Est.	YORK
1841	ST JOHN
	UNIVERSITY

Nicholas, A.P., Aalto, R.E., Sambrook

Smith, G.H. and Schwendel, Arved ORCID logoORCID: https://orcid.org/0000-0003-2937-1748 (2018) Hydrodynamic controls on alluvial ridge construction and avulsion likelihood in meandering river floodplains. Geology, 46 (7). pp. 639-642.

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/3181/

The version presented here may differ from the published version or version of record. If you intend to cite from the work you are advised to consult the publisher's version: https://doi.org/10.1130/G40104.1

Research at York St John (RaY) is an institutional repository. It supports the principles of open access by making the research outputs of the University available in digital form. Copyright of the items stored in RaY reside with the authors and/or other copyright owners. Users may access full text items free of charge, and may download a copy for private study or non-commercial research. For further reuse terms, see licence terms governing individual outputs. Institutional Repository Policy Statement

RaY

Research at the University of York St John For more information please contact RaY at <u>ray@yorksj.ac.uk</u>

Geology

Hydrodynamic controls on alluvial ridge construction and avulsion likelihood in meandering river floodplains --Manuscript Draft--

Manuscript Number: G40104R1 Full Title: Hydrodynamic controls on alluvial ridge construction and avulsion likelihood in meandering river floodplains Short Title: Hydrodynamic controls on alluvial ridge construction and avulsion likelihood Article Type: Article Keywords: Hydrodynamic; avulsion; floodplain; alluvial ridge Andrew Nicholas Corresponding Author: University of Exeter Exeter, Devon UNITED KINGDOM Corresponding Author Secondary Information: Corresponding Author's Institution: University of Exeter Corresponding Author's Secondary Institution: Andrew Nicholas First Author: First Author Secondary Information: Order of Authors: Andrew Nicholas Rolf Aalto Greg Sambrook Smith Arved Schwendel Order of Authors Secondary Information: Manuscript Region of Origin: Abstract: Existing models of alluvial stratigraphy often neglect the hydrodynamic controls on channel belt and floodplain sedimentation, and predict avulsion using topographic metrics, such as channel belt super-elevation. This study provides a first demonstration of the potential for simulating long-term river floodplain evolution (over >500 floods) using a process-based hydrodynamic model. Simulations consider alluvial ridge construction during the period leading up to an avulsion, and assess the controls on avulsion likelihood. Results illustrate that the balance between within-channel and overbank sedimentation exerts a key control on both super-elevation ratios and on the conveyance of water and sediment to the floodplain. Rapid overbank sedimentation creates high alluvial ridges with deep channels, leading to lower apparent superelevation (the ratio of ridge height to channel depth), and implying reduced avulsion likelihood. However, channel deepening also drives a reduction in channel beltfloodplain connectivity, so that conveyance of water to the distal floodplain is concentrated in a declining number of channel breaches, which may favor avulsion. These results suggest that while super-elevation ratios in excess of a threshold value may be a necessary condition for a meandering river avulsion, avulsion likelihood may not be greatest where the super-elevation ratio is maximised. Instead, optimal conditions for avulsion may depend on channel-floodplain hydrodynamic connectivity, determined by the balance between coarse (channel bed forming) and fine (floodplain constructing) sediment delivery. These results highlight a need to rethink the representation of avulsion in existing models of alluvial architecture.

- 1 Hydrodynamic controls on alluvial ridge construction and
- 2 avulsion likelihood in meandering river floodplains
- 3 A.P. Nicholas¹, R.E. Aalto¹, G.H. Sambrook Smith², and A.C. Schwendel³
- 4 ¹Geography, College of Life and Environmental Sciences, University of Exeter, Exeter,
- 5 EX4 4RJ, UK
- 6 ²School of Geography, Earth and Environmental Sciences, University of Birmingham,
- 7 Birmingham, B15 2TT, UK
- 8 ³School of Humanities, Religion & Philosophy, York St John University, York, YO31
- 9 *7EX, UK*
- 10 ABSTRACT

