains lymphatic endothelial cell phenotype 

(A) HDLECs transfected with LGALS1 siRNA pools were serum-starved before 

stimulation with VEGFA (20 ng/ml) then analysed by immunoblotting. Control, non-

targeting siRNA; Src, Src family kinases. (B) Quantification of phospho (p)-VEGFR2, p-

ERK 1/2 and p-Akt bands in (A), normalised to the total respective protein and expressed 

relative to unstimulated Control-transfected cells. Mean ± SEM; n = 3-6 independent 
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experiments; *P < 0.05, **P < 0.01 by ANOVA with Tukey post-hoc test. (C) 

Quantification of total VEGFR3 bands in (A) normalised to loading control; mean ± SEM 

shown; n = 3 independent experiments; *P < 0.05 by Student’s t test. (D) 24 h following 

scratch-wounding, siRNA-treated HDLECs were examined by immunofluorescence for 

indicated proteins; nuclei were counterstained with Hoechst 33342 (Hoechst). Scale bar, 

250 µm. For quantification see fig. S12A. (E,F) Lysates of HDLECs transfected as 

indicated were analysed after 72 h by Western blotting for LEC, BEC or common 

endothelial lineage marker proteins. (G) Quantitation of Western blot analyses of 

respective LEC and BEC marker proteins in (E,F), normalised to loading control. Mean ± 

SEM; VEGFR2 n = 8 independent experiments; VEGFR3 n = 10 independent 

experiments; CD146 n = 6 independent experiments; CEACAM1 n = 5 independent 

experiments; Podoplanin n = 3 independent experiments; Prox1 n = 5 independent 

experiments. *P < 0.05, **P < 0.01 by ANOVA with Dunnett post-hoc test.  
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