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and Szenkovits, 2008; Menghini et al., 2011), attentional engage-
ment with phonological information (Hari et al., 1999; Hari and 
Renvall, 2001; Facoetti et al., 2006, 2008, 2010; Ruffino et al., 2010), 
visuo-attentional processes engaged in orthographic analysis (e.g., 
Ans et al., 1998; Valdois et al., 2004; Bosse et al., 2007; Vidyasagar 
and Pammer, 2010) or perceptual filtering (Roach and Hogben, 
2007, 2008; Geiger et al., 2008), or a combination of such more 
generic cognitive processes (e.g., Pennington and Bishop, 2009; 
Menghini et al., 2010, 2011).

Behavioral studies are limited in the extent to which they can 
provide information in support of or against the hypotheses 
presented above, not only with respect to the magnitude of the 
impairment but also with regard to the exact point in time when 
word recognition is affected. Event-related potentials (ERPs) allow 
us to plot the millisecond-by-millisecond time-course of visual 
word recognition processes (see Grainger and Holcomb, 2009) 
and provide a functional interpretation of deficient cognitive 
mechanisms based on existing knowledge of specific electro-
physiological markers (Brandeis and Lehmann, 1986, 1994). We 
chose to use this technique to study the locus of the phonological 
deficit in dyslexia within a reading context. If reduced sensitivity 
to phonological information is the source of reading difficulties in 

IntroductIon
During the last decade, the reading difficulties experienced by indi-
viduals with developmental dyslexia have been consistently associ-
ated with a deficit in phonological processing (e.g., Snowling, 2000; 
Ramus, 2002). More specifically, weak phonological coding capac-
ity would be responsible for weak phonological representations of 
words and, in turn, for difficulties in the learning of grapheme–
phoneme correspondences necessary to decode unfamiliar words, 
for a deficit in constraining phonological analysis and segmenta-
tion, and, finally, for poor performance in phonological awareness 
tasks (Fowler, 1991; Manis et al., 1997; Swan and Goswami, 1997; 
Snowling, 2000; Vellutino et al., 2004).

However, evidence for weak phonological representations in 
developmental dyslexia is limited (see Ramus, 2002; Blomert 
et al., 2004; Ramus and Szenkovits, 2008) and largely derived from 
auditory tasks testing sensitivity to speech or acoustically modi-
fied stimuli within the context of tasks taxing working memory 
resources, and which usually require discrimination from a referent 
(see Ahissar et al., 2006; Banai and Ahissar, 2006, for a discussion). 
This has prompted alternative proposals of mechanisms that con-
tribute to phonological processing impairments involving working 
memory during phonological access (Blomert et al., 2004; Ramus 
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dyslexia (as predicted by degraded phonological  representations) 
then, from the moment that ERPs discriminate visual word stimuli 
such as pseudowords on the basis of their phonological proper-
ties, any differences between dyslexic and control readers should 
be manifest.

We know from ERP studies with normal, skilled readers that 
phonologically manipulated stimuli can reliably modulate the N2 
peak, which occurs at least 100 ms before the N400 window. For 
instance, masked primes varied in phonological similarity to a tar-
get word elicit a graded amplification of N2 (N260: Grainger et al., 
2006; Holcomb and Grainger, 2006). Furthermore, N2 amplitude 
has been shown to increase as a function of relative phonological 
and orthographic similarity of visually presented word rhyme pairs1 
(Kramer and Donchin, 1987). A modulation of the N2 elicited by 
phonological mismatch is also observed when the expected final 
word of a sentence is replaced with a phonologically dissimilar, 
unexpected stimulus. This effect has been shown using both audi-
tory (also known as the phonological mismatch/mapping negativ-
ity, PMN; Connolly and Phillips, 1994; D’Arcy et al., 2004; Diaz and 
Swaab, 2007; Newman and Connolly, 2009) and visual (Connolly 
et al., 1995; Savill et al., 2011) presentation. Furthermore, ortho-
graphic stimuli that are phonologically similar or even identical 
to an expected stimulus can show N2 attenuation similar to the 
expected stimulus congruent with their phonological acceptabil-
ity (e.g., Vissers et al., 2006; Briesemeister et al., 2009; Savill and 
Thierry, 2011; Savill et al., 2011).

Looking at earlier influences of phonological information 
embedded in words, studies with normal readers have also reported 
phonological effects in reading within the P2 range. For instance, 
rhyming visual word pairs have been shown to increase P2 ampli-
tudes relative to non-rhyming pairs (Barnea and Breznitz, 1998; 
Kong et al., 2010). Other studies have shown effects of phonetic 
consistency of Chinese characters radicals read silently as early as 
170 ms post-stimulus onset (Lee et al., 2007; Hsu et al., 2009). Given 
that phonetic consistency relates to the frequency of the phonologi-
cal mapping to a character, Hsu et al. (2009) hypothesized that the 
P2 is sensitive to variations in the mapping between orthography 
and phonology. A similar conclusion was reached by Bles et al. 
(2007) in an ERP study examining the passive effects of word cohort 
size reduction in which participants simply monitored for change 
in letter color. The authors found that reduction in cohort size, 
which was achieved by letter-by-letter presentation, correlated with 
reduction in P2 amplitude. They proposed that the P2 is modulated 
by the inhibition of competing stimuli based on phonological or 
orthographic information. Consistent with this view, recent stud-
ies comparing pseudohomophones or homophones with words or 
pseudowords have also found modulations of the P2 peak (Meng 
et al., 2008; Zhang et al., 2009; Kong et al., 2010) with onset of 
difference found as early as 150 ms after stimulus onset (Sauseng 
et al., 2004; Braun et al., 2009). Braun et al. (2009), for example, 
found that pseudohomophones elicited greater P150 amplitudes 
as compared to orthographically similar pseudowords during a 

lexical decision task. They proposed that P2 (or, as they call it, 
P150) modulations in amplitude index the conflict between the 
unfamiliar orthographic representation of pseudohomophones and 
their familiar phonological representation, such that P2 ampli-
tude is increased with increased competition. Interestingly, such 
interaction between phonological and orthographic information 
is delayed when the primes are not consciously perceived, in which 
case ERP modulations are found later, e.g., in or beyond the N250 
range (Grainger et al., 2006; Ashby and Martin, 2008). Therefore, if 
phonological representations are impaired in dyslexia, it is reason-
able to expect group differences in the P2–N2 range in relation to 
phonology–orthography interactions during reading.

