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Main results

Each 3D root system induces a 4D root system

H
3

(icosahedral symmetry) induces the E
8

root system

Cli↵ord algebra is a very natural framework for root systems
and reflection groups
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Root systems

a
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�(a
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+a
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)

a
1

+a
2

�a
2

Root system �: set of
vectors a in a vector
space with an inner
product such that

1. �\Ra = {�a,a} 8 a 2 �

2. sa�= � 8 a 2 �

Simple roots: express
every element of � via a
Z-linear combination.

reflection/Coxeter groups sa : v ! sa(v) = v �2
(v |a)

(a|a)
a
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Root systems

Cli↵ord Basics

Cartan Matrices

Cartan matrix of ai s is Aij = 2
(ai |aj)

(ai |ai )
= 2

|aj |
|ai |

cosqij

A
2

: A=

✓
2 �1
�1 2

◆

Coxeter-Dynkin diagrams: node = simple root, no link = roots
orthogonal, simple link = roots at p

3

, link with label m = angle p
m .

A
3

B
3

4
H
3

5
I
2

(n)
n
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Root systems

Cli↵ord Basics

Lie groups to Lie algebras to Coxeter groups to root
systems

Lie group: manifold of continuous symmetries (gauge theories,
spacetime)

Lie algebra: infinitesimal version near the identity

Non-trivial part is given by a root lattice

Weyl group is a crystallographic Coxeter group:

An,Bn/Cn,Dn,G2

,F
4

,E
6

,E
7

,E
8

generated by a root system.

So via this route root systems are always crystallographic.

Neglect non-crystallographic root systems I
2

(n),H
3

,H
4

.
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Root systems

Cli↵ord Basics

Non-crystallographic Coxeter groups H2 ⇢ H3 ⇢ H4

a
1

ta
1

+a
2

t(a
1

+a
2

)

a
1

+ ta
2

a
2

�a
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�(ta
1

+a
2

)

�t(a
1

+a
2

)

�(a
1

+ ta
2

)

�a
2

H
2

⇢ H
3

⇢ H
4

: 10, 120, 14,400 elements, the only Coxeter groups
that generate rotational symmetries of order 5

linear combinations now in the extended integer ring

Z[t] = {a+ tb|a,b 2 Z} golden ratio t =
1

2
(1+

p
5) = 2cos

p
5

x2 = x+1 t 0 = s =
1

2
(1�

p
5) = 2cos

2p
5

t +s = 1,ts =�1
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Root systems

Cli↵ord Basics

The Icosahedron

Rotational icosahedral group is I = A
5

of order 60

Full icosahedral group is H
3

of order 120 (including
reflections/inversion); generated by the root system
icosidodecahedron
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Root systems

Cli↵ord Basics

Cli↵ord Algebra and orthogonal transformations

Form an algebra using the Geometric Product for two vectors

ab ⌘ a ·b+a^b

Inner product is symmetric part a ·b = 1

2

(ab+ba)

Reflecting a in b is given by a0 = a�2(a ·b)b =�bab (b and

�b doubly cover the same reflection)

Via Cartan-Dieudonné theorem any orthogonal
(/conformal/modular) transformation can be written as
successive reflections

x 0 =±n
1

n
2

. . .nkxnk . . .n2n1 =±AxÃ
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Root systems

Cli↵ord Basics

Cli↵ord Algebra of 3D

E.g. Pauli algebra in 3D (likewise for Dirac algebra in 4D) is

{1}|{z}
1 scalar

{e
1

,e
2

,e
3

}| {z }
3 vectors

{e
1

e
2

,e
2

e
3

,e
3

e
1

}| {z }
3 bivectors

{I ⌘ e
1

e
2

e
3

}| {z }
1 trivector

We can multiply together root vectors in this algebra aiaj . . .

