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Abstract 25 

The increased number of cell divisions undergone by spermatogonia of older fathers 

cannot fully account for the observed increase in germline genetic damage. Studies 

have shown that the mechanisms induced in germ cells in response to oxidative 

damage varies with age, that DNA repair efficiency declines, and both sperm DNA 

damage and spontaneous mutations increase. However, it is not known whether the 30 

altered response with age is a cause, or consequence, of an age-associated change 

in cell susceptibility to genetic damage. 

Following a single 150 mg/kg dose of cyclophosphamide (CP), young (8-weeks old) 

and aged (17-month old) male mice were examined 24h later for induced genetic 

damage in epididymal spermatozoa using the alkaline comet and sperm chromatin 35 

stability assays. Apoptosis among testicular cells was examined on tissue cross-

sections using the TUNEL assay. 

Sperm showed no significant increase in DNA strand breaks with age (detected by the 

comet assay) and no change in sperm chromatin stability (detected by the SCSA 

assay). Following CP treatment, there was no effect on DNA-strand breakage but 40 

sperm chromatin instability was significantly higher. Furthermore, it was also 

significantly elevated in old treated, compared with young treated, animals suggesting 

that increased age affects the sensitivity of epididymal sperm to chromatin damage. 

There was no difference in apoptosis in testicular germ cells from either young or old 

control animals, while CP administration resulted in a significant increase in apoptosis 45 

among young animals but not old animals. Following genotoxin exposure, an increase 

in chromatin instability in the spermatozoa of old animals and a decrease in the ability 

of their testicular germ cells undergo apoptosis suggests an age-related decrease in 

genome protection mechanisms. Since those germ cells are only transiently present 

in the testis, it is likely that this age-related deterioration originates in the 50 

spermatogonial stem cells. The findings are also evidence that the safety evaluation 

of reproductive genotoxins should consider young and old individuals separately. 

 

 

 55 
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Introduction 

Paternal ageing results in an increase in germ-line genetic damage that is known to 

contribute to a number of paternally-mediated genetic diseases (Chianese et al., 2014; 

Conti and Eisenberg, 2016; Gunes et al., 2016; Herati et al., 2017; Katz-Jaffe et al., 

2013; Lazarou and Morgentaler, 2008; Paul and Robaire, 2013; Zhang et al., 2006). 60 

In somatic cells, it has been shown that mutation rates are significantly higher than in 

germ cells (Milholland et al., 2017), indicating that the germline genome is better 

protected from genetic damage. However, it has also been reported that the number 

of de novo mutations acquired in the male germ-line doubles every 16.5 years (Kong 

et al., 2012). Males maintain fertility throughout life (in the absence of other pathology) 65 

so developing germ cells necessarily derive from a pool of spermatogonia present 

from birth. As the males age, they produce germ cells that have undergone a higher 

number of cell divisions, and cell division is principally when mutations are induced. 

Nevertheless, it was demonstrated by Crow (1997) on mathematical grounds, that the 

increased number of cell divisions associated with spermatogenesis in older fathers, 70 

could not solely account for the increased number of mutations observed in their 

offspring (Crow, 1997).  

 

A recent study has shown that the response of aged catalase-deficient knockout mice 

to induced oxidative stress is different from that of young animals (Selvaratnam and 75 

Robaire, 2016) and the authors suggested that old, but not young animals have 

mechanisms to partially compensate for the lack of catalase activity. Ageing has also 

been shown to cause a reduction in the efficiency of germline DNA repair (Yatsenko 

and Turek, 2018) and an increase in sperm DNA damage (Kaarouch et al., 2018) and 

the number of spontaneous mutations (Maher et al., 2018). 80 

 

It has long been known that therapeutic use of the potent oxazaphosphorine alkylating 

agent Cyclophosphamide adversely affects semen parameters (Anderson et al., 1995). 