11 Existing models of alluvial stratigraphy often neglect the hydrodynamic controls 12 on channel belt and floodplain sedimentation, and predict avulsion using topographic 13 metrics, such as channel belt super-elevation. This study provides a first demonstration of 14 the potential for simulating long-term river floodplain evolution (over >500 floods) using 15 a process-based hydrodynamic model. Simulations consider alluvial ridge construction 16 during the period leading up to an avulsion, and assess the controls on avulsion 17 likelihood. Results illustrate that the balance between within-channel and overbank 18 sedimentation exerts a key control on both super-elevation ratios and on the conveyance 19 of water and sediment to the floodplain. Rapid overbank sedimentation creates high 20 alluvial ridges with deep channels, leading to lower apparent super-elevation (the ratio of 21 ridge height to channel depth), and implying reduced avulsion likelihood. However, 22 channel deepening also drives a reduction in channel belt-floodplain connectivity, so that

23	conveyance of water to the distal floodplain is concentrated in a declining number of
24	channel breaches, which may favor avulsion. These results suggest that while super-
25	elevation ratios in excess of a threshold value may be a necessary condition for a
26	meandering river avulsion, avulsion likelihood may not be greatest where the super-
27	elevation ratio is maximised. Instead, optimal conditions for avulsion may depend on
28	channel-floodplain hydrodynamic connectivity, determined by the balance between
29	coarse (channel bed forming) and fine (floodplain constructing) sediment delivery. These
30	results highlight a need to rethink the representation of avulsion in existing models of
31	alluvial architecture.

32 INTRODUCTION

33 River avulsion involves the movement of alluvial channels, generally from areas 34 of high topography (alluvial ridges) to low points in the fluvial landscape (e.g., distal 35 flood basins). Such avulsions represent significant hazards with social and economic 36 consequences (Sinha, 2009). They also exert a key control on the evolution of river and 37 floodplain morphology (Slingerland and Smith, 2004) and the stratigraphic architecture 38 of sedimentary basins (Hajek et al., 2010). Multiple factors are known to influence 39 avulsion likelihood, including valley floor morphology, channel belt aggradation rate, 40 flood magnitude, floodplain vegetation and the grain size characteristics of the river 41 sediment load and valley deposits (Hajek and Wolinsky, 2012), yet avulsions remain 42 difficult to predict. Process-based numerical models have provided important insights 43 into aspects of avulsion mechanics, including the stability of bifurcation points in braided 44 river networks (Bolla Pittaluga et al., 2003), delta channel branches (Edmonds and 45 Slingerland, 2010) and crevasse splay sites where avulsions may occur (Slingerland and

46	Smith, 1998). However, models of long-term fluvial landscape evolution and alluvial
47	stratigraphy (Mackey and Bridge, 1995; Jerolmack and Paola, 2007; Karssenberg and
48	Bridge, 2008) typically treat avulsion as a stochastic process, or predict avulsion using
49	simple topographic metrics (e.g., the ratio of the down-valley to cross-valley surface
50	gradients, or the channel belt super-elevation above the distal floodplain normalized by
51	the channel depth). Such models tend to neglect or simplify the role of hydrodynamics,
52	because solution of the governing equations describing fluid flow is computationally
53	expensive. Herein, we seek to investigate the hydrodynamic controls on floodplain
54	evolution and alluvial ridge construction in the period prior to an avulsion, and the
55	implications for the prediction of avulsion likelihood.

56 **METHODS**

57 Floodplain evolution was simulated using a new numerical model of flow, 58 overbank sedimentation and meander migration. The simulations reported here do not 59 represent specific rivers, but provide insight into the general behavior of large 60 meandering sand-bed rivers, and the construction of floodplain topography in the period 61 between avulsions. Details of the modeling approach are provided in the Data Repository. 62 In summary, the model solves the depth-averaged shallow-water equations and an 63 advection-diffusion equation representing suspended sediment transport and overbank 64 deposition for three grain sizes (sand, silt and clay). These equations are solved in the 65 channel along a series of rectangular cross-sections (using a 1D numerical scheme) and 66 on a grid of cells representing the floodplain (using a 2D scheme). A sequence of floods 67 is simulated, each with the same hydrograph of 20 days duration, with peak and minimum discharges of 15,000 m³s⁻¹ and 2,500 m³s⁻¹. After each flood, channel 68