However, most of the previous electrophysiological studies 
with dyslexic participants have shown differential effects between 
groups for phonological manipulation in visually presented words 
fairly late in the processing stream, i.e., from within the so-called 
N400 range. The N400 wave is a large negative deflection typically 
elicited in linguistic tasks involving violations of semantic expecta-
tion in sentence (e.g., Kutas and Hillyard, 1980, 1984; van Berkum 
et al., 1999; Hagoort et al., 2004) and single word priming contexts 
(Bentin et al., 1985, 1993), but is also elicited by other forms of 
expectancy violation in language, such as mismatching stimuli 
in rhyming tasks (Rugg, 1984; Rugg and Barrett, 1987). Studies 
reporting N400 differences between dyslexic and control readers 
with respect to phonological processing of visual word stimuli are 
confined to studies of rhyme judgment, in which dyslexic indi-
viduals typically show an attenuated N400 (Ackerman et al., 1994; 
McPherson et al., 1998; Rüsseler et al., 2007). Such observations 
have been taken as electrophysiological evidence of phonological 
processing difficulties in dyslexia (Rüsseler et al., 2007). N400 dif-
ferences observed in rhyme judgment, however, can be influenced 
by anomalies in domain-general cognitive processes including 
working memory (e.g., Gunter et al., 2003), integration (Holcomb, 
1993), inhibition (Gunter et al., 2003), and/or decision-making 
processes (Brown and Hagoort, 1993; Holcomb, 1993; Connolly 
and Phillips, 1994; Chwilla et al., 1995). This is particularly rel-
evant, because rhyming judgment is a fairly complex, abstract 
task reliant on working memory for retrieval, maintenance, and 
segmentation of the phonologic representation of the first stimulus 
into onset and rime and comparison with the rime of the follow-
ing target (Besner, 1987). This means that we ought to consider 
earlier modulations elicited by phonological and orthographic 
interactions in reading.

Recently, we investigated early phonological effects in dyslexic 
adults making homophony judgments on visual word stimuli 
(Savill and Thierry, 2011). By comparing responses to words primed 
by pseudowords orthogonally manipulated for orthographic and 
phonological similarity, we found that, like controls, dyslexic adults 
showed early phonological priming effects in the N2 and P3 ranges 
(attenuated N2 and increased P3). Main effects of phonological 
priming only showed differences between groups in the P600 range, 
a stage of stimulus re-evaluation. We did, however, find that the 
interactive effects of orthographic and phonological priming 
differed between groups for peaks spanning the P2, N2, and P3 
ranges, following reduced orthographic priming effects in the N1 
range in the dyslexic group. These results indicate that the pro-
cessing of orthographic information and its later integration with 

1In this study, the N2 peak was largest to non-rhyming orthographically dissimilar 
word pairs “shirt-witch”; smallest to rhyming and orthographically similar pairs 
“match-patch,” and of intermediate amplitude to non-rhyming, orthographically 
similar “catch-watch,” and rhyming, orthographically dissimilar pairs “blare-stair.”
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N2 amplitude decreases for these conditions relative to the 
unrelated condition in dyslexic participants as compared to 
matched controls.

(ii) Alternatively, if we can find no evidence of group  differences 
in early stimulus evaluation stages, but differences manifest 
later in processing (e.g., beyond 300 ms post-stimulus onset), 
this would indicate that the deficit in dyslexia is not appa-
rent during decoding and/or perception phases, but related to 
more integrative, attention-regulated, stages of phonological 
analysis which involve working memory and re-evaluation 
mechanisms.

Finally, the use of two tasks enabled us to test the potential role 
of overt attention to phonology during reading. Indeed, if the pro-
cesses at work are under the voluntary control of the participants, 
attending to orthography (“ortho-semantic” task), and phonology 
(“phono-semantic” task) should yield different patterns across tasks 
and, what is more, interact with participant group.

MaterIals and Methods
PartIcIPants
Twelve adult participants with developmental dyslexia (six females, 
mean age 20.8 years) and 12 control adults (six females, mean 
age 22.9 years) participated in this study approved by the local 
Ethics committee of Bangor University. Participants were all stu-
dents at Bangor University and had given informed consent to 
participate. All were right-handed according to the Edinburgh 
handedness inventory and native English speakers with normal or 
corrected-to-normal vision. Our dyslexic participants had a con-
firmed diagnosis of developmental dyslexia from an educational 
psychologist and were recruited through the university’s Dyslexia 
Unit or through advertisement via the university’s participant panel 
and were paid for participation. The dyslexic group consisted of 
high-functioning individuals who had compensated for their dif-
ficulties such that their reading level was within a normal range but 
at a level inconsistent with their academic ability. Performance on 
a series of subtests taken from the Dyslexia Adult Screening Test 
(DAST; Nicolson and Fawcett, 1998), Wide Range Achievement 
Test (WRAT-3; Jastak and Wilkinson, 1993), Wechsler Individual 
Achievement Test (WIAT-II; Wechsler, 2005), and Wechsler Adult 
Intelligence Scale (WAIS-III; Wechsler, 1997) showed that the dys-
lexic group performed significantly poorer than the control group 
across reading and spelling measures (Table 1).

stIMulI
To allow for the possibility of a greater loss of experimental trials 
from performance error due to testing dyslexic participants, we cre-
ated additional stimuli to expand the stimulus set used by Savill et al. 
(2011). High-cloze sentences for which the best completion had an 
existing semantically unrelated homophone were created (e.g., “Clare 
went on a diet to lose ____”: best completion is “weight”; homophone 
is “wait”). These were supplemented with filler high-cloze sentences 
for which the final word had a unique phonological form. All sen-
tences were normed by 26 native English speakers who completed 
them with the most expected word. Sentences selected for the study 
had at least 92% terminal word agreement. Pseudohomophones of 
the target word were created to form the pseudohomophone con-

 phonological information is problematic in dyslexia, rather than 
sensitivity to phonological information per se; at least within the 
context of a demanding meta-linguistic homophony judgment task.

