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ABSTRACT 1 

Background: The objective of this study was to investigate left ventricular (LV) 2 

circumferential strain responses to incremental cycling and isometric knee extension 3 

exercises.  4 

Methods: Twenty-six healthy male participants (age= 30±6 years) were used to study LV 5 

global (GCS) and regional circumferential strain at the apex (ACS) and base (BCS) during 6 

incremental cycling at 30% and 60% work rate maximum (𝑊max) and short duration (15s 7 

contractions) isometric knee extensions at 40% and 75% maximum voluntary contraction 8 

(MVC) using two-dimensional speckle-tracking echocardiography.  9 

Results: During cycling (n=22), GCS increased progressively from rest to 60% 𝑊max (-10 

22.85±3.26% to -29.87±2.59%, p<0.01). ACS increased from rest to 30% 𝑊max (-11 

26.29±4.84% to -36.84±6.94%, p<0.01) and then remained unchanged to 60% 𝑊max (-12 

40.72±4.06%, p=0.068). BCS decreased from rest to 30% 𝑊max (-19.41±2.79 to -13 

17.51±4.66%, p=0.05) then remained unchanged to 60% Wmax. During isometric knee 14 

extension (n=23), GCS decreased from rest to 40% MVC (-22.63±3.46 to -20.10±2.78%, 15 

p<0.05), then remained unchanged to 75% MVC. Similarly, BCS decreased from rest to 40% 16 

MVC (-19.21±2.58% to -13.55±3.45%, p<0.01) and then remained unchanged, whereas ACS 17 

did not change with exercise intensity (rest, -26.05±5.34%; 40% MVC, -26.64±4.53% and 18 

75% MVC -27.22±5.34%, all p>0.05). 19 

Conclusion: GCS increased stepwise during incremental cycling, mediated by the apex with 20 

trivial changes at the base. In contrast, GCS decreased during the isometric knee extension to 21 

40% MVC then plateaued, due to decreased BCS since ACS was maintained. A novel finding 22 

is that the GCS response appears to be exercise modality dependant and are the consequence 23 

of region-specific changes. 24 

Keywords: exercise; deformation; left ventricle; speckle tracking echocardiography; strain 25 
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1. INTRODUCTION 1 

Myocardial strain mechanics are used as markers of left ventricular (LV) function 1, and are 2 

assessed in three planes of motion; radial, longitudinal and circumferential 2. Circumferential 3 

strain reflects the change in length around the LV perimeter and during systole as the 4 

myocardium shortens the circumference of the LV cavity reduces 3,4. The healthy heart 5 

demonstrates a basal-to-apical gradient in circumferential strain, with higher strain in the 6 

apex, which highlights the non-uniform distribution of shortening about the long-axis of the 7 

ventricle 5.  8 

Assessment of cardiac strain during exercise stress provides important information 9 

pertaining to the physiological capabilities of the LV to alter its function in response to an 10 

increased cardiac demand. Interrogation of circumferential strain during exercise will add 11 

additional knowledge regarding LV shortening during contraction, supplementary to the 12 

previously reported longitudinal strain during dynamic and isometric exercise 6,7.  13 

During incremental dynamic exercise, studies reported a plateau 8 or progressive 14 

increase 6 in global circumferential strain (GCS). Still, Doucende et al. 6 did not observe a 15 

statistically significant increase between final work intensities, making it difficult to 16 

determine whether at 40% maximal workload, GCS begins to plateau thereafter or larger 17 

workload increments are necessary to elicit notable differences between exercise intensities. 18 

Further, circumferential shortening during exercise also show regional disparity between 19 

apical and basal planes, with increases at the apex (ACS) without changes at the base (BCS) 20 

9,10, which however, contrasts another investigation having reported a reserve in BCS 21 

compared with baseline 11.  22 

Data pertaining to circumferential strain during resistance exercise are limited. 23 