A general element has 8 components, even products
(rotations/spinors) have four components:

R = a
0

+a
1

e
2

e
3

+a
2

e
3

e
1

+a
3

e
1

e
2

) RR̃ = a2
0

+a2
1

+a2
2

+a2
3

So behaves as a 4D Euclidean object – inner product

(R
1

,R
2

) =
1

2
(R

2

R̃
1

+R
1

R̃
2

)
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3D to 4D spinor induction

Trinities and McKay correspondence

Induction Theorem – root systems

Theorem: 3D spinor groups give 4D root systems.

Check axioms:
1. �\Ra = {�a,a} 8 a 2 �

2. sa�= � 8 a 2 �

Proof: 1. R and �R are in a spinor group by construction
(double cover of orthogonal transformations), 2. closure under
reflections is guaranteed by the closure property of the spinor
group (with a twist: �R

1

R̃
2

R
1

)

Induction Theorem: Every rank-3 root system induces a
rank-4 root system (and thereby Coxeter groups)
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Spinors from reflections

The 6 roots in A
1

⇥A
1

⇥A
1

generate 8 spinors.

±e
1

, ±e
2

, ±e
3

give the 8 spinors ±1,±e
1

e
2

,±e
2

e
3

,±e
3

e
1

The discrete spinor group is isomorphic to the quaternion
group Q.

As 4D vectors these are the 8 roots of A
1

⇥A
1

⇥A
1

⇥A
1

(the
16-cell).
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H4 as a rotation group I: as icosahedral spinors

The H
3

root system has 30 roots e.g. simple roots
a
1

= e
2

,a
2

=�1

2

((t �1)e
1

+ e
2

+ te
3

) and a
3

= e
3

.

The subgroup of rotations is A
5

of order 60

These are doubly covered by 120 spinors of the form
a
1

a
2

=�1

2

(1� (t �1)e
1

e
2

+ te
2

e
3

), a
1

a
3

= e
2

e
3

and a
2

a
3

=
�1

2

(t � (t �1)e
3

e
1

+ e
2

e
3

).

As a set of vectors in 4D, they are

(±1,0,0,0) (8 permutations) ,
1

2
(±1,±1,±1,±1) (16 permutations)

1

2
(0,±1,±s ,±t) (96 even permutations) ,

which are precisely the 120 roots of the H
4

root system.
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Spinors from reflections

The 3D Coxeter groups that are symmetry groups of the
Platonic Solids:

The 6/12/18/30 roots in A
1

⇥A
1

⇥A
1

/A
3

/B
3

/H
3

generate
8/24/48/120 spinors.

E.g. ±e
1

, ±e
2

, ±e
3

give the 8 spinors ±1,±e
1

e
2

,±e
2

e
3

,±e
3

e
1

The discrete spinor group is isomorphic to the quaternion
group Q / binary tetrahedral group 2T/ binary octahedral
group 2O/ binary icosahedral group 2I ).
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3D to 4D spinor induction

Trinities and McKay correspondence

Exceptional Root Systems

Exceptional phenomena: D
4

(triality, important in string
theory), F

4

(largest lattice symmetry in 4D), H
4

(largest
non-crystallographic symmetry); Exceptional D

4

and F
4

arise
from series A

3

and B
3

rank-3 group diagram binary rank-4 group diagram

A
1

⇥A
1

⇥A
1

Q A
1

⇥A
1

⇥A
1

⇥A
1

A
3

2T D
4

B
3

4
2O F

4

4

H
3

5
2I H

4

5
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3D to 4D spinor induction

Trinities and McKay correspondence

Arnold’s Trinities

Arnold’s observation that many areas of real mathematics can be
complexified and quaternionified resulting in theories with a similar

structure.