For the treatment of cancer (Veal et al., 2016), arthritis (Tiseo et al., 2016) and kidney 

disease (Gajjar et al., 2015), CP has been shown to increase sperm aneuploidy 85 

(Martinez et al., 2017), germ-cell genetic damage (Liu et al., 2014) and germ-cell loss 

(Smart et al., 2018). Further, when used in childhood chemotherapy, CP has also been 

shown to cause dose-dependent long-term testicular damage, detectable when 
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childhood (pre-pubertal) survivors of leukaemia reach adulthood (Green et al., 2014; 

Servitzoglou et al., 2015). 90 

 

 

CP is regarded as a model genotoxin, used to induce predictable patterns of genetic 

damage and hence provide the opportunity to examine the effects of exposing specific 

germ-cell types to a particular genotoxin (Grenier et al., 2012; Szikriszt et al., 2016). 95 

CP undergoes activation principally through the cytochrome P450 enzyme CYP2B6, 

to yield the toxic metabolite acrolein (reviewed in: Stevens, 2008) and the alkylating 

agent phosphoramide (Brock, 1996; Connors et al., 1974; Sladek, 1988). In vivo, these 

metabolites induce a variety of types of DNA damage, including adduct formation 

(Brock, 1996; Wheeler, 1962) and chromosomal rearrangements (Esposito et al., 1989; 100 

Martin et al., 1985). CP has been used to model the mechanisms of genotoxicity in 

both humans and animals (Aguilar-Mahecha et al., 2001, 2005) and the effects of 

exposure to CP in the germline of young adults is well characterised (Aguilar-Mahecha 

et al., 2005; Codrington et al., 2004; Connors et al., 1974; Fairley et al., 1972; Gligor 

and Gligor, 1995; Harrouk et al., 2000; Kohler et al., 1991; Mohn and Ellenberger, 105 

1976; Trasler et al., 1988; Trasler and Robaire, 1988).  

 

Accordingly, the present study utilised CP as a model genotoxin to determine whether 

the responses of epididymal sperm and germ cells from old mice differ from those of 

young mice in terms of DNA strand breaks in spermatozoa and the induction of 110 

apoptosis in testicular germ cells in vivo. This has toxicological significance as it will 

help clarify whether there is a need for age-differentiated risk estimates for exposure 

to genotoxins. 

Materials and Methods 

Study design, animal treatment and sample collection 115 

Young (2-month old, about 10% of the average mouse lifespan) and aged (17-month 

old, about 85% of average lifespan) male (102/El x C3H/El) F1 mice were randomly 

assigned to treatment or control groups (n=10 per group). Animals were weighed and 

treated by single, intraperitoneal injection of vehicle (0.9% w/v NaCl) or 150 mg/kg CP 

and housed under a 12 hour light:dark cycle at the animal house of the Klinikum rechts 120 

der Isar, Technical University of Munich, Germany. The District Government of Upper 
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Bavaria approved all animal experiments.  Food and water were provided ad libitum. 

Animals were sacrificed 24 hours post-treatment and both the testes and cauda 

epididymides removed. Epididymal sperm were collected by incising the caudae 

several times and incubating them in 300µl foetal calf serum (FCS) (Gibco, UK) at 125 

30°C for 30 min. FCS was used to prevent osmotic shock (Lowe et al., 1996; Schmid 

et al., 1999). After incubation, epididymal tissue was removed and the sperm 

suspension frozen in liquid nitrogen without additional media or cryoprotectants. 

Samples were stored at -80°C until use. Testes were weighed and then fixed in Bouin’s 

fixative (180mM saturated aqueous picric acid; 1M formaldehyde; 20mM glacial acetic 130 

acid (all from Fluka, Germany) for 24 hours. The fixative was removed and the testes 

rinsed extensively in lithium carbonate saturated 70% ethanol (EtOH) to remove picric 

acid staining. Decolourised testes were embedded using a Shandon automatic tissue 

processor. 

Processed tissue was paraffin embedded and 4µm sections mounted on 1% poly-L-135 

lysine (Sigma, UK) coated, glass slides.  