Reductions in GCS were noted during isometric hand-grip exercises 13, however, regional 24 

strains were not independently reported. In contrast, more recently short-duration double-leg 25 
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press transiently reduced BCS and ACS 13. Although, this was not traditional resistance 1 

exercise, since image acquisition was performed during an isometric hold following a brief 2 

near-complete leg extension. Therefore, the global and regional circumferential strain 3 

responses during incremental short-duration resistance exercise concerning sustained 4 

isometric work of the lower extremities remains to be determined.  5 

Taken together, despite the aforementioned reports of circumferential strains during 6 

exercise, a full description, within the same investigation, of global and region-specific 7 

circumferential strains during incremental exercise are lacking at present and the responses 8 

during dynamic and static modalities remain incompletely understood. Also, there is some 9 

confusion in the literature regarding the effect of exercise on the different levels of the LV at 10 

which circumferential strain can be measured. Additionally, dynamic exercise predominantly 11 

increases preload, while isometric (static) exercise elevates afterload on the LV 14. However, 12 

the response to these different loading patterns have not been previously assessed in the same 13 

individuals, which is of importance considering comparisons in the cardiovascular responses 14 

during exercise are frequently made between dynamic and static modalities.  15 

Accordingly, the present study aimed to investigate the influence of incremental 16 

dynamic cycling and isometric knee extension on LV regional and global circumferential 17 

strain. It was hypothesized that; (1) GCS would increase incrementally during cycling, 18 

mediated through increased ACS. (2) Both BCS and ACS would initially decrease during 19 

isometric exercise and as a result, would decrease GCS. 20 

 21 
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2. METHODS 1 

2.1 Study design and population 2 

Twenty-seven healthy males (18-40 years) of differing exercise habits (runners n=8; 3 

triathletes n=9; resistance exercisers, n=5 and no regular habits, n= 5) were recruited for this 4 

cross-sectional study. A medical questionnaire was used to exclude a past history or known 5 

current diagnosis of coronary heart disease, hypertension, diabetes mellitus, myocardial 6 

infarction, peripheral artery disease or sudden cardiac death in immediate family members. 7 

Participants were required to avoid vigorous physical activity, and consumption of alcohol 8 

(24 hours) and caffeine (12 hours) prior to data collection. Before initiation of this study, the 9 

local university ethics committee reviewed and approved the protocol which was conducted 10 

in accordance with the declaration of Helsinki. The participants in the present study are the 11 

same population as reported in our previous publication 15. Further, all methods have been 12 

fully detailed previously 15, however, a synopsis of measurement procedures and 13 

experimental protocols are provided below.  14 

 15 

2.2 Protocol and experimental procedures 16 

Participants attended the Sport Science Laboratories twice at the same time of day with each 17 

visit separated by at least 24 hours, but <7 days. Demographic information, physiological 18 

assessment and a baseline (resting) echocardiographic assessment were collected/completed 19 

on the first visit. During visit 2 each participant completed submaximal cycling and isometric 20 

knee extension protocols to obtain circumferential strain data during exercise. 21 

After 5 min supine rest, heart rate (HR) (FS1, Polar Electro Oy, Kempele, Finland), 22 

systolic (SBP) and diastolic blood pressures (DBP), using manual sphygmomanometry, were 23 

recorded and used to calculate rate-pressure product, as HR*SBP and mean arterial pressure 24 

(MAP) 16. After a resting echocardiographic examination, participants completed an 25 
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incremental exercise test to exhaustion on a dedicated semi-supine ergometer (eBike-L, 1 

ergoline GmbH, GE Healthcare) using breath-by-breath expired gas analysis using a 2 

ergospirometer (Metalyser 3B, Cortex, Germany). Work rate maximum (Wmax) was 3 

calculated using the equation:  𝑊max = 𝑊com + � t
60
� x 𝑊 17. We elected to use 30% and 60% 4 

Wmax to enable a doubling of exercise workload while ensuring an exercise intensity with 5 

suitable image acquisition.  6 

2.3 Cycle ergometry and isometric knee extension protocols 7 

Following a 10 min rest on the semi-supine (45º) ergometer (eBike-L, ergoline GmbH, GE 8 

Healthcare), participants performed incremental exercise of 2 x 5 min stages at 30% and 60% 9 

Wmax and echocardiographic images were collected during the last 3 min of each stage. HR 10 

and manual blood pressures were recorded at the end of, yet before, the termination of each 11 

exercise stage. 12 

After 10 min seated rest, participants lay fully supine on an isokinetic dynamometer 13 