The fundamental trinity is thus (R,C,H)

The projective spaces (RPn,CPn,HPn)

The spheres (RP1 = S1,CP2 = S2,HP1 = S4)

The Möbius/Hopf bundles (S1 ! S1,S4 ! S2,S7 ! S4)

The Lie Algebras (E
6

,E
7

,E
8

)

The symmetries of the Platonic Solids (A
3

,B
3

,H
3

)

The 4D groups (D
4

,F
4

,H
4

)

New connections via my Cli↵ord spinor construction (see
McKay correspondence)
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Platonic Trinities

Arnold’s connection between (A
3

,B
3

,H
3

) and (D
4

,F
4

,H
4

) is
very convoluted and involves numerous other trinities at
intermediate steps:

Decomposition of the projective plane into Weyl chambers
and Springer cones

The number of Weyl chambers in each segment is
24 = 2(1+3+3+5),48 = 2(1+5+7+11),120 =
2(1+11+19+29)

Notice this miraculously matches the quasihomogeneous
weights ((2,4,4,6),(2,6,8,12),(2,12,20,30)) of the Coxeter
groups (D

4

,F
4

,H
4

)

Believe the Cli↵ord connection is more direct
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3D to 4D spinor induction

Trinities and McKay correspondence

A unified framework for polyhedral groups

Group Discrete subgroup Action Mechanism

SO(3) rotational (chiral) x ! R̃xR
O(3) reflection (full/Coxeter) x !±ÃxA
Spin(3) binary (R

1

,R
2

)! R
1

R
2

Pin(3) pinor (A
1

,A
2

)! A
1

A
2

e.g. the chiral icosahedral group has 60 elements, encoded in
Cli↵ord by 120 spinors, which form the binary icosahedral
group

together with the inversion/pseudoscalar I this gives 60
rotations and 60 rotoinversions, i.e. the full icosahedral group
H
3

in 120 elements (with 240 pinors)
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3D to 4D spinor induction

Trinities and McKay correspondence

Some Group Theory: chiral, full, binary, pin

Easy enough to calculate conjugacy classes etc of pinors in
Cli↵ord algebra

Chiral (binary) polyhedral groups have irreps

tetrahedral (12/24): 1, 10, 100, 2s , 20s , 2
00
s , 3

octahedral (24/48): 1, 10, 2, 2s , 20s , 3, 3
0, 4s

icosahedral (60/120): 1, 2s , 20s , 3, 3̄, 4, 4s , 5, 6s

Binary groups are discrete subgroups of SU(2) and all thus
have a 2s spinor irrep

Connection with the McKay correspondence!
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Trinities and McKay correspondence

The McKay Correspondence: Coxeter number, dimensions
of irreps and tensor product graphs

Pierre-Philippe Dechant A 3D spinorial view of the exceptional root systems



Root systems and Cli↵ord algebras

H
4

as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence

E
8

from the icosahedron

H
4

as a rotation group II: The Coxeter plane

3D to 4D spinor induction

Trinities and McKay correspondence

The McKay Correspondence

Pierre-Philippe Dechant A 3D spinorial view of the exceptional root systems



Root systems and Cli↵ord algebras

H
4

as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence

E
8

from the icosahedron

H
4

as a rotation group II: The Coxeter plane

3D to 4D spinor induction

Trinities and McKay correspondence

The McKay Correspondence

More than E-type groups: the infinite family of 2D groups, the
cyclic and dicyclic groups are in correspondence with An and Dn,
e.g. the quaternion group Q and D+

4

. So McKay correspondence
not just a trinity but ADE-classification. We also have I

2

(n) on top
of the trinity (A

3

,B
3

,H
3

)
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Trinities and McKay correspondence

An indirect connection between E8 and H3?