To determine whether processing differences between dyslexic 
and unimpaired readers are present from the onset of reading-
related phonological analysis or whether differences emerge after 
phonological access has taken place in a more natural reading 
context, we decided to record ERP modulations elicited by pho-
nological and orthographic priming during sentence reading. This 
study expands on a task that has previously been shown to elicit 
phonological modulations of the N2 in normal readers (Savill 
et al., 2011). To adapt the task for use with dyslexic participants, 
we increased the size of the stimulus set from Savill et al. (2011) and 
created high-cloze probability sentences (e.g., “Clare went on a diet 
to lose ___”) ending either in (a) its expected best completion word 
(“weight”), (b) a word homophonic to the expected word (“wait”), 
(c) a pseudohomophone of the expected word (“wate”), or (d) 
an unexpected word (“string”). Since three of the four conditions 
were phonologically very close, and should have been primed by 
each sentence context phonologically, this enabled us to see how 
phonological representations were accessed from different, unex-
pected orthographic forms in dyslexic readers.

We were primarily interested to see whether dyslexic readers 
would show reduced early effects of phonological manipulations 
in the N2 range (i.e., less N2 attenuation, following phonologi-
cally reduced N2 amplitudes seen in Vissers et al., 2006; Grainger 
and Holcomb, 2009; Savill et al., 2011). We also anticipated that 
mismatching orthographic and phonological information (i.e., in 
the case of phonologically matched but orthographically incorrect 
homophones and pseudohomophones) would induce conflict dur-
ing lexical access and increase P2 mean amplitude (Bles et al., 2007; 
Braun et al., 2009; Hsu et al., 2009) and we investigated whether 
such modulation would be different in dyslexic readers (we did not 
test this in Savill et al. (2011) due to the paper’s focus on phono-
logical main effects). Furthermore, since previous ERP studies of 
visual word processing in dyslexic participants have predominantly 
shown effects of phonological manipulations in the N400 range, 
we investigated whether group differences would also/alternatively 
appear at later, post-perceptual stages of processing.

In order to test automatic versus controlled phonological pro-
cessing, we tested participants using two different tasks performed 
on the same stimuli: a semantic-judgment task we termed “ortho-
semantic” focusing on orthography following Savill et al. (2011) 
(“is the final word the best way to complete the sentence?”); and 
a task we named “phono-semantic,” which demanded focus on 
phonological form (“does the final word of the sentence sound 
like the best way to complete the sentence?”). We predicted that 
ERPs would provide evidence for a phonological deficit in reading 
in one of two ways:

(i) If the phonological deficit affecting reading in dyslexia has its 
source in degraded phonological representations and/or defi-
ciency in extracting phonological information from written 
stimuli, dyslexic participants should show reduced sensitivity 
to phonological information and thus should display reduced 
phonological priming in response to homophones and pseu-
dohomophones in both tasks. Therefore, we expected reduced 
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they were asked to press a key for final words that sounded like the 
expected completion of sentences and another key for phonologi-
cally inadequate endings. Sentences were presented using EPrime 
(Psychology Software Tools, Inc., Pittsburgh, USA) at the center 
of the screen, at eye-level, one word at a time, subtending a maxi-
mum angle of 3.7°, in black Times New Roman font on a white 
background. Experimental trials were presented in pseudo-random 
order across five blocks such that filler and test trials were evenly 
distributed. Each test trial consisted of a fixation cross displayed for 
200 ms, individual words in lower case displayed for 200 ms and 
separated by 300 ms inter-stimulus intervals featuring a fixation 
cross (Figure 1). After presentation of each final word the screen 
remained blank for a fixed period of 2000 ms to allow for partici-
pant response. A further 1000 ms separated trials. Task order and 
response sides were counterbalanced between participants.

The EEG data was recorded from 37 Ag/AgCl electrodes, placed 
in an elastic cap according to the extended 10–20 system, using 
Nuamps amplifiers (NeuroScan™, Sterling, USA). The online refer-
ence was the left mastoid and FPz served as the ground electrode. 
Electrodes positioned above and below the left eye recorded vertical 
eye movement. Electrode impedance was maintained below 5 kΩ. 
Recordings were band-pass filtered off-line between 0.1 and 30 Hz 
using a zero-phase shift digital filter. Eye blinks were mathematically 
corrected using the correction provided by Edit 4.3 (NeuroScan™, 
Sterling, USA). The continuous EEG was sliced into epochs ranging 
from −100 to 1000 ms after the onset of the target word. Epochs with 
voltage exceeding ±75 μV were automatically rejected. After baseline 
correction in reference to pre-stimulus activity, individual averages 
were re-referenced to the average of the mastoids. Individual aver-
ages were computed from correct trials in experimental condition 
(more than 35 epochs from each task for each case) and averaged 
together to produce grand-mean averages. Behavioral data were 
collected simultaneously to ERP data.

data analysIs
Time windows for mean amplitude analyses were defined for the 
control group on the basis of mean global field power, expectations 
from previous experiments using similar stimuli (e.g., Connolly 
et al., 1995; Vissers et al., 2006; Thierry et al., 2008; Savill et al., 
2011) and visual inspection of topographic distribution of ERP 

dition (e.g., “wate”) and a word semantically unrelated to the sen-
tence stem was chosen for the unrelated condition (e.g., “string”). 
The final stimulus set consisted of 48 test sentences, shown once 
with their best completion, a homophone of the best completion, a 
pseudohomophone of the best completion, and an unrelated stimu-
lus. A further two sets of 96 filler sentences were created: (a) a set 
of sentences ending with best completion words to be used in one 
of the tasks (“ortho-semantics”) and (b) a set of sentences ending 
with unrelated homophones or pseudohomophones to be used in 
the other task (“phono-semantics”). The purpose of the fillers was 
to ensure equally probable yes or no responses in both tasks: In the 
ortho-semantic task a yes response was expected for best comple-
tions (48 items) and fillers (96 items) with homophones (48), pseu-
dohomophones (48) and unrelated (48) requiring a no response; 
and for the phono-semantic task a yes response was expected for 
best completions (48), homophones (48), and pseudohomophones 
(48), with a no for unrelated (48), and filler items (96). Word lengths 
varied between 3 and 10 letters (terminal word M = 4.9, SD = 1.3) 
and terminal words did not significantly differ in length across condi-
tions (p > 0.2). Kucera–Francis written frequency and concreteness 
of the sentence final words were controlled between best completion, 
homophone and unrelated conditions (p > 0.1). All pseudohomo-
phones used were piloted in the 26 participants mentioned above to 
verify pronunciation was homophonic to the target word. Finally, the 
orthographic properties of the pseudohomophone stimuli did not 
differ from the other conditions in terms of constrained bigram and 
trigram counts and averaged orthographic neighbor frequency (veri-
fied by http://www.neuro.mcw.edu/mcword/, Medler and Binder, 
2005) and were similar in orthographic overlap with best completion 
words as the homophones were (according to their normalized edit 
distance, see Lambert et al., 1999). A list of the stimuli used is given 
in the Appendix.