(Kin-Com 125E Plus, Chattecx Corporation, Chattanooga, USA). A full supine position was 14 

used to enable optimal echocardiographic image acquisition. The dominant leg was used for 15 

all isometric contractions of the quadriceps, which were performed at a fixed knee extension 16 

angle of 130º with the knee joint centre was aligned with the axis of the dynamometer crank 17 

arm 18. A warm-up of 5-10 submaximal isometric contractions was performed prior to the 18 

maximal voluntary contraction (MVC) assessment, which was determined from the greatest 19 

of 3 maximal isometric contraction attempts interspersed with a 1 min recovery 19. Following 20 

5 min rest, participants completed an incremental protocol consisting 2 x 15s isometric 21 

contractions, separated by 2 min passive recovery, at both intensities corresponding to 40% 22 

and 75% MVC. An initial intensity of 40% MVC was chosen to match that of a previous 23 

isometric hand-grip study 20 and an upper intensity of 75% MVC chosen as the highest 24 
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relative intensity while attempting to limit the Valsalva manoeuvre. At the termination of 1 

contraction, five cardiac cycles, HR and manual blood pressures were recorded.  2 

 3 

2.4 Echocardiography 4 

All participants underwent two-dimensional transthoracic echocardiographic examinations at 5 

rest in the left lateral decubitus position and during both exercise modalities using 6 

commercially available ultrasound equipment (Vivid 7, GE Medical, London) with a phased 7 

array transducer (3S 1.4-3.8 MHz). Image acquisition and measurement procedures were 8 

conducted by the same investigator (AB) in accordance with established guidelines 21–23. Five 9 

cardiac cycles were obtained at end-expiration, with data analysis performed from a 10 

minimum of 2 consecutive cycles when 3 were not available. Conventional parameters at rest 11 

included LV structure, systolic and diastolic function. 12 

 13 

2.5 Speckle tracking derived circumferential strain 14 

Circumferential strain was measured at rest and during both submaximal cycling and 15 

isometric knee extension protocols. Resting data obtained during visit 1 were used to 16 

compare with both the cycling and isometric exercise protocols. Frame rate ranged between 17 

70 – 80 frames per second which was consistent within each individual across all conditions 18 

and also the same for apical and basal image acquisition. Using the parasternal short-axis 19 

view, the basal level was determined as the highest imaging plane at which full myocardial 20 

thickness was present with the observation of surrounding mitral valve at end-systole and 21 

positioned as circular as possible with no visible papillary muscles 20. Apical images were 22 

captured proximal to the end-systolic luminal obliteration of the LV cavity with as much 23 

accuracy as possible 24. 24 
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 Images were analysed offline using semi-automated software (EchoPac software, GE 1 

Healthcare, UK) by one investigator. After manual endocardial border detection, the region 2 

of interest was first automatically and then manually adjusted until the epicardal border was 3 

correctly aligned to encompass the entire LV wall thickness whilst avoiding the echogenic 4 

pericardium22222222. ACS and BCS were recorded as the peak value, reflective of mid-layer 5 

strain, from the average of all fully tracked myocardial segments, with GCS then calculated 6 

as the average of BCS and ACS.  7 

 The quality of echocardiographic images obtained during exercise, in addition to the 8 

grading system employed have been reported previously 15. 9 

 10 

2.6 Intra-observer reproducibility 11 

Intra-observer reproducibility (coefficients of variation (CV)) was determined within-day at 12 

rest and between-day during both dynamic cycling and isometric knee extension exercise 13 

(Table 1). CV was calculated for each individual between trial 1 and trial 2 using the 14 

calculation: CV = ( 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑠
𝑚𝑑𝑠𝑠

 ) 𝑋 100. An average of each individual CV was then 15 

obtained to determine a global CV. 16 

A separate cohort of 14 participants rested for 5 min in the supine position, two 17 

echocardiographic examination were performed 5 min apart. During both cycling (n=12) and 18 

knee extension (n=12) exercise, participants attended twice at the same time of day within 7 19 

days of each other. Similar to the main data collection, participants were asked to abstain 20 

from vigorous physical activity and alcohol for 24 hours and caffeine for 12 hours prior to 21 

testing. The submaximal cycling consisted of 2 x 4 min bouts corresponding to 70 watts and 22 