 

Sperm counts 

Sperm counts were performed according to standard protocols adapted for mouse 

from the World Health Organisation protocols for human sperm counting (World Health 140 

Organisation, 2010). The final dilution of the sample was dependent upon the number 

of sperm visible per field of view on an initial wet preparation (see: World Health 

Organisation, 2010). After dilution in counting diluent (0.6M NaHCO3 in water with 1% 

v/v of 38% w/v formaldehyde), sperm were loaded onto an improved Neubauer 

haemocytometer and incubated at room temperature in a humidified box for ten 145 

minutes, allowing the sperm to settle onto the grid of the chamber. Approximately two 

hundred sperm per sample were counted in duplicate (World Health Organisation, 

2010). 

 

Alkaline sperm Comet assay 150 

DNA strand breakage was measured with the alkaline Comet assay. Sperm were 

defrosted and briefly centrifuged. The supernatant was removed and the pellet re-

suspended in 100 l 1% w/v low melting point (LMP) agarose (Sigma, UK) made in 

phosphate buffered saline (PBS). The agarose-sperm mixture was applied to agarose-
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coated glass slides, cover-slipped and allowed to solidify. A top layer of 0.5% LMP 155 

agarose was added, the slide was again covered and the agarose allowed to set. 

Slides were incubated for 1 hour in lysis buffer at pH 10 (2.5 M NaCl; 100 mM EDTA; 

10 mM Trizma base; 40 mM dithiothreitol; 10% v/v dimethyl sulphoxide; 1% v/v Triton 

X-100 (all Sigma, UK) at 37°C. Proteinase-K was added to a final concentration of 

0.05 mg/ml (Promega, UK) and the slides incubated for a further 3 hours at 37°C. 160 

Slides were removed from lysis buffer and placed in the electrophoresis tank 

containing fresh electrophoresis buffer (300 mM NaOH; 1mM EDTA, pH >13) at 4°C. 

The DNA was allowed to unwind for 20 minutes before electrophoresis in the same 

buffer for 20 minutes at 0.75V/cm. Slides were neutralised with 25 mM Tris-HCl (pH 7) 

and stained with ethidium bromide (Sigma, UK). The percentage head DNA and tail 165 

moment of fifty cells per slide on two slides were scored using the Kinetic Imaging (UK) 

Komet-4® software. 

 

Sperm Chromatin Stability Assay (SCSA) 

The Sperm Chromatin Stability Assay (SCSA) was carried out following the procedure 170 

of Evenson & Jost (Evenson and Jost, 1994; Evenson, 2013) at the Clinic of Veterinary 

Medicine of the Ludwig-Maximilian-University, Munich, Germany. 

Frozen sperm was thawed and diluted in TNE buffer (150 mM NaCl; 10 mM Tris and 

1.0 mM EDTA pH 7.4) to a concentration of 1-2x106 sperm/ml. Four hundred 

microlitres of acidic detergent (80 mM HCl; 150 mM NaCl; 0.1% v/v Triton X-100, pH 175 

1.2) was added to 200µl of the diluted sperm sample. After 30 seconds, sperm were 

stained by addition of 1.2ml acridine orange solution (0.06% w/v acridine orange in 

buffer [37mM citric acid; 126mM Na2HPO4; 11mM EDTA; 15mM NaCl, pH 6.0]) and 

stained for three minutes. All steps were performed on ice. After staining, 5000 sperm 

per sample were analysed by a FACStar Plus flow cytometer with a 200mW argon-ion 180 

laser. When excited by a blue light source, acridine orange intercalates with double 

stranded DNA exhibits green fluorescence (530±30nm) and when associated with 

single strand DNA it exhibits red fluorescence (>630nm). Data were expressed by the 

function alpha-t (αT), which is the ratio of red to red+green fluorescence. This 

represents the total amount of denatured (single-stranded) DNA over the total cellular 185 

(single and double-stranded) DNA. Results are expressed as the percentage of cells 

that fall outside the main population (%DFI) (Evenson, 2013; Evenson et al., 1991). 
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Terminal Deoxyuridine Nick End Labelling (TUNEL) 

Sections were de-paraffinised and re-hydrated though a 100% n-butyl acetate and 190 

ethanol (EtOH) series (2 x n-butyl acetate → 2 x 100% EtOH → 2 x 90% EtOH → 2 x 

70% EtOH → deionised [d]H2O) for 5 min each. Endogenous peroxidase activity was 

blocked by incubation in 0.3% hydrogen peroxide for 15 min at room temperature. 