Procedure
Participants were seated comfortably in a dimly lit, sound- attenuated 
room in front of a projector screen. They were instructed to fixate 
the center of the screen and perform one of two tasks: (a) in the 
“ortho-semantic” task, they were asked to press a designated key for 
final words which were expected according to the sentence context 
and another for any other ending; (b) in the “phono-semantic” task, 

Table 1 | Group performance on psychometric subtests.

 Control group (n = 12) Dyslexic group (n = 12) t

 M SD M SD 

Age (years) 22.92 6.13 20.75 1.29 1.20

Reading (WRAT; untimeda) 115.58 6.10 102.83 11.34 3.43**

One minute reading (DAST) 117.25 11.99 96.17 15.68 3.70**

Pseudoword reading (WIATa) 114.67 5.55 90.17 14.62 5.43***

Nonsense passage (DAST) 95.58 3.87 82.67 9.46 4.38**

Spelling (WRATa) 108.42 5.71 96.33 5.60 5.23***

Rapid naming (DAST; s) 25.08 3.75 31.58 10.19 −2.07*

Digit span (WAISa) 11.75 2.34 9.08 2.35 2.78*

Raw scores are reported unless otherwise stated.
aStandardized scores.
*p < 0.05. **p < 0.01. ***p < 0.001.
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in the dyslexic group. No other peaks showed a significant delay 
and so for all other peaks the same analysis window was used as 
for the control group.

Mean amplitudes were measured at electrodes selected a priori 
based on classical topography of main components and checked 
for maximal sensitivity based on visual inspection: O1, O2, P7, 
and P8 electrodes for the P1; O1, O2, P7, and P8 for the N1; FC3, 
FC4, FCz, and Cz for the P2, N2, and P3a peaks and Cz, CP3, CP4, 
CPz for the P600.

Mean ERP amplitudes and peak latencies were subjected to a 
mixed ANOVA with task (“ortho-semantic,” “phono-semantic”), 
sentence condition (best completion, homophone, pseudohomo-
phone, unrelated), and electrode as within-subject factors, and 
participant group (control, dyslexic) as between-subject factor. 
Error rates and reaction times (RTs) were also analyzed by means 
of a mixed ANOVA with task and condition as within-subject fac-
tors and participant group as between-subject factor. Greenhouse–
Geisser corrections of degrees of freedom were applied where 
appropriate.

results
BehavIoral data
Statistical analyses revealed a main effect of group on both accu-
racy, F

1, 22
 = 4.40, p = 0.05, and RTs, F

1, 22
 = 13.79, p < 0.01, such 

that dyslexic participants were overall less accurate and slower than 
matched controls (Figure 2). Sentence condition significantly influ-
enced performance accuracy, F

3, 66
 = 17.34, p < 0.001 and correct 

RT, F
3, 66

 = 14.07, p < 0.001. Accuracy was significantly lower for 
homophone endings than any other condition. RTs, meanwhile, 
were significantly faster for pseudohomophone endings, and unre-
lated endings elicited significantly slower reaction times than best 
completions. There was also a near-significant group by condition 
interaction with respect to accuracy (p = 0.08), relating to poorer 
accuracy in the homophone condition in the dyslexic group com-
pared to the other conditions. Task also interacted significantly with 
condition in terms of accuracy (F

3, 66
 = 6.09, p < 0.01). Post hoc analy-

ses showed that this interaction was driven by significantly poorer 
accuracy in the homophone condition in the “ortho-semantic” task, 
compared with no differences between conditions in the “phono-
semantic” task. Task interacted significantly with condition also 
in terms of RT (F

3, 66
 = 5.35, p < 0.01). Post hoc tests showed that 

pseudohomophones elicited significantly faster RTs compared to 
all other conditions in the “ortho-semantic” task, whereas in the 
“phono-semantic” task only the unrelated words elicited slower RTs 
than the other conditions. A trend for a task by group interaction 
on accuracy (p = 0.08) was driven by a trend in the dyslexic group 
to perform less accurately in the “ortho-semantic” task compared 
to the “phono-semantic” task (p = 0.09), whilst the control group 
showed no significant difference between tasks (p = 0.69).

event-related PotentIal results
No significant task effects were observed on ERP peak latencies or 
mean amplitudes, therefore valid EEG epochs for each trial of both 
tasks were averaged together to increase statistical power (accepted 
epochs M = 83.20, SD = 11.42; no significant differences between 
condition or group). All results reported below relate to the com-
bined task averages.

modulations (Luck, 2005). The expected P1/N1/P2/N2 peaks were 
observed, followed by a visible P3a peak in the control group only. 
Windows of analysis for the control group were 80–110 ms for 
the P1; 140–170 ms for the N1; 160–210 for the P2; 250–350 ms 
for the N2, 350–450 ms for the P3a; and 470–670 ms for the P600.