170 watts. Basal and apical images were collected at the end of each bout with image 23 

acquisition as described in section, ‘Speckle tracking derived circumferential strain’. The 24 
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isometric knee extension exercise was performed as described in section, ‘Cycle ergometry 1 

and isometric knee extension protocols’, with images collected at 40% and 75% MVC.  2 

 3 

INSER TABLE 1 NEAR HERE 4 

 5 

2.7 Statistical analysis 6 

Data presented as means ± standard deviation or median (interquartile range). Normality of 7 

data distribution was assessed by Shapiro-Wilks test. For normally distributed data, 8 

haemodynamic measures and circumferential strains assessed during exercise were compared 9 

using one-way repeated measures analysis of variance (ANOVA) with post hoc Bonferroni 10 

correction. For non-normally distributed data a Friedman test was employed followed by 11 

Wilcoxon signed-rank test to test for pairwise comparisons. A manual Bonferroni correction 12 

was applied to non-parametric tests to ensure accurate interpretation of potential statistically 13 

significant differences. All analyses were conducted using SPSS (Version 21; IBM Company, 14 

SPSS Inc., Chicago, USA) and statistical significance granted at p≤0.05. 15 

 16 

 17 

3. RESULTS 18 

3.1 Participant numbers for echocardiography 19 

All participants completed the full protocol and echocardiographic data was determined in all 20 

participants at rest. However, cardiac images during all exercise conditions could not be 21 

obtained for one participant leading to exclusion from the study, resulting in a total sample of 22 

twenty-six participants available for statistical analyses (age, 30 ± 6 years; height, 1.77 ± 0.08 23 

m; mass, 75.87 ± 9.90 kg). Peak oxygen uptake, resting left ventricular structure, systolic and 24 

diastolic function for the present study group have been published elsewhere 15. Furthermore, 25 



Beaumont et al. 

 

10 

due to poor image quality, circumferential strain data were not acquired during cycling at 1 

30% Wmax (n = 2) and 60% W
max (n = 3) and during knee extension at 75% MVC (n = 3). 2 

Consequently, 22 and 23 participants were included during cycling and knee extension, 3 

respectively. The reasons for missing data for blood pressure have been detailed previously 4 

15. 5 

 6 

3.2 Maximal physiological and haemodynamic parameters  7 

Following the maximal incremental exercise test and MVC, group physiological parameters 8 

were, Wmax 277 ± 49 W; 30% Wmax 83 ± 15 W; 60% Wmax, 166 ± 29 W; MVC, 1103 ± 267 N; 9 

40% MVC, 441 ± 107 N and 75% MVC, 828 ± 200 N. All haemodynamic data during 10 

cycling and knee extension are presented in Table 2. HR, SBP, DBP, MAP and RPP 11 

significantly (all p < 0.01) increased with progressive exercise intensity from rest during both 12 

cycling and knee extension exercises. Exercise workloads at maximum and relative 13 

percentages, in addition to all haemodynamic data, with the exception of RPP, have been 14 

reported previously 15. 15 

 16 

INSERT TABLE 2 NEAR HERE 17 

 18 

3.3 Circumferential strain during exercise 19 

LV GCS, ACS and BCS during cycling and isometric exercise are presented in Figure 1a-b. 20 

During semi-supine dynamic cycling, GCS increased from rest (-22.85 ± 3.26%) to 30% 21 

Wmax (-27.17 ± 4.63%, p = 0.002) and then further increased to 60% 𝑊max (-29.87 ± 2.59%, p 22 

= 0.031). ACS increased from rest (-26.29 ± 4.84%, p < 0.001) to 30% Wmax (-36.84 ± 23 

6.94%) and then remained unchanged to 60% 𝑊max (-40.72 ± 4.06%, p = 0.068). In contrast, 24 
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there was a statistically significant decrease in BCS from rest (-19.41 ± 2.79%) to 30% 𝑊max 1 

(-17.51 ± 4.66%, p = 0.049) which then remained statistically unchanged thereafter to 60% 2 

𝑊max (-19.03 ± 4.14 %, p = 0.506).  3 

During isometric knee extension, GCS decreased from rest (-22.63 ± 3.46 %) to 40% 4 

MVC (-20.10 ± 2.78%, p = 0.031) and then remained unchanged to 75% MVC (-19.72 ± 5 