69	migration is simulated using the meander migration model of Howard and Knutson
70	(1984), which includes neck cutoffs. Channel cross-section bed elevations are then
71	incremented by a defined rate of bed aggradation (A) that is constant for all locations (see
72	Data Repository). The channel is assumed herein to have a fixed width of 500m (equal to
73	twice the floodplain grid cell size of 250 m). The channel has a constant slope that is set
74	by the slope of the floodplain and the channel sinuosity (i.e., channel bed elevations are
75	not determined by sediment transport calculations). Channel depth is determined by the
76	difference between the channel bed elevation and the floodplain height in adjacent grid
77	cells. Initial conditions for each simulation are a planar floodplain with a constant
78	downstream gradient, and a straight channel with a constant depth. The total sediment
79	concentration (S) at the model inlet is defined as a function of discharge (Q) using a
80	sediment rating curve (Syvitski, et al., 2000): $S = C Q^{1.5}$, where C is constant during each
81	simulation, such that each flood has a constant sediment load. A set of 31 simulations,
82	
02	each consisting of 580 floods, were carried out (see Data Repository) to investigate the
83	each consisting of 580 floods, were carried out (see Data Repository) to investigate the effects on floodplain and alluvial ridge construction of changes in bed aggradation rate
83	effects on floodplain and alluvial ridge construction of changes in bed aggradation rate

87 **RESULTS**

During all simulations, channel and floodplain evolution follows a similar
sequence (Fig. 1). The straight initial channel begins to meander and bend amplitude
increases until cutoff occurs. The channel belt widens and the number of abandoned
channel elements increases progressively. Near-channel sedimentation creates levees that

92	DOI:10.1130/G40104.1 are breached by lateral erosion where bend migration is rapid (at bend apices). Levee
93	breaches promote formation of splay deposits and sediment transport away from river.
94	Low lying abandoned channels are also sites of preferential sedimentation, and provide
95	pathways for sediment conveyance to the distal floodplain.
96	Deposition within the channel belt drives construction of an alluvial ridge (Fig. 2).
97	Progressive growth of the ridge alters inundation patterns so that flow is increasingly
98	restricted to conveyance paths associated with levee breaches and with low-lying distal
99	flood basins (Fig. 1C). This tendency is also driven by an increase in channel depth
100	resulting from sedimentation near the channel, particularly when the rate of channel bed
101	aggradation is low. There is also a transition in sedimentation styles, from splay
102	dominated deposition in the early stages of simulations, to infilling of cutoff channels in
103	the later stages.
104	Overall, floodplain inundation declines over the course of simulations. However,
104 105	Overall, floodplain inundation declines over the course of simulations. However, inundation extent fluctuates between flood events, and significant conveyance of water to
105	inundation extent fluctuates between flood events, and significant conveyance of water to
105 106	inundation extent fluctuates between flood events, and significant conveyance of water to the floodplain continues to occur in the latter stages of most simulations (Fig. 1D).
105 106 107	inundation extent fluctuates between flood events, and significant conveyance of water to the floodplain continues to occur in the latter stages of most simulations (Fig. 1D). Fluctuations in inundation are driven by autogenic mechanisms that control channel-
105 106 107 108	inundation extent fluctuates between flood events, and significant conveyance of water to the floodplain continues to occur in the latter stages of most simulations (Fig. 1D). Fluctuations in inundation are driven by autogenic mechanisms that control channel- floodplain connectivity (e.g., bend migration, creation and infilling of levee breaches,
105 106 107 108 109	 inundation extent fluctuates between flood events, and significant conveyance of water to the floodplain continues to occur in the latter stages of most simulations (Fig. 1D). Fluctuations in inundation are driven by autogenic mechanisms that control channel- floodplain connectivity (e.g., bend migration, creation and infilling of levee breaches, bend cutoff) rather than differences in flood magnitude, which does not vary. The
105 106 107 108 109 110	inundation extent fluctuates between flood events, and significant conveyance of water to the floodplain continues to occur in the latter stages of most simulations (Fig. 1D). Fluctuations in inundation are driven by autogenic mechanisms that control channel- floodplain connectivity (e.g., bend migration, creation and infilling of levee breaches, bend cutoff) rather than differences in flood magnitude, which does not vary. The tendency for floodplain inundation to decline is weaker where channel bed aggradation
105 106 107 108 109 110 111	inundation extent fluctuates between flood events, and significant conveyance of water to the floodplain continues to occur in the latter stages of most simulations (Fig. 1D). Fluctuations in inundation are driven by autogenic mechanisms that control channel- floodplain connectivity (e.g., bend migration, creation and infilling of levee breaches, bend cutoff) rather than differences in flood magnitude, which does not vary. The tendency for floodplain inundation to decline is weaker where channel bed aggradation rates are high (Fig. 1E) and where floodplain sedimentation rates are low (due to low