Trinities:
(12,18,30)

(A
3

,B
3

,H
3

)

(2T ,2O,2I )

(D
4

,F
4

,H
4

)

(E
6

,E
7

,E
8

)
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3D to 4D spinor induction

Trinities and McKay correspondence

4D geometry is surprisingly important for HEP

4D root systems are surprisingly relevant to HEP

A
4

is SU(5) and comes up in Grand Unification

D
4

is SO(8) and is the little group of String theory

In particular, its triality symmetry is crucial for showing the
equivalence of RNS and GS strings

B
4

is SO(9) and is the little group of M-Theory

F
4

is the largest crystallographic symmetry in 4D and H
4

is
the largest non-crystallographic group

The above are subgroups of the latter two

Spinorial nature of the root systems could have surprising
consequences for HEP
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H
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E
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H
4

as a rotation group II: The Coxeter plane

Exceptional E8 (projected into the Coxeter plane)

E
8

root system has 240 roots, H
3

has order 120
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H
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Exceptional E8 – from the icosahedron

Saw even products of the 30 roots of H
3

gave 120 spinors
which in turn gave H

4

root system
Taking all products gives group of 240 pinors with 8
components
Essentially the inversion I just doubles the spinors

{1}|{z}
1 scalar

{e
1

,e
2

,e
3

}| {z }
3 vectors

{e
1

e
2

,e
2

e
3

,e
3

e
1

}| {z }
3 bivectors

{I ⌘ e
1

e
2

e
3

}| {z }
1 trivector

R = a
0

+a
1

e
2

e
3

+a
2

e
3

e
1

+a
3

e
1

e
2

&IR = b
0

e
1

e
2

e
3

+b
1

e
1

+b
2

e
2

+b
3

e
3

Most intuitive inner product on the pinors gives only H
4

�H
4

But slightly more technical inner product gives precisely the
E
8

root system from the icosahedron!
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Order 120 group H
3

doubly covered by 240 (s)pinors

Essentially H
4

+ IH
4

, two sets of 120

Multiply second set by tI , take inner products, taking into
account t2 = t +1, but THEN: set t ! 0! Each inner product
is (ai ,aj) = a+ tb! (ai ,aj)t := a (R. Wilson’s reduced inner
product)

Like the other exceptional geometries, E
8

is actually hidden
within 3D geometry!

a
1

a
2

a
3

ta
4

ta
3

ta
2

ta
1

a
4
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New, explicit connections

Pierre-Philippe Dechant A 3D spinorial view of the exceptional root systems



Overview

1 Root systems and Cli↵ord algebras
Root systems
Cli↵ord Basics

2 H
4

as a rotation group I: 3D to 4D spinor induction, Trinities
and McKay correspondence
3D to 4D spinor induction
Trinities and McKay correspondence

3 E
8

from the icosahedron

4 H
4

as a rotation group II: The Coxeter plane



Root systems and Cli↵ord algebras

H
4

as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence

E
8

from the icosahedron

H
4

as a rotation group II: The Coxeter plane

Projection and Diagram Foldings
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Can project 240 E
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– essentially the reverse
of the previous construction!

Coxeter element & number of E
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are the same
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The Coxeter Plane

Can show every (for our purposes) Coxeter group has a
Coxeter plane.

A way to visualise Coxeter groups in any dimension by
projecting their root system onto the Coxeter plane
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Coxeter Elements, Degrees and Exponents

Like the symmetric group, Coxeter groups can have invariant
polynomials. Their degrees d are important invariants/group
characteristics.

Turns out that actually degrees d are intimately related to
so-called exponents m m = d �1 .
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Coxeter Elements, Degrees and Exponents

A Coxeter Element is any combination of all the simple
reflections w = s

1

. . .sn , i.e. in Cli↵ord algebra it is encoded

by the versor W = a
1

. . .an acting as v ! wv =±W̃ vW .
All such elements are conjugate and thus their order is
invariant and called the Coxeter number h.
The Coxeter element has complex eigenvalues of the form

exp(2pmi/h) where m are called exponents:

wx = exp(2pmi/h)x

Standard theory complexifies the real Coxeter group situation
in order to find complex eigenvalues, then takes real sections
again (the unfortunate standard procedure in many situations)
– without any insight into the complex structure (or in fact,
there are di↵erent ones).