To determine appropriate time windows for mean amplitude 
analyses in the dyslexic group, automatic peak detection was per-
formed on large temporal windows encompassing each peak to 
check for significant group differences in overall peak latency  
(70–110 ms for the P1; 130–180 ms for the N1; 160–230 ms for 
the P2; 250–370 ms for the N2, 340–470 ms for the P3a; and  
470–700 ms or the P600). Peak detection was time-locked to the 
electrode of maximal amplitude for each observed peak: O2 for 
the P1; P7 for the N1; and FCz for the P2, N2, and P3a. As both the 
P2 peak and the P600 peak were found to peak significantly later 
in the dyslexic group, with a delay of approximately 16 and 26 ms 
respectively, the analysis windows were adjusted to 180–230 ms for 
P2 mean amplitudes and to 500–700 ms for P600 mean amplitudes 

FiGure 1 | Schematic of a single trial.
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amplitude were found (all p > 0.50). P2 peak latency was also sig-
nificantly affected by sentence condition (F

3, 66
 = 5.50, p < 0.01), 

such that the unrelated condition elicited shorter latencies relative 
to the other conditions (all p < 0.05). Analyses also showed a main 
effect of group (F

1, 22
 = 7.01, p < 0.05) indicating significantly longer 

P2 latencies overall in the dyslexic group (control M = 183 ms; 
dyslexic M = 199 ms).

Sentence condition significantly modulated mean N2 amplitude 
(F

3, 66
 = 36.55, p < 0.001; Figure 4) such that unrelated words elic-

ited greater negativity in this range compared to all other  sentence 

No significant differences in P1 mean amplitude or latency were 
found between groups or conditions. The N1 tended to be smaller 
in the dyslexic group, as indicated by a group effect on N1 mean 
amplitudes (F

1, 22
 = 4.34, p < 0.05; see Figure 3). No significant 

experimental modulations of the N1 were observed.
The P2 was significantly modulated by sentence condition 

(F
3, 66

 = 5.54, p < 0.01). Post hoc tests showed that this effect was 
driven by the homophone and pseudohomophone conditions 
eliciting significantly larger responses compared to the unrelated 
condition (both p < 0.01). No significant group differences on mean 

FiGure 2 | Behavioral data for both tasks. Error bars represent 1 SE. BC, best completion; HOM, homophone; PSH, pseudohomophone; Unr, unrelated.

FiGure 3 | Group effect on N1 amplitude. Linear derivation of O1, O2, P7, and P8 electrodes. Note negative amplitudes are plotted downward.
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relative to each of the other conditions, respectively (all p < 0.01). 
Pairwise comparisons did not show significant differences in P600 
amplitude between homophone, pseudohomophone, and unre-
lated conditions (all p > 0.20). P600 peak latency was also signifi-
cantly affected by sentence condition (F

3, 66
 = 11.36, p < 0.001), such 

that the homophone and pseudohomophone conditions elicited 
shorter latencies relative to the best completion and unrelated con-
ditions (all p < 0.01). Analyses also showed a main effect of group on 
P600 latency (F

1, 22
 = 4.56, p < 0.05) indicating significantly longer 

P600 latencies overall in the dyslexic group (control M = 540 ms; 
dyslexic M = 576 ms).

Bivariate correlations performed on mean amplitudes of ERP 
peaks for each experimental condition with their respective behav-
ioral data are given in Table 2.

conditions (all p < 0.001). N2 latencies were also significantly mod-
ulated by sentence condition (F

3, 66
 = 3.21, p < 0.05) due to the 

unrelated condition eliciting significantly shorter latencies than 
the homophone and pseudohomophone conditions (p < 0.05). No 
group differences were found in the N2 range (condition × group 
amplitude, p = 0.77; latency, p = 0.30).

The frontocentral P3 was significantly modulated by sentence 
condition (F

3, 66
 = 12.72, p < 0.001). This effect related to sig-

nificantly larger P3a amplitudes elicited in the homophone and 
pseudohomophone conditions relative to the best completion and 
unrelated conditions (each p < 0.01). The condition effect was quali-
fied by a main effect of group on P3a amplitude, confirming that 
the P3a was significantly larger in the control group (F

1, 22
 = 15.11, 

p < 0.001; Figure 5) and by a significant interaction of group and 
condition (F

3, 66
 = 3.19, p < 0.05). Subsequent group-wise analyses 

showed that the control group showed a strong condition effect 
in the same direction as the observed overall condition effect (F

3, 

33
 = 11.32, p < 0.001), showing significant differentiation of pseu-

dohomophone and homophone conditions from best completion 
and unrelated conditions (all p < 0.01), while the dyslexic group 
showed an effect driven only by smaller amplitudes to the unrelated 
condition compared to each other condition (F

3, 33
 = 4.51, p < 0.05).

A trend for P3a peak latency differences induced by experimental 
condition was also found (p = 0.06), such that the best completion 
condition elicited significantly shorter latencies compared to the 
unrelated condition.

The P600 wave was also significantly modulated by sentence 
condition (F

3, 66
 = 8.03, p < 0.001; see Figure 6) irrespective of 

group. Pairwise comparisons showed that this effect was due to sig-
nificantly attenuated amplitudes for the best completion condition 

Table 2 | Significant correlations between individual mean amplitudes 

and behavioral data for each condition.

 N1 P2 N2 P3a P600

BC accuracy     

HOM accuracy −0.406*    

PSH accuracy     

UNR accuracy     

BC RT    −0.656** 

HOM RT   −0.414* −0.595** 

PSH RT   −0.427* −0.743** 

UNR RT    −0.532** 

Values are Pearson r coefficients (n = 24).*p < 0.05; **p < 0.01 (two-tailed).

FiGure 4 | Group grand averages showing P2, N2, and P3a peaks based on a linear derivation of FC3, FC4, FCz, and Cz electrodes. Time windows for mean 
amplitude analyses are marked by the gray bars.
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We found early significant ERP modulations by orthographic 
and phonological priming in both the participant groups. However, 
despite poorer behavioral performance in the dyslexic group for the 
“ortho-semantic” and the “phono-semantic” variants of the task, 

dIscussIon
This study aimed at detecting differences between individuals with 
developmental dyslexia and matched controls in orthographic/pho-
nological integration mechanisms using ERPs.

FiGure 5 | Grand averages of frontocentral electrodes showing the diffuse group difference in P3a modulation.
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had a “special” status: They were either the wrong completion which 
sounded like the correct completion in the “ortho-semantic” task or 
they were the correct completion but only in terms of phonology 
in the “phono-semantic” task. This special status prompted a P3a 
response that was not found for unambiguous targets or completely 
unrelated completions.