2.91%, p = 1.00). Similarly, BCS decreased from rest (-19.21 ± 2.58%) to 40% MVC (-13.55 6 

± 3.45%, p < 0.001) and then remained unchanged to 75% MVC (-12.21 ± 2.89%, p = 0.162), 7 

whereas ACS did not change with exercise intensity (rest, -26.05 ± 5.34%; 40% MVC, -26.64 8 

± 4.53% and 75% MVC -27.22 ± 5.34%, all p = 1.00).   9 

 10 

INSERT FIGURE 1 NEAR HERE 11 

 12 

4. DISCUSSION 13 

This study is the first to investigate the influence of both incremental dynamic and static 14 

(isometric) exercises on LV global and regional circumferential strain in the same 15 

participants. Accordingly, the principle findings were that, (1) during dynamic and static 16 

exercise, opposing GCS responses were observed. During aerobic exercise, there was a 17 

stepwise increase in GCS, whereas during the static exercise GCS decreased to 40% MVC 18 

but plateaued thereafter. In addition, the GCS responses in both exercises modalities were 19 

due to different circumferential strain mechanics. (2) During aerobic exercise, the increase in 20 

GCS was mediated by increasing ACS with trivial effects on BCS. (3) In contrast, static 21 

exercise had no effect on ACS with the GCS changes being mediated by a decrease in BCS 22 

from rest. Therefore, it appears that exercise modality plays some role in the responses of 23 

circumferential strain.  24 
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These observations present a novel finding which adds to work having been 1 

performed thus far, and at higher intensities than have previously been used, highlighting that 2 

GCS alterations are the consequence of opposing physiological responses between the basal 3 

and apical regions. Global strain provides a good indication of deformation encompassing the 4 

entire LV; apical and basal strain may compliment the global derivative (when calculated as 5 

an average of apical and basal planes) by determining the regional contributions. 6 

 7 

4.1 Circumferential strain during semi-supine cycling 8 

GCS increased with exercise initiation and further increased between exercise intensities 9 

which agrees with our first hypothesis. These observations concur 25  and contrast with prior 10 

studies, of which found no statistically significance increase between penultimate and final 11 

exercise intensities 6,8. Although a lack of statistical significance does not imply the changes 12 

are not biologically meaningful, the present study extends previous work and clarifies the 13 

position that beyond low-moderate intensities and up to moderate intensity cycling, GCS 14 

does not plateau. In this study, exercise intensity was greater than the absolute 8 and relative 15 

workloads 6 employed previously and in particular, larger intervals between workloads were 16 

used compared with the protocol of Doucende et al. 6. Thus, discrete differences in 17 

circumferential strain may only become evident with higher intensities and/or wider 18 

categories. Moreover, Unnithan et al. 8 used upright cycling compared to semi-supine cycling 19 

in the present study, and therefore, a postural effect during the exercise cannot be ruled out. 20 

The studied population should also be considered; Unnithan et al. 8 used adolescents whereas 21 

we recruited adults, whether the circumferential strain response differs between adolescents 22 

and adults or are influenced by posture are intriguing prospects that may wish to be explored 23 

further.  24 
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Region-specific function was noted during cycling exercise, ACS initially increased 1 

from rest and then demonstrated a trend toward an increase between exercise intensities, 2 

which underlines the functional reserve capacity of the apex in response to cardiovascular 3 

exercise stress, whereas BCS decreased initially and was unchanged thereafter. Despite a 4 

statistically significant change in BCS following the transition of rest to exercise, the 5 

biological significance of this small reduction (~2% strain) is likely to be trivial. Although, 6 

lower basal shortening as seen in this study compared to the apex may not necessarily reflect 7 

a lower contribution to physiological contraction 26 . Nonetheless, from the present data, GCS 8 

(when averaged from the base and apex) is predominantly the consequence of changes within 9 

the apex during dynamic exercise and are similar to previous studies having shown increased 10 