Pierre-Philippe Dechant A 3D spinorial view of the exceptional root systems



Root systems and Cli↵ord algebras

H
4

as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence

E
8

from the icosahedron

H
4

as a rotation group II: The Coxeter plane

Coxeter Elements, Degrees and Exponents

The Coxeter element has complex eigenvalues of the form

exp(2pmi/h) where m are called exponents

Standard theory complexifies the real Coxeter group situation
in order to find complex eigenvalues, then takes real sections
again (the unfortunate standard procedure in many situations)
– without any insight into the complex structure(s)

In particular, 1 and h�1 are always exponents

Turns out that actually exponents and degrees are intimately
related ( m = d �1 ). The construction is slightly roundabout
but uniform, and uses the Coxeter plane.
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The Coxeter Plane

In particular, can show every (for our purposes) Coxeter group
has a Coxeter plane

Existence relies on the fact that all groups in question have
tree-like Dynkin diagrams, and thus admit an alternate
colouring

Essentially just gives two sets of mutually commuting
generators
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The Coxeter Plane

Existence relies on the fact that all groups in question have
tree-like Dynkin diagrams, and thus admit an alternate
colouring

Essentially just gives two sets of orthogonal = mutually
commuting generators but anticommuting root vectors aw

and ab (duals w)

Cartan matrices are positive definite, and thus have a
Perron-Frobenius (all positive) eigenvector li .

Take linear combinations of components of this eigenvector as
coe�cients of two vectors from the orthogonal sets
vw = Âlwww and vb = Âlbwb

Their outer product/Coxeter plane bivector BC = vb ^ vw
describes an invariant plane where w acts by rotation by 2p/h.
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Cli↵ord Algebra and the Coxeter Plane – 2D case

I
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1
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, a
2

=�cos p
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n e2

So Coxeter versor is just

W = a
1

a
2

=�cos
p
n
+sin

p
n
e
1

e
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=�exp

✓
�pI

n

◆

In Cli↵ord algebra it is therefore immediately obvious that the
action of the I

2

(n) Coxeter element is described by a versor
(here a rotor/spinor) that encodes rotations in the
e
1

e
2

-Coxeter-plane and yields h = n since trivially
W n = (�1)n+1 yielding wn = 1 via wv = W̃ vW .
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Cli↵ord Algebra and the Coxeter Plane – 2D case

So Coxeter versor is just W =�exp

✓
�pI

n

◆

I = e
1

e
2

anticommutes with both e
1

and e
2

such that
sandwiching formula becomes

v ! wv = W̃ vW = W̃ 2v = exp

✓
±2pI

n

◆
v immediately

yielding the standard result for the complex eigenvalues in real
Cli↵ord algebra without any need for artificial complexification

The Coxeter plane bivector BC = e
1

e
2

= I gives the complex
structure

The Coxeter plane bivector BC is invariant under the Coxeter
versor W̃BCW =±BC .
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Cli↵ord Algebra and the Coxeter Plane – 3D case

In 3D, A
3

, B
3

, H
3

have {1,2,3}, {1,3,5} and {1,5,9}
Coxeter element is product of a spinor in the Coxeter plane
with the same complex structure as before, and a reflection
perpendicular to the plane

So in 3D still completely determined by the plane

1 and h�1 are rotations in Coxeter plane

h/2 is the reflection (for v in the normal direction)

wv = W̃ 2 = exp(±2pI
h

h

2
) = exp(±pI )v =�v
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Cli↵ord algebra: no need for complexification

Turns out in Cli↵ord algebra we can factorise W into
orthogonal (commuting/anticommuting) components

W = a
1

. . .an =W
1

. . .Wn with Wi = exp(pmi Ii/h)

Here, Ii is a bivector describing a plane with I 2i =�1

For v orthogonal to the plane descrbed by Ii we have

v ! W̃ivWi = W̃iWiv = v so cancels out

For v in the plane we have

v ! W̃ivWi = W̃ 2

i v = exp(2pmi Ii/h)v

Thus if we decompose W into orthogonal eigenspaces, in the
eigenvector equation all orthogonal bits cancel out and one
gets the complex eigenvalue from the respective eigenspace
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Cli↵ord algebra: no need for complexification