Critically, dyslexic participants failed to show this P3a modula-
tion. The P3a is traditionally conceived as a response evoked over 
frontocentral areas of the scalp by the engagement of working mem-
ory following shifts in the orientation of attention (Squires et al., 
1975; Donchin and Coles, 1988; Knight, 1997; Polich, 2007). It is 
classically elicited by deviant non-target stimuli in the context of an 
oddball paradigm (Courchesne et al., 1975; Knight, 1984; Katayama 
and Polich, 1996a,b; Spencer et al., 1999, 2001; Daffner et al., 2000; 
Simons et al., 2001; Debener et al., 2005; Sawaki and Katayama, 
2006, 2007, 2008) and has been shown to be modulated by the 
degree of difficulty involved in discriminating distracters from 
targets (Cormerchero and Polich, 1998; Polich and Comerchero, 
2003; Hagen et al., 2006). The P3a indexes automatic engagement 
of focal attention during stimulus evaluation (e.g., Katayama and 
Polich, 1998) for further processing of a stimulus as a potentially 
important signal (e.g., Daffner et al., 2000) and is thought to reflect 
context updating (Kok, 2001). In other words, our results suggest 
that normal readers automatically oriented their attention to these 
special, phonologically acceptable but orthographically unexpected 

ERP analyses failed to show any significant group differences in 
experimental effects before the P3 range and no task-specific effects 
were found. N1 amplitude was generally smaller in the dyslexic 
group but no experimental effects within or between groups were 
observed. P2 and N2 amplitude were both significantly affected by 
the experimental manipulation but these effects did not interact 
with group. By contrast, the P2 peak was significantly delayed in the 
dyslexic group as compared to the control group, but again there 
was no group by condition interaction. Moreover, in the P3 range, 
pseudohomophone and homophone stimuli elicited a significant, 
albeit late, frontocentral P3a in control participants but failed to 
elicit a similar peak in this time window in the dyslexic group. The 
subsequent P600 wave peaked later in the dyslexic group but P600 
amplitudes, which were increased to orthographically incorrect 
sentence completions, did not significantly differ between groups.

In this discussion we address the main result of our study, i.e., 
the differential P3a modulation in the two groups, first, and then 
we make observations regarding results in the N1, P2, N2, and 
P600 ranges.

P3a: defIcIent orthograPhIcally/PhonologIcally drIven 
orIentatIon of attentIon In dyslexIa?
We interpret the increase in P3a mean amplitude triggered by the 
homophone and pseudohomophone stimuli as a correlate of auto-
matic attentional capture in the control group, because these stimuli 

FiGure 6 | Group grand averages showing the P600 peak, marked by the gray bar. Linear derivation of CP3, CP4, CPz, and Pz electrodes.
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2008); and/or to under-specified orthographic representation in 
the  lexicon of dyslexic individuals (Bosse et al., 2007; Prado et al., 
2007; Lassus-Sangosse et al., 2008; Lallier et al., 2010). Alternatively, 
the absent P3a response in the dyslexic group could reflect a wider 
impairment in attentional filtering that could reduce their filtering 
of incorrect orthographic and/or relevant phonological stimuli. 
Roach and Hogben (2007, 2008) propose that such impairment 
would stem from a relative failure in uncertainty reduction in dys-
lexic individuals.

Importantly, the deviation in processing seems to be related to 
attentional capture rather than perceptual encoding or phonologi-
cal access per se, since the dyslexic group studied here activated 
and accessed phonological lexical forms similarly to the control 
group (P2–N2 complex) as shown by the amplified response to 
homophones and pseudohomophones in the P2 range (see below, 
P2–N2 discussion). Furthermore, the significant correlations with 
RTs indicate that the attentional processes engaged in visual word 
analysis indexed by the P3a impact processing efficiency. How 
could this relate to reading difficulties more broadly? We suggest 
that a general weakness in engaging attention with orthographic–
phonological correspondences could affect sensitivity to spelling 
and spelling errors, which in turn would impede the acquisition 
of accurate and stable lexical representations. Furthermore, our 
results are compatible with recent hypotheses of deficient working 
memory in relation to phonological analysis rather than perceptual 
encoding (e.g., Banai and Ahissar, 2006; Ramus and Szenkovits, 
2008; Menghini et al., 2011).

A review of the neuroimaging literature in relation to P3a ori-
gins, orthographic–phonological mapping, and functional cor-
relates of developmental dyslexia offers interesting insights into 
the neuroanatomical substrates likely to be involved in the process 
under study.

Firstly, patient and neuroimaging data have shown that tempo-
roparietal cortex (TPJ) is fundamentally involved in P3 generation 
(both the P3a and P3b) with additional involvement from prefron-
tal areas in the case of the novelty P3a (Knight, 1984; Knight et al., 
1989; Yamaguchi and Knight, 1991; Bledowski et al., 2004; Linden, 
2005; Polich, 2007). The inferior parietal areas, in particular, have 
been implicated in attentional orienting based on stimulus rel-
evance (Downar et al., 2001; Kiehl et al., 2001; Serences et al., 2005).

Secondly, left inferior parietal areas have been specifically impli-
cated in the integration of orthographic and phonological informa-
tion (Booth et al., 2002, 2004, 2007; Chen et al., 2002; Borowsky 
et al., 2006; Cao et al., 2006; Nakamura et al., 2006; Bitan et al., 2007; 
Graves et al., 2010; Newman and Joanisse, 2011) and more generally 
in sublexical decoding processes (e.g., Jobard et al., 2003; Levy et al., 
2009; Graves et al., 2010), phonological judgments (Stoeckel et al., 
2009; Hartwigsen et al., 2010), and verbal working memory involve-
ment (see Ravizza et al., 2011). Note that inferior frontal areas have 
also been shown to be significantly activated during phonological 
tasks in which working memory load is high (e.g., Nixon et al., 
2004; Strand et al., 2008; Thierry et al., 2003; Graves et al., 2010).

Thirdly, temporoparietal areas have consistently been shown to 
be underactivated in dyslexic readers (e.g., Hoeft et al., 2007; see 
Richlan et al., 2009 for a review) and inferior frontal areas frequently 
show abnormal activation (with greater activity associated with 
greater behavioral compensation; e.g., Hoeft et al., 2011 etc.). For 

stimuli, whereas dyslexic participants did not. This could stem from 
a visual–phonological integration failure or a general failure in 
orienting of attention to phonologically relevant material, pos-
sibly leading to deficient engagement of working memory, rather 
than a deficit in the perceptual decoding of orthographic and/or 
phonological information.