ACS, but unchanged BCS 9,10. In contrast, others reported a strain reserve in BCS during 11 

cycling compared with baseline 11 and disagrees with the present study, which is indicative of 12 

limited-to-no functional reserve, at least up to 60% Wmax. Pieles et al. 11 studied an adolescent 13 

cohort; whether younger individuals demonstrate alternate circumferential mechanics to 14 

adults during incremental exercise is difficult to determine since ACS was not reported, 15 

whereby preventing a direct comparison; yet, as alluded to previously, such possibilities of an 16 

age-dependant response require future study.  17 

 18 

4.2 Circumferential strain during isometric knee extension 19 

During incremental isometric knee extension exercise, GCS reduced from rest to 40% MVC 20 

and then remained unaltered to 75% MVC, which is in agreement with our second 21 

hypothesis. The reduction in GCS concurs with previous reports utilising upper-body 22 

isometric hand-grip exercises 7,12 and suggests the GCS responses during upper and lower 23 

body based isometric exercise are independent of the exercise modality. Similar to the 24 

cycling exercise, we found regional differences in circumferential strain between the apex 25 
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and base. However, unlike during dynamic exercise, ACS remained unchanged through the 1 

incremental protocol while BCS was reduced. These observations are in partial agreement 2 

with our second hypothesis, with respect to BCS, yet are at odds in regards to the responses 3 

observed at the apex. The regional BCS responses during isometric exercise are similar to 4 

another study having used incremental resistance exercise 13. In contrast, ACS was reduced in 5 

their study but unchanged in ours and the reasons for this disagreement are unknown at 6 

present. Herein a supine unilateral knee extension was performed, whereas Stohr et al. 13 used 7 

a seated double-leg press held isometrically (90° knee flexion) for a short duration following 8 

a near-complete leg extension. Blood pressure during their experimental protocol 13,27 far 9 

exceeded those of the present; the larger work required to perform the resistance exercise 10 

even at similar relative workloads would have accentuated the afterload exposure. 11 

Nonetheless, this does suggest that changes in BCS are consistent across a broad range of 12 

afterloads and, may be more sensitive to small increases in afterload than ACS.  13 

Although we can only speculate on the responsible mechanisms for the global and 14 

regional observations herein, changes in fibre length during the isometric exercise may 15 

adversely affect the ensuing shortening and tension developed and as a consequence LV 16 

function 20. The unique myocardial fibre orientation should also be considered and in addition 17 

to a circumferential strain basal-to-apical gradient, an epicardial-to-endocardial strain 18 

gradient exists in both basal and apical regions 5; examination of such layers may provide 19 

further insight. 20 

The implications of an immediate reduction in GCS and BCS remain to be explored 21 

and more so, the magnitude of reduction required before it can be considered biologically 22 

important (e.g. it significantly alters LV output and thus cardiac performance) is yet to be 23 

fully elucidated. Stohr et al. 13 identified only transient reductions following a restoration to 24 

baseline levels during recovery intervals, yet the long-term ramifications of repeated bouts 25 
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and exposure to transient reductions in circumferential strain over multiple years are 1 

unknown. GCS was significantly reduced in resistance trained athletes compared with normal 2 

controls 28,29, although more studies are required in those who perform repetitive resistance 3 

exercise for both competition (i.e. highly trained athletes) and recreation. 4 

 5 

4.3 Limitations 6 

We have previously acknowledged the experimental protocol limitations 15, with regards to 7 

the potential error of the blood pressure measurements and the confirmation of afterload 8 

exposures. Also, we included only young, healthy males so the findings of this study may not 9 

reflect the entire population including females, older aged individuals or special, clinical 10 

populations. At rest images were obtained in the supine position, whereas during cycling they 11 

were collected in the semi-supine position. However, despite a reduction in LV preload 12 

following a transition from supine to head-up tilt position, LV circumferential strain was 13 

comparable between body positions 30. Thus, the physiological increases in regional and 14 

global circumferential strain observed in this study, during dynamic exercise, are unlikely to 15 

be attributed to the differences in resting and exercising body positions when acquiring 16 

echocardiographic images. 17 

Technical limitations of echocardiography are especially pertinent when acquiring the 18 

basal and apical imaging planes. First, with two-dimensional echocardiography basal and 19 

apical images are obtained within different heart beats and thus in this study, obtained during 20 

two separate contractions during the isometric knee extension. Second, obtaining the 21 

consistent imaging planes is challenging which may affect intra-subject variability 6. Indeed 22 

this intrinsic limitation of two-dimensional imaging may be overcome with the use of three-23 

dimensional which facilitates the detection of deformation in and out of plane4,22. 24 