115	rate and the suspended sediment load, which set the rate of overbank sedimentation.
116	Where the balance between bed aggradation and overbank sedimentation promotes an
117	increase in channel depth, and hence bankfull discharge capacity, ridge height is limited
118	by a decline in water and sediment delivery to the floodplain. Ridge height is also lower
119	for finer suspended sediment, for which deposition declines more slowly away from the
120	river, and for rapid channel migration, which reworks the alluvial ridge.
121	Avulsion likelihood can be related to the channel belt super-elevation ratio (β),
122	defined as the height of the alluvial ridge divided by the channel depth (Hajek and
123	Wolinsky, 2012). Figure 3A shows the relationships between β , the rate of channel bed
124	aggradation (A), and the river suspended sediment load (controlled by C). Higher rates of
125	channel bed aggradation promote greater values of β , which is consistent with existing
126	understanding (Hajek and Wolinsky, 2012). Higher suspended sediment loads increase
127	overbank sedimentation, creating higher alluvial ridges and deeper channels, the net
128	effect of which is to reduce the β . This implies that systems with higher alluvial ridges
129	and greater rates of floodplain aggradation may be less susceptible to avulsion, due to
130	increased channel depth and bankfull flow capacity, compared to systems in which the
131	channel belt aggrades more slowly. Clearly, the balance between in-channel and
132	overbank sedimentation exerts a key control on β .
133	Most simulations reported here use a suspended sediment load composed of 5%
134	sand, 75% silt and 20% clay. For simulations with a finer load (comprising 5% sand, 20%
135	silt and 75% clay), increased sediment conveyance away from the channel leads to lower
136	channel super-elevation values . For only one such simulation is β >1, which is commonly

137 treated as a plausible threshold for avulsion (Jerolmack and Paola, 2007; Hajek and

138	Wolinsky, 2012). Simulations in which bank erodibility was adjusted to be either 50% (or
139	150%) of the default erodibility value, induced changes in rates of bank migration of
140	similar magnitude. However, the resulting changes in β were small (a 15% increase in β
141	for less erodible banks and a 6.5% reduction in β for weaker banks). This suggests that
142	the role of river migration in controlling the creation of flow breach points may be more
143	significant than its influence on channel super-elevation.
144	One limitation of theory that predicts avulsion likelihood based on topographic
145	indices is that it does not account for the hydrodynamic controls on channel-floodplain
146	connectivity. Herein, we calculate a simple metric of floodplain hydrodynamic
147	connectivity (α) that is equal to the mean depth of water on the floodplain after the flood
148	peak, divided by the fraction of the channel-floodplain interface that is inundated (the
149	location of this interface is illustrated in Fig. 1E). Figure 3b shows that in general, for a
150	given rate of channel bed aggradation, higher suspended sediment loads (controlled by C)
151	promote greater inter-flood variability in α and higher peak values of α as the alluvial
152	ridge develops. This inter-flood variability in α is a product of changes in channel-
153	floodplain connectivity driven by the autogenic mechanisms outlined above. Moreover,
154	this autogenic signal is stronger in systems with high suspended sediment loads that
155	promote rapid overbank sedimentation, deep channels and more localized bank
156	breaching. Figure 3c illustrates values of α_{95} , the 95 th percentile of α values, calculated
157	over the final 200 floods of each simulation. Peak values of α_{95} occur where the channel
158	bed aggradation rate is lowest and the suspended sediment load is highest. Such
159	conditions maximise channel depth and the delivery of water to the floodplain through
160	localized bank breaches.