Previous studies have indeed reported reduced or absent P3a 
in participants with developmental dyslexia, using phonologically 
manipulated speech and tone oddball stimuli (Rüsseler et al., 2002; 
Fosker and Thierry, 2004; Hämäläinen et al., 2008). Fosker and 
Thierry (2004), for instance, found that the P3a elicited by pho-
nological oddballs during an auditory lexical decision task in adult 
control participants was not found in the dyslexic group. However, 
when phonological oddballs were brought into the focus of atten-
tion, dyslexic participants produced P3b modulations comparable 
with controls (Fosker and Thierry, 2005). Rüsseler et al. (2002) have 
shown similar attentional modulations of dyslexic oddball effects 
on the P3 with tone stimuli. Anomalous frontal P3a-like modula-
tions have also been shown in dyslexic adults engaged in tasks 
requiring shifts in spatial attention (Wijers et al., 2005). Overall, 
such results have led to the idea of impaired shifts and/or capac-
ity for automatic attentional capture by phonological information 
rather than impaired phonological processing abilities.

This interpretation links with the literature derived from tasks 
with rapidly presented stimuli that propose disordered automatic 
orienting of attention (e.g., Facoetti et al., 2008) and sluggish atten-
tional shifting in dyslexia (Hari and Renvall, 2001). Slow capture 
of attention has previously been observed in non-linguistic cued-
detection and T2 detection in attentional blink tasks using visual 
and auditory stimuli in dyslexic children and adults (Brannan 
and Williams, 1987; Hari et al., 1999; Facoetti et al., 2003a,b, 2006, 
2008, 2010; Buchholz and Aimola Davies, 2007; Lallier et al., 2010). 
Sluggish shifting of attention has also been reported in dyslexic 
individuals using auditory or visual stream segregation tasks 
(Helenius et al., 1999b; Petkov et al., 2005; Lallier et al., 2009). With 
respect to reading, sluggish attentional capture has been found to 
significantly predict non-word reading performance (Cestnick and 
Coltheart, 1999; Facoetti et al., 2006, 2010). Facoetti et al. (2008) 
hypothesized that a deficit in automatic attention could impact 
decoding due to deficient engagement and disengagement with 
each letter/grapheme. Such a deficit, along with the absence of the 
P3a in our dyslexic group, is unlikely to relate to a general deficit 
in automatic attention, as dyslexic participants have shown intact 
automatic orientation of attention in non-rapid tasks using non-
verbal stimuli (Facoetti et al., 2008, 2010).

Although we did not test sluggish attentional shifting (since SOA 
was longer than 200 ms, e.g., Lallier et al., 2009), the present results 
are congruous with such interpretations derived from studies of 
visuospatial attention in decoding and whole word reading. In gen-
eral terms, our data, which indicate a reduced tendency to react to, 
rather than detect, a mismatch between orthography and primed 
lexical phonological representations in dyslexia, are consistent with 
a deficit in engagement of attention with phonological information 
when it is not supported by expected orthographic mappings. In 
relation to visual attention hypotheses regarding developmental 
dyslexia, this could be due to a deficit in attentional engagement 
and disengagement with each letter/grapheme (Facoetti et al., 
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high-functioning dyslexic adults. Furthermore, a study similar to 
ours with Chinese dyslexic children using a sentence paradigm in 
which the second character of two-character Chinese words was 
replaced with homophonic or orthographically similar characters 
also failed to find group differences in P2 amplitude, but instead 
revealed P2 latency effects and later N400 modulations (Meng 
et al., 2007). The elicitation of earlier P2 latencies for homophonic 
replacements as compared to baseline in both groups suggests that 
early phonological extraction from orthography was intact in the 
dyslexic participants tested.

The P2 has been reported to be affected by stimulus salience 
in relation to task relevance (Potts and Tucker, 2001; Potts, 2004; 
Kieffaber and Herrick, 2005). In contrast to P3 modulations, it 
is not, however, thought to index orienting of attention (Potts, 
2004). Thus, finding only group differences in the latency of the P2 
suggests that the dyslexic group successfully identified the phono-
logically salient but semantically and orthographically incongruent 
homophones and pseudohomophones, albeit slower than controls. 
The significant P2 differentiation of the incorrect orthographic 
completions on the basis of phonological match (homophones 
and pseudohomophones versus unrelated conditions) discour-
ages an alternative interpretation of the later P3a group difference 
being simply due to a general lack of orientation to orthographic 
form in the dyslexic group. Indeed, the later significant increases 
in P600 amplitude to incorrect orthographic completions relative 
to the best completion seen in both groups (in line with previous 
observations of P600 increases to misspellings in highly constrained 
sentences; Vissers et al., 2006) shows that the dyslexic group was suf-
ficiently sensitive to orthographic form for incorrect forms to elicit 
stimulus re-evaluation. Furthermore, as homophones and pseu-
dohomophones elicited the largest P2 amplitudes (rather than the 
best completion) in both groups, which is compatible with inter-
pretations of frontal P2 amplitudes as sensitive to orthographic–
phonological mapping and to competition between phonological 
and orthographic information, the absence of a later amplitude 
increase to the same stimuli within the P3a range in the dyslexic 
group suggests that the incorrect orthographic–phonological con-
flict was detected early but did not engage attention. In addition, 
ERP effects in the N2 range showed phonological integration in the 
dyslexic group (indexed by attenuated N2 amplitudes) comparable 
to both the normal readers in the present study and those tested in 
Savill et al. (2011). This also corroborates recent results in dyslexic 
readers (Savill and Thierry, 2011) and, on the basis of its occurrence 
immediately before the P3a window over the same electrodes, sug-
gests that the emergence of dysfunctional phonological responses 
in reading coincides with the failure of attentional engagement.