Nevertheless, the resting within-day intra-observer reproducibility reported in this study are 25 
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consistent with previous reports 8,31. As would be anticipated, the CV were greater during 1 

both dynamic and static exercises compared with rest, yet were similar to another incremental 2 

exercise study, albeit in an adolescent population and performing upright cycle ergometer 3 

exercise 8. During isometric exercise, BCS demonstrated the largest CV which should 4 

therefore be considered when interpreting the findings of this study, especially since BCS 5 

was the largest respondent during isometric knee extension. However, the changes in BCS 6 

from rest to 40% (29.46%) and 75% MVC (36.44%) were greater than the intra-observer CV 7 

at 40% and 75% MVC. Still it is possible that the magnitude of decrement in BCS could have 8 

been in influenced by the reproducibility.  9 

 10 

5. CONCLUSIONS 11 

This study is the first to investigate global and region-specific circumferential strain during 12 

both incremental dynamic cycling and isometric knee extension exercises in the same 13 

participants. GCS progressively increased during dynamic exercise but decreased during 14 

short-duration isometric work. These acute, global alterations were due to apical increase 15 

during cycling, yet basal reductions during isometric knee extension. Cardiac strains, 16 

circumferentially determined, appear to be modality dependant following region-specific 17 

changes within the myocardium, concomitant with exercise stress of differing physiological 18 

demands.   19 
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Tables 

 

Table 1 Reproducibility of apical, basal and global circumferential strain at rest and during submaximal cycling and isometric knee extension 

exercise 

 

CV: coefficient of variation.

 

 

Measure 

 

Rest 

 Submaximal cycling  Isometric knee extension  

 70 watts 170 watts  40% MVC 75% MVC 

n CV (%)  n CV (%) n CV (%)  n CV (%) n CV (%) 

Basal circumferential strain 13 6.31  11 11.07 8 10.84  9 15.4 10 17.28 

Apical circumferential strain  12 7.93  11 8.90 8 14.35  9 11.74 9 8.71 

Global circumferential strain 11 3.64  11 8.86 7 10.21  9 9.75 8 6.05 
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Table 2 Haemodynamic measures at rest and during both intensities of the cycling and isometric knee extension exercises 

 

Normally distributed data presented as mean ± standard deviation, non-normally distributed data presented as median (interquartile range) 

HR: heart rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; RPP: rate pressure product; Wmax: 

work rate maximum; MVC: maximal voluntary isometric contraction. 

† p < 0.01 compared to rest. 

‡ p < 0.01 compared to previous intensity. 

a n = 25 during cycling and knee extension b n = 25 during cycling, c n = 24 during knee extension. 

All data except RPP have been reported previously 15. 

  Cycling (% 𝑊max)   Knee extension (% MVC) 

Variable Rest 30% 60%  Rest 40% 75% 

HR (beats.min-1) 57 (14) 96 (11) † 128 (14) †‡  57 (14) 81 (24) † 97 (29) †‡ 

SBP (mmHg) a 118 ± 9 141 ± 9 † 172 ± 21 †‡  118 ± 9 130 ± 10 † 146 ± 18 †‡ 

DBP (mmHg) b c 77 (9) 81 (4) † 82 (6) †‡  77 (9) 79 (9) † 82 (9) †‡ 

MAP (mmHg) b c 89 ± 6 101 ± 5 † 114 ± 8 †‡  89 (11) 94 (5) † 104 (10) †‡ 

RPP a 

(beats.min-1. mmHg) 

6867.00 

(1652.00) 

13100.00 

(2617.50) † 

22862.00 

(3540.50) †‡ 

 6867.00 

(1652.00) 

10664.00 

(3897.50) † 

13774.00 

(4577.50) †‡ 
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Figure captions 

 

Figure 1 Circumferential strain during incremental cycling (n= 22) (a) and during 

incremental isometric knee extension (n=23) (b). 

ACS: apical circumferential strain; BCS: basal circumferential strain; GCS: global 

circumferential strain; Wmax: work rate maximum; MVC: maximum voluntary contraction.  

† p < 0.05 compared with rest 

‡ p < 0.05 compared with previous intensity 

See text for exact p values. Data are presented as means ± standard deviation 
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