161 **DISCUSSION**

162 Existing models of alluvial stratigraphy often use topographic indices to predict 163 avulsion likelihood (Mackey and Bridge, 1995; Jerolmack and Paola, 2007; Karssenberg 164 and Bridge, 2008). Our results suggest that changes in channel depth are a key control on 165 water and sediment conveyance to the floodplain, hence metrics that do not incorporate 166 depth (e.g., slope ratios) may be less useful than metrics that do (e.g., super-elevation 167 ratios). Moreover, the usefulness of super-elevation ratios may depend upon how channel 168 depths are determined. For example, many models of alluvial stratigraphy estimate 169 channel depth using hydraulic geometry relations that are under-pinned by the concept of 170 river equilibrium or have no mechanistic basis (c.f. Paola, 2000). The applicability of 171 such relations in aggrading (i.e., non-equilibrium) channels is questionable. Channel 172 depth is more usefully conceptualised as a product of the difference between the rates of 173 river bed and floodplain aggradation, where the latter reflects the balance between 174 floodplain lowering due to channel migration (Lauer and Parker, 2008) and the rate of 175 overbank sedimentation. By adopting such an approach here, albeit with a simplified 176 representation of channel bed aggradation, we have shown that systems characterized by 177 high suspended sediment loads that build large alluvial ridges may be characterized by 178 deep channels and a lower than expected super-elevation ratio. This suggests that 179 approaches that rely on equilibrium channel theory, or which treat the channel belt as a 180 single unit that aggrades at a uniform rate, rather than resolving channel and floodplain 181 aggradation separately, may have limited utility for representing avulsion likelihood. The existence of a positive correlation between channel super-elevation and 182 183 avulsion likelihood is a principle that is firmly established in alluvial sedimentology

184	(Hajek and Wolinsky, 2012). Our results show that growth of an alluvial ridge is
185	associated with changes in water and sediment conveyance to the floodplain that are
186	controlled by changes in channel depth, and by inter-flood variability in channel-
187	floodplain connectivity driven by autogenic mechanisms. We hypothesize that avulsion
188	likelihood will be maximised in systems where water conveyance to the floodplain is
189	concentrated (e.g., in a small number of breach points), rather than where floodwater is
190	transferred to the floodplain over a large fraction of the channel belt-floodplain interface,
191	because concentrated flow will be associated with greater erosion potential. Our results
192	suggest that the former condition is favored by high suspended sediment loads that build
193	deep channels and infill some levee breaches so that conveyance to the floodplain is
194	localized. However, these conditions do not yield the highest super-elevation ratios,
195	hence interpretation of such metrics as simple indicators of avulsion likelihood is
196	problematic.
197	We propose that, in low gradient meandering rivers such as those considered here,
198	conditions for avulsion are optimised where the balance of bedload and suspended load
199	favors two conditions: (1) sufficient channel bed aggradation to maintain water and
200	sediment delivery to the floodplain and thus create an alluvial ridge; (2) sufficient
201	suspended load to allow the construction of deep channels characterized by localized

202 channel-floodplain connectivity, and focused flow conveyance along potential avulsion

203 pathways. While super-elevation ratios in excess of a threshold value may be a necessary204 condition for a meandering river avulsion, it is not certain that avulsion likelihood will be

205 greatest where the super-elevation ratio is maximised.