The only group difference we observed prior to P3a amplitude 
effects was the finding that P2 latencies were longer overall for the 
dyslexic group. This P2 latency delay suggests that the initiation 
of phonological mapping may have been delayed, which, in turn, 
could account for the differences observed downstream in the P3a 
range. In the absence of a P3a peak in the dyslexic group, we cannot 
infer whether attentional engagement processes were progressively 
delayed, however the observation of P600 modulations involved in 
orthographic monitoring also peaked later in the dyslexic group 
suggesting that word recognition may be slowed down through-
out the processing window. This finding is consistent with that of 

instance, consistent with our interpretation, Cao et al. (2006, 2008) 
found reduced activations in left inferior parietal lobe of dyslexic 
children performing rhyme judgments on stimuli with conflict-
ing orthographic and phonological information (e.g., pint-mint, 
jazz-has versus press-list, gate-hate), and reduced functional con-
nectivity between left inferior parietal lobe and left inferior frontal 
and fusiform gyri.

This convergence of functional data regarding the TPJ and infe-
rior frontal cortex in terms of (a) generation of the P3a, (b) pho-
nological analysis in reading, and (c) loci of abnormal activation in 
dyslexia, provide empirical support for a functional link between 
attention, phonological processing in reading, and developmental 
dyslexia. Therefore, the P3a effects in the present study support the 
existence of a physiological relationship between attentional orient-
ing mechanisms and phonological sublexical processing in reading; 
a relationship likely to be dysfunctional in developmental dyslexia.

n1: reduced orthograPhIc sensItIvIty In dyslexIa?
Significant differences in visual word form processing between dys-
lexic and control readers in the P1–N1 range, thought to be letter-
string specific, have previously been reported (Helenius et al., 1999a; 
Wimmer et al., 2002; Maurer et al., 2007; Taroyan and Nicolson, 
2009; Savill and Thierry, 2011). In the present study, however, the 
only significant effect in the N1 range was an overall reduction in 
amplitude in the developmental dyslexic participants as compared 
to controls. This could be taken as a sign of reduced general sensi-
tivity to orthographic stimuli (Maurer et al., 2005). However, the 
observation of smaller N1 overall may simply reflect greater latency 
variation in the dyslexic group yielding smaller average amplitudes 
(control N1 latency SD = 12.58; dyslexic latency SD = 15.04; see 
Picton et al., 2000). Alternatively, other random between–group 
differences unconnected to stimulus processing may have affected 
N1 amplitudes between groups. Overall, global N1 differences that 
are not qualified by an interaction with experimental conditions 
ought to be interpreted cautiously. Whilst reduced N1 amplitudes 
may index some form of reduced orthographic input in the dyslexic 
group that might contribute to the effects we observe downstream, 
such data alone can provide little supporting evidence of differ-
ential sensory integration mechanisms in developmental dyslexia 
and normal reading.

Intact PhonologIcal rePresentatIons (P2 and n2) But slow 
ProcessIng (P2 and P600) In dyslexIa?
Both participant groups showed similar amplification of the P2 
in the homophone and pseudohomophone conditions relative to 
the unrelated condition, as well as similar attenuation of N2 mean 
amplitude in the homophone and pseudohomophone conditions 
relative to the unrelated condition, irrespective of task. This sug-
gests that dyslexic readers’ phonological representations of the 
anticipated word were well specified and that grapheme–phoneme 
conversion mechanisms allowed extraction and identification of 
the stimuli’s phonological form not significantly different from 
that observed in control participants. This absence of differences 
between groups in the pattern of P2 and N2 mean amplitudes across 
experimental conditions suggests that a deficit in early sensitivity 
to phonological information may not be the main source of the 
persistent phonological deficit in reading, at least in the case of 
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aPPendIx

List of sentence stimuli.

Sentence stem BC HOM PSH uNr

Anti-war activists want world peace piece peece heavy

Emily combed Sylvia’s beautiful hair hare heyr window

The moon shines at night knight nyte face

The dog was wagging its tail tale tayl yell

Baking bread involves kneading the dough doe dow unit

Instead of hands, cats have paws pause porze tap

There are 7 days in a week weak weec desk

Marie was not sure which dress to wear where wair register

The prisoner was locked in his cell sell sel germ

An eagle is a bird of prey pray prai flare

Pierre recommended a bottle of French red wine whine wighn boat

The jockey put the saddle on his horse hoarse hauce music

Pectorals and triceps are both types of muscle mussel mussle dawn

The gas man visited to read the meter metre meater prune

The little boy did as he was told tolled toled short

Clare went on a diet to lose weight wait wate string

The police quickly arrived at the murder scene seen sene ram

Groups work best if they work as a team teem tiem spice

The lecturer used a microphone so everyone could hear here hier point

Susan got some lozenges because her throat was dore soar sawe brute

Rob looked at his watch to check the time thyme tyme thwart

More troops were recruited to fight in the war wore worr mass

The bride’s father proudly walked her down the aisle isle ighl fairy

The children were scared when they heard the lion roar raw rore cook

Umbrellas are used to stop getting wet from the rain rein reyn biscuit

At football today, Nick did not bother to pass the ball bawl baul dog

In front of the hotel is a beautiful sandy beach beech beetch train

They watched the car until it was out of sight site syte broke

The shop did not have the shoes in Anne’s size sighs seiz act

Heather sang the song with her whole heart and soul sole sowl next

Gerard had over 100 vintage wines in his cellar eller sella ache

Kelly was annoyed at how much mess her kids had made maid meyed east

Pete took the lift to his office on the fifth floor flaw flore cost

The postal service in Britain is run by the Royal mail male mayel sting

Linda was 9 months pregnant, she was about to give birth berth burth plane

Rita tried to find the supermarket till with the shortest queue cue quew rapid

The defendant was relieved that the jury was on his side sighed syed pouch

The son inherits his father’s possessions because he is the rightful heir air ehr frail

Andrew broke his leg and therefore was in a lot of pain pane payn mince

Jim put a belt on to keep his trousers around his waist waste wayst skull

Before walking up the garden path, Edmond had to open the gate gait gayt bone

When Lucy went to the seaside she took her bucket and spade spayed spaid garlic

The plumber came to fix the pipe that had sprung a leak leek leec blanket

They played eye-spy in the car to stop the children from getting bored board borde moral

If you are in debt, you may need to take out a loan lone lown open

She set her alarm clock to go off very early in the morning mourning mawning power

Sally put a lot of sugar in her coffee as she liked it really sweet auite swete urban

The length of time a king is on the throne is described as his reign rain wrayn outset
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