Sections were rinsed with terminal deoxyuridine transferase (TdT) buffer (30 mM 

Trizma base, pH 7.2, 140 mM sodium cacodylate, 1 mM cobalt chloride; Sigma, UK). 195 

10 µM biotin-16-deoxyuridine triphosphate (Sigma, UK) and 0.3 U/µl TdT (Promega, 

UK) in TdT buffer were added to cover the sections, which were incubated in a 

humidified box at 37°C for 60 min. The labelling reaction was terminated by washing 

slides in Tris buffered saline (TBS) (50 mM Tris; 375 mM NaCl, pH 7.6; Sigma, UK) 

for 15 min. The sections were rinsed with dH2O and the biotin label visualised using a 200 

1:50 dilution of Extravidin-peroxidase (Sigma, UK) in TBS with 0.1% w/v bovine serum 

albumin (Sigma, UK) and incubated at 37°C for 30 min. Slides were again washed in 

TBS and incubated with diaminobenzidine (DAB) (Sigma, UK) according to the 

manufacturer’s guidelines. Slides were finally rinsed in water, counterstained for 10 

seconds in Mayer’s haemalaum (Sigma, UK), dehydrated though an ethanol series 205 

and mounted with Histomount® (Vector, UK) (Gavrieli et al., 1992). 

Slides were coded and randomised prior to evaluation using a Nikon Eclipse 80i 

microscope at 400x magnification to allow examination of individual tubules. Tubules 

were scored if the tubule cross-section was intact, rounded and contained within a 

single field of view, with no obvious signs of physical damage or non-specific staining. 210 

Per tubule, the numbers of brown-stained, TUNEL-positive apoptotic cells was 

recorded. Fifty tubules were scored per animal, but expression of the number of 

apoptotic cells per tubule cross-section is only valid if there are no significant age- or 

treatment-associated alterations in the dimensions of the tubules. Therefore, the 

diameter of twenty rounded tubule cross-sections was measured per animal for each 215 

group (Brinkworth and Nieschlag, 2000). 

 

Statistical analysis 

Datapoint distribution was assessed for univariate normality using Q-Q analysis. Data 

were analysed for statistical differences using two-way ANOVA, with Bonferroni post-220 

hoc testing to compare the effects of treatment, age and their interactions (GraphPad 

Prism version 6.01 for Windows, GraphPad Software, La Jolla California USA, 
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www.graphpad.com). For all figures, n=10 per group and data are means ± standard 

deviation. 

 225 

Results 

Animal and organ data (Table I) 

Gross animal weight, gross testes weight, testes weight as percentage bodyweight 

and sperm count, were not significantly different as a result of either age or treatment. 

No gross alteration was observed in the seminiferous epithelium, which appeared 230 

quantitatively normal at the tubular level, seminiferous tubule diameters and Sertoli 

cell numbers were consistent among all animals, irrespective of age or treatment. 

 

Alkaline Comet assay (Figure 1) 

There was no effect of CP treatment on comet tail moment in either young (8.10 ± 2.75 235 

vs. 10.17 ± 2.53) or old (7.04 ± 2.31 vs. 10.58 ± 4.46) animals, when compared with 

their respective controls. 

 

SCSA (Figure 2) 

The sperm of young treated animals (7.13 ± 2.67) showed a 2.23-fold increase in %DFI 240 

vs. young controls (3.20 ± 0.77) (p<0.01); similarly, %DFI in sperm of old treated 

(11.95 ± 3.16) vs. old control (4.92 ± 2.00) animals was increased 2.43-fold (p<0.001). 

There was also a small but significant (0.68-fold) increase in sperm DFI among young 

treated (7.13 ± 2.67) vs. old treated (11.95 ± 3.16) animals (p<0.01). However no 

statistically significant difference was observed between young control (3.20 ± 0.77) 245 

and old control (4.92 ± 2.00) animals (p>0.05). 