206	DOI:10.1130/G40104.1 Our results do not consider situations in which the rate of channel bed aggradation
207	greatly exceeds the rate of overbank sedimentation, such that the channel is filled rapidly
208	and avulsions are frequent. Moreover, our assumption of spatially and temporally
209	uniform channel aggradation is more applicable in lowland rivers, and is not
210	representative of environments characterized by episodic and/or localized channel
211	aggradation (e.g., upland rivers and alluvial fans). Because our model simulations
212	prescribe the channel bed aggradation rate and assume that the channel width is fixed,
213	they likely under-estimate the potential for complex behavior resulting from changes in
214	the ratio of coarse to fine sediment supply. Despite that, these results demonstrate the
215	potential for investigating the controls on floodplain construction over periods of
216	centuries to millennia, using a model underpinned by a physics-based treatment of
217	hydrodynamics (i.e., the shallow water equations). These simulations highlight a need to
218	rethink existing conceptual models of avulsion likelihood and their implications for the
219	interpretation of the alluvial record. In the future, application of high resolution (channel-
220	resolving) 2D morphodynamic models can afford further insight into the controls on
221	avulsion (e.g., Hajek and Edmonds, 2014). More specifically, our results suggest that
222	such models may be particularly important tools for understanding how changes in the
223	ratio of coarse-to-fine sediment supply promote changes in channel morphology (e.g.,
224	cross-sectional form), local bed aggradation rates, and sediment exchanges with the
225	floodplain.
226	SUMMARY

This study provides a first demonstration of the potential for simulating alluvial
 ridge construction and floodplain evolution using a process-based model under-pinned by

229	the shallow water equations. Simulations illustrate that hydrodynamic conditions that
230	likely promote avulsion (e.g., water delivery to the floodplain through a restricted number
231	of channel breach points) are not necessarily associated with conditions that maximize
232	established proxies for avulsion likelihood (e.g., channel belt super-elevation normalized
233	by channel depth). These results highlight a need to rethink the representation of avulsion
234	in models of alluvial architecture and sedimentary basin filling. Specifically, we
235	hypothesize that the ratio of coarse to fine sediment delivery to rivers exerts a key control
236	on avulsion frequency that is not accounted for well by existing models. Moreover, our
237	results suggest that improved representation of avulsion in models of alluvial architecture
238	necessitates the decoupling of channel bed and channel belt aggradation rates, and further
239	consideration of the morphodynamic conditions under which channel-floodplain
240	hydrodynamic connectivity is primed to optimise avulsion likelihood.
241	ACKNOWLEDGMENTS
242	This work was funded by UK NERC grants NE/H009108/1 and NE/H007288/1.

243 Simulations were performed using the University of Exeter Supercomputer. We thank

244 Renato Almeida, Peter Burgess and Cari Johnson for their thoughtful reviews that helped

245 us improve the manuscript.

246 **REFERENCES CITED**

247 Bolla Pittaluga, M., Repetto, R., and Tubino, M., 2003, Channel bifurcation in braided

248 rivers: Equilibrium configurations and stability: Water Resources Research, v. 39,

249 p. 1046, 10.1029/2001WR001112.

250	Edmonds, D.A., and Slingerland, R.L., 2010, Significant effect of sediment cohesion on
251	delta morphology: Nature Geoscience, v. 3, p. 105-109,
252	https://doi.org/10.1038/ngeo730.
253	Hajek, E.A., and Edmonds, D.A., 2014, Is river avulsion controlled by floodplain
254	morphodynamics: Geology, v. 42, p. 199–202, https://doi.org/10.1130/G35045.1.
255	Hajek, E.A., and Wolinsky, M.A., 2012, Simplified process modelling of river avulsion
256	and alluvial architecture: Connecting models and field data: Sedimentary Geology,
257	v. 257-260, p. 1-30, https://doi.org/10.1016/j.sedgeo.2011.09.005.
258	Hajek, E.A., Heller, P.L., and Sheets, B.A., 2010, Significance of channel-belt clustering
259	in alluvial basins: Geology, v. 38, p. 535-538, https://doi.org/10.1130/G30783.1.
260	Howard, A.D., and Knutson, T.R., 1984, Sufficient conditions for river meandering: A
261	simulation approach: Water Resources Research, v. 20, p. 1659–1667,
262	https://doi.org/10.1029/WR020i011p01659.
263	Jerolmack, D.J., and Paola, C., 2007, Complexity in a cellular model of river avulsion:
264	Geomorphology, v. 91, p. 259–270, https://doi.org/10.1016/j.geomorph.2007.04.022.
265	Karssenberg, D., and Bridge, J.S., 2008, A three-dimensional numerical model of
266	sediment transport, erosion and deposition within a network of channel belts,
267	floodplain and hill slope: Extrinsic and intrinsic controls on floodplain dynamics and
268	alluvial architecture: Sedimentology, v. 55, p. 1717-1745,
269	https://doi.org/10.1111/j.1365-3091.2008.00965.x.
270	Lauer, J.W., and Parker, G., 2008, Modeling framework for sediment deposition, storage,
271	and evacuation in the floodplain of a meandering river: Theory: Water Resources
272	Research, v. 44, p. W04425, 10.1029/2006WR005528.