For v in the plane we have

v ! W̃ivWi = W̃ 2

i v = exp(2pmi Ii/h)v

So complex eigenvalue equation arises geometrically without
any need for complexification

Di↵erent complex structures immediately give di↵erent
eigenplanes

Eigenvalues/angles/exponents given from just factorising
W = a

1

. . .an

E.g. B
4

has exponents 1,3,5,7 and W = exp
�p
8

I
1

�
exp

�
3p
8

I
2

�

Here we have been looking for orthogonal eigenspaces, so
innocuous – di↵erent complex structures commute

But not in general – naive complexification can be misleading
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4D case: B4

E.g. B
4

has exponents 1,3,5,7

Coxeter versor decomposes into orthogonal components
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a
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a
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a
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4D case: A4

E.g. A
4

has exponents 1,2,3,4

Coxeter versor decomposes into orthogonal components

W = a
1

a
2

a
3

a
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5
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4D case: D4

E.g. D
4

has exponents 1,3,3,5

Coxeter versor decomposes into orthogonal components

W = a
1

a
2

a
3

a
4
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6
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4D case: F4

E.g. F
4

has exponents 1,5,7,11

Coxeter versor decomposes into orthogonal components

W = a
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a
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a
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a
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4D case: H4

E.g. H
4

has exponents 1,11,19,29

Coxeter versor decomposes into orthogonal components

W = a
1

a
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a
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a
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Cli↵ord Algebra and the Coxeter Plane – 4D case summary

rank 4 exponents W-factorisation

A
4

1,2,3,4 W = exp
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�
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�
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H
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�
exp

�
11p
30

IBC

�

Actually, in 2, 3 and 4 dimensions it couldn’t really be any other
way
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Cli↵ord Algebra and the Coxeter Plane – D6

For D
6

one has exponents 1,3,5,5,7,9

Coxeter versor decomposes into orthogonal bits as

W =
1p
5
(e
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+ e
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+ e
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� e
4

� e
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)e
6

exp
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10
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⌘
exp

✓
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Now bivector exponentials correspond to rotations in
orthogonal planes

Vector factors correspond to reflections

For odd n, there is always one such vector factor in Dn, and
for even n there are two
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8D case: E8

E.g. H
4

has exponents 1,11,19,29, E
8

has
1,7,11,13,17,19,23,29
Coxeter versor decomposes into orthogonal components

W = a
1

. . .a
8

= exp(
p
30

BC )exp(
7p
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B
2

)exp(
11p
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B
3

)exp(
13p
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B
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)
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8D case: E8

E.g. H
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has exponents 1,11,19,29, E
8

has
1,7,11,13,17,19,23,29
Coxeter versor decomposes into orthogonal components
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Imaginary di↵erences – di↵erent imaginaries

So what has been gained by this Cli↵ord view?

There are di↵erent entities that serve as unit imaginaries

They have a geometric interpretation as an eigenplane of the
Coxeter element

These don’t need to commute with everything like i (though
they do here – at least anticommute. But that is because we
looked for orthogonal decompositions)

But see that in general naive complexification can be a
dangerous thing to do – unnecessary, issues of commutativity,
confusing di↵erent imaginaries etc
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Conclusions

All exceptional geometries arise in 3D, root systems giving
rise to Lie groups/algebras etc

Completely novel spinorial way of viewing the geometries as
3D phenomena – implications for HEP etc?