 

TUNEL (Figure 3) 

In the testes, there was a significant 5.17-fold increase in the number of apoptotic 

testicular germ cells in the seminiferous tubules of young treated (114.2 ± 73.05) vs. 250 

young control (22.1 ± 18.11) animals (p<0.01). By contrast, there was a significant 

5.05-fold reduction in the number of apoptotic cells in the tubules of old treated (22.6 

± 14.93), compared with young treated (114.2 ± 73.05) animals (p<0.05). 

Although reduced 2.83-fold, the number of apoptotic germ cells in the tubules of old 

control (7.8 ± 4.44) vs. young control (22.1 ± 18.11) animals was not significantly 255 

http://www.graphpad.com/
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different (p>0.05) because of an unusually wide range of values in the young control 

group. 

 

 

TUNEL tubule cross-sections (Figure 4) 260 

Tubule cross-sections appeared qualitatively normal in all animals. A system negative 

control (a) to confirm assay specificity showed no evidence of non-specific background 

staining. 0.9%NaCl treated control animals (b) had clearly identifiable apoptotic cells 

and no non-specific background staining. However, 150mg/kg CP treated animal 

tubules (c) all showed significant background staining in all sections, irrespective of 265 

age. This was consistent across all treated animals and presumably reflects CP-

induced alkylation damage to cellular macromolecules other than DNA. Despite this, 

apoptotic cells were clearly identifiable compared with the background in all sections. 

 

Discussion  270 

The principal objective of this study was to determine differences in the response of 

male germ cells to CP in young and old animals. In untreated epididymal sperm from 

young animals, the levels of DNA damage measured directly by the alkaline Comet 

assay and indirectly by the SCSA assay, were in line with levels reported for different 

strains of mice (Perez-Cerezales et al., 2012; Pina-Guzman et al., 2006; Sailer et al., 275 

1995).  

We did not observe any effect between young control and old control animals using 

the SCSA assay to determine acid-denaturation induced, percent DNA fragmentation 

(%DFI), which provides a measure of chromatin stability (Evenson, 2013, 2016). 

However, we observed a significant increase in CP treated vs. control animal %DFI 280 

irrespective of age. Since this treatment did not yield effects detectable by the alkaline 

comet assay (DNA strand breakage), it is possible that much of the CP-induced 

increase in %DFI resulted from alkylation of the protein component of sperm chromatin, 

rather than the DNA. This has been previously reported for sub-chronic CP 

administration (Codrington et al., 2007; Vaisheva et al., 2007), but not for a single-285 

dose study, which suggests that CP induced, sperm chromatin-protein damage is a 

more readily induced phenomenon than sperm DNA damage. This is may result from 

the highly condensed nature of protaminated sperm chromatin. It is also in agreement 
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with the lack of any observed DNA strand breakage detected by the Comet assay, 

which is supported by a previous report in rat sperm (Codrington et al., 2004) where 290 

100mg/kg CP did not produce significant quantities of DNA strand breakage. 

Nevertheless, the dose of CP used in the present study would be expected to cause 

some damage to the DNA as it is a powerful inducer of dominant lethal mutations in 

mouse sperm. CP-induced alkyl adducts are converted into mutations by misrepair 

(Gillingham and Sauter, 2017; Yauk et al., 2015) and acute exposure of sperm to 295 

doses of 100-200 mg/kg has been shown to readily produce dominant lethal effects 

(Ehling and Neuhauser-Klaus, 1988; Harrouk et al., 2000; Oliveira et al., 2014). 

Zygotic reprogramming occurs shortly after fertilization and is characterised by sperm 

chromatin reorganisation and epigenetic reprogramming, including activation of DNA 

repair mechanisms (Ladstatter and Tachibana-Konwalski, 2016; Zou, 2016), so it is 300 

possible that acute CP-induced DNA alkylation in epididymal sperm may subsequently 

disrupt this reprogramming by producing excessive aberrant DNA strand breaks after 

fusion of the two pronuclei, resulting in dominant lethal DNA damage. 

Chromatin instability was significantly higher in old treated compared with young 

treated animals, suggesting that increased age affects the sensitivity of epididymal 305 

sperm to chromatin damage. It is not possible to say what is causing the increased 

susceptibility but since it is only the spermatogonial stem cells that age with the 

individual, it is likely that this is where the defect arises. 