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G40104.1 1995. Three-dimensional model of alluvial stratigraphy:

273	Mackey, S.D., and Bridge, J.S., 1995, Three-dimensional model of alluvial stratigraphy;
274	theory and applications: Journal of Sedimentary Research, Section B: Stratigraphy
275	and Global Studies, v. 65, p. 7-31, https://doi.org/10.1306/D42681D5-2B26-11D7-
276	8648000102C1865D.
277	Paola, C., 2000, Quantitative models of sedimentary basin filling: Sedimentology, v. 47,
278	p. 121–178, https://doi.org/10.1046/j.1365-3091.2000.00006.x.
279	Sinha, R., 2009, The Great avulsion of Kosi on 18 August 2008: Current Science, v. 97,
280	p. 429–433.
281	Slingerland, R.L., and Smith, N.D., 1998, Necessary conditions for a meandering-river
282	avulsion: Geology, v. 26, p. 435-438, https://doi.org/10.1130/0091-
283	7613(1998)026<0435:NCFAMR>2.3.CO;2.
284	Slingerland, R.L., and Smith, N.D., 2004, River Avulsions and Their Deposits: Annual
285	Review of Earth and Planetary Sciences, v. 32, p. 257–285,
286	https://doi.org/10.1146/annurev.earth.32.101802.120201.
287	Syvitski, J.P., Morehead, M.D., Bahr, D.B., and Mulder, T., 2000, Estimating fluvial
288	sediment transport: The rating parameters: Water Resources Research, v. 36,
289	p. 2747-2760, https://doi.org/10.1029/2000WR900133.
290	
291	FIGURE CAPTIONS
292	
293	Figure 1. Spatial patterns of simulated deposit thickness for individual floods. Panels A to
294	D show deposits for four floods in a simulation for which $C = 0.003$ and $A = 0$ m flood ⁻¹ .

295 Panels E and F show deposits for two other simulations with contrasting values of C and

296	<i>A</i> , but for the same flood shown in panel D. Flow is from left to right. Green indicates
297	areas with deposit thickness $<10^{-6}$ m. The main channel cells are shaded black. The
298	magenta dashed line in panel E denotes the channel-floodplain interface, used in the
299	calculation of the floodplain hydrodynamic connectivity metric (α).
300	
301	Figure 2. Floodplain cross-sections at points located midway along the model domain.
302	Each panel shows results from a single simulation with different values of A and C .
303	Results are shown at four points in time, where T indicates the number of floods that have
304	been simulated.
305	
306	Figure 3. A: Super-elevation ratio (β), which equals the height of the alluvial ridge
307	divided by the mean channel depth, plotted against the prescribed channel bed
308	aggradation rate (A) . Each point represents the model results at the end of a single
309	simulation. The legend indicates the values of C used. (F) indicates a fine sediment load
310	with 5% sand, 20% silt and 75% clay. In all other simulations, the sediment load
311	comprises 5% sand, 75% silt and 20% clay. (L) indicates bank erodibility that is 50% of
312	the default value. (H) indicates bank erodibility that is 150% of the default value. Where
313	(L) or (H) is not specified, simulations use the default erodibility. B: Time series of the
314	parameter α , which is equal to the mean depth of floodwater on the floodplain 60% of the
315	way through the flood, divided by the fraction of the interface between the channel and
316	floodplain that is inundated (see dashed line in Fig 1E). Results are shown for three
317	simulations with contrasting values of C ($A = 0.018$ m flood ⁻¹ in all cases). C: 95 th
318	percentile of the values of the parameter α calculated over the final 200 floods in each

- 319 simulation, plotted against the prescribed channel bed aggradation rate (A). Symbols are
- 320 the same as those used in Figure 3A.
- 321
- 322 1GSA Data Repository item 2018xxx, xxxxxxxx, is available online at
- 323 http://www.geosociety.org/datarepository/2018/ or on request from
- 324 editing@geosociety.org.

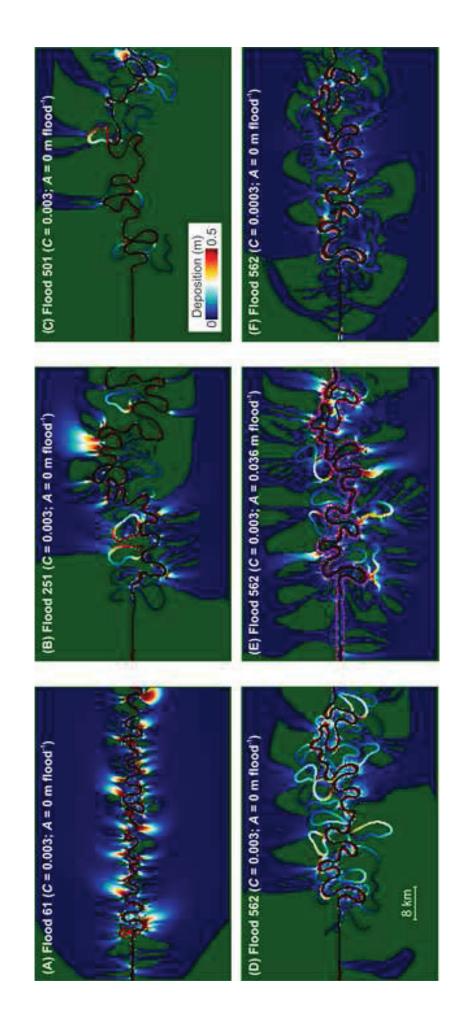
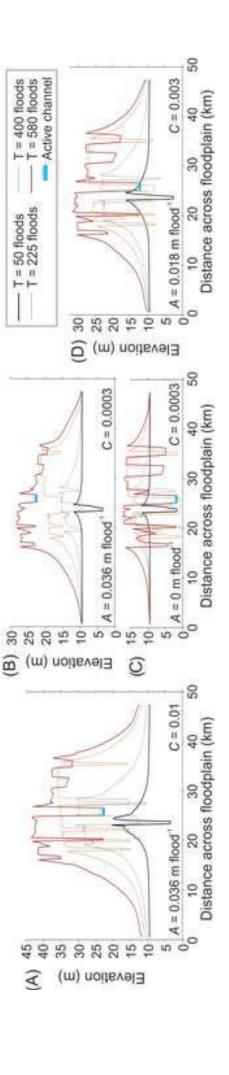
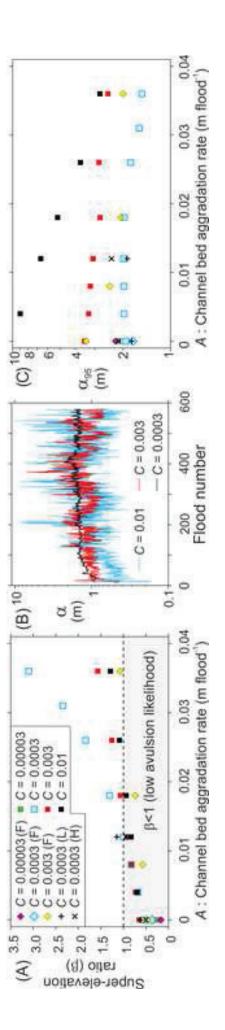




Figure 1