In contrast to epididymal sperm, testicular germ cells showed a marked response to 

CP with a statistically significant, nearly 6-fold increase, in the number of TUNEL 310 

positive apoptotic cells in the testes of young treated compared with young control 

animals.  The number of Sertoli cells remained constant between control and treated 

groups in both old and young animals so normalising the apoptotic germ cells against 

Sertoli cell count demonstrates that the increased numbers of apoptotic germ cells 

detected was not an artefact of the loss of other cell types or tubule distortion. 315 

Aguilar-Mahecha et al. (2005) reported that acute, 70mg/kg CP treatment induced 

G2/M checkpoint arrest and consequently, significant DNA strand-breakage in rat 

spermatids (Aguilar-Mahecha et al., 2005); similarly, Cai et al. (1997) demonstrated 

that spermatids could undergo apoptosis within 4–12 hours after treatment with the 

same dose of CP. It has also been suggested that progression of sperm through the 320 

metaphase-I spindle assembly checkpoint (SAC) can be maintained at levels 

associated with normal sperm production and fertility, despite recombination defects 
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in up to 50% of spermatocytes (Faisal and Kauppi, 2016). Our observation that it was 

principally meiotic and pre-meiotic germ cells undergoing apoptosis, potentially 

reflects the loss of germ cells unable to be repaired at either prophase-I (see: Jan et 325 

al., 2018) or metaphase-I (see: Faisal and Kauppi, 2016) checkpoints. 

By contrast, the number of apoptotic cells in old treated animals compared with old 

controls did not show a statistically significant increase. Thus, there is an age-

dependent difference in the response of spermatogonia and spermatocytes to CP-

induced damage, suggesting that the ability of these germ cells to undergo apoptosis 330 

in response to a genotoxic insult is reduced with age. It is unlikely that our observation 

in old animals is due to the prior loss of susceptible germ cells as a result of life-long 

de novo damage, because the numbers of epididymal sperm, which represent the 

previous generation of developing germ cells at the time of CP exposure, was not 

influenced by age. The findings show that spermatogonia, spermatocytes and 335 

epididymal sperm in the aged male all show defects that result in an elevation of 

induced genetic damage persisting in the germline that has the potential to be 

converted into mutation in the early embryo. 

 

Work on C. elegans has demonstrated antagonistic pleiotropy in the germline, 340 

whereby maintenance of apoptosis in advanced age causes more rapid gonad 

degeneration, but this degeneration does not occur in aged worms with reduced levels 

of apoptosis (de la Guardia et al., 2016). If a similar response occurs in aged mammals, 

by less-stringent meiotic checkpoint control, this would allow damaged germ cells to 

progress through meiosis and hence maintain fertility into old age. The lower apoptotic 345 

response may confer a more important survival advantage than an error-free paternal 

genome (Zhao and Epstein, 2008), particularly since DNA repair mechanisms in the 

zygote repair lesions associated with post-fertilization epigenetic reprogramming 

(Ladstatter and Tachibana-Konwalski, 2016; Zou, 2016). Presumably such 

mechanisms could remove a certain amount of additional, pre-existing genetic 350 

damage originating during spermatogenesis. Our findings of a decreased apoptotic 

response of meiotic cells to CP and an increased susceptibility of aged spermatozoa 

to chromatin damage induced by CP support this. They provide a potential mechanism 

by which this principle may result in increased genotoxicity and consequently higher 

mutation rates in offspring via the male germline, following genotoxin exposure of aged 355 

individuals. 
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The extra germ-cell divisions and greater cumulative exposure to environmental and 

endogenous genotoxins resulting from a longer life span, cannot explain all of the 

increase in mutation rate in aged males. Our results suggest another mechanism 360 

whereby ageing of the stem cells exacerbates the likelihood of acquiring DNA damage 

and hence mutation via the male germline. In turn, this implies that the safety 

evaluation of reproductive genotoxins should consider young and old individuals 

separately. 

 365 
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