More natural point of view, explaining existence and perhaps
automorphism groups

Unclear how one would see this in a matrix framework –
might require Cli↵ord point of view

New view of Coxeter degrees and exponents with geometric
interpretation of imaginaries

A unified framework for doing group and representation
theory: polyhedral, orthogonal, conformal, modular
(Moonshine) etc
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Thank you!
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Modular group

Modular group: interested in modular forms for applications in
Moonshine/string theory: Monster 196883, Klein j 196884

Modular generators: T : t ! t +1, S : t !�1/t

hS ,T |S2 = I ,(ST )3 = I i
CGA: TX = 1+ ne

1

2

and SX = e
1

e

(SXTX )3 =�1 and S2

X = 1
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Motivation: Viruses

Geometry of polyhedra described by Coxeter groups
Viruses have to be ‘economical’ with their genes
Encode structure modulo symmetry
Largest discrete symmetry of space is the icosahedral group
Many other ‘maximally symmetric’ objects in nature are also
icosahedral: Fullerenes & Quasicrystals
But: viruses are not just polyhedral – they have radial
structure. A�ne extensions give translations
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A�ne extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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A�ne extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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A�ne extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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A�ne extensions of non-crystallographic root systems

Translation of length t = 1

2

(1+
p
5)⇡ 1.618 (golden ratio)

T

G

Looks like a virus or carbon onion
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Extend icosahedral group with distinguished translations

Radial layers are simultaneously constrained by a�ne
symmetry

Works very well in practice: finite library of blueprints

Select blueprint from the outer shape (capsid)

Can predict inner structure (nucleic acid distribution) of the
virus from the point array

A�ne extensions of the icosahedral group (giving translations) and
their classification.
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Use in Mathematical Virology

Su�ce to say point arrays work very exceedingly well in
practice. Two papers on the mathematical (Coxeter) aspects.

Implemented computational problem in Cli↵ord – some very
interesting mathematics comes out as well (see later).
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Use in Mathematical Virology
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Extension to fullerenes: carbon onions

Extend idea of a�ne symmetry to other icosahedral objects in
nature: football-shaped fullerenes

Recover di↵erent shells with icosahedral symmetry from a�ne
approach: carbon onions (C

60

�C
240

�C
540

)
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Extension to fullerenes: carbon onions

Extend idea of a�ne symmetry to other icosahedral objects in
nature: football-shaped fullerenes

Recover di↵erent shells with icosahedral symmetry from a�ne
approach: carbon onions (C

80

�C
180

�C
320

)

Pierre-Philippe Dechant A 3D spinorial view of the exceptional root systems



Root systems and Cli↵ord algebras

H
4

as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence

E
8

from the icosahedron

H
4

as a rotation group II: The Coxeter plane

References

Novel Kac-Moody-type a�ne extensions of
non-crystallographic Coxeter groups with Twarock/Bœhm
J. Phys. A: Math. Theor. 45 285202 (2012)

A�ne extensions of non-crystallographic Coxeter groups
induced by projection with Twarock/Bœhm
Journal of Mathematical Physics 54 093508 (2013), Cover
article September

Viruses and Fullerenes – Symmetry as a Common Thread?
with Twarock/Wardman/Keef March Cover Acta
Crystallographica A 70 (2). pp. 162-167 (2014), and Nature
Physics Research Highlight

Pierre-Philippe Dechant A 3D spinorial view of the exceptional root systems



Root systems and Cli↵ord algebras

H
4

as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence

E
8

from the icosahedron

H
4

as a rotation group II: The Coxeter plane

Applications of a�ne extensions of non-crystallographic
root systems

Journal of
Mathematical Physics

September 2013 Volume 54 Number 9

jmp.aip.org

Acta Crystallographica Section A

Foundations and
Advances
Editors: S. J. L. Billinge and J. Miao

journals.iucr.org
International Union of Crystallography
Wiley-Blackwell

ISSN 2053-2733

Volume 70

Part 2

March 2014

There are interesting applications to quasicrystals, viruses or
carbon onions, but here concentrate on the mathematical aspects

Pierre-Philippe Dechant A 3D spinorial view of the exceptional root systems



Root systems and Cli↵ord algebras

H
4

as a rotation group I: 3D to 4D spinor induction, Trinities and McKay correspondence

E
8

from the icosahedron

H
4

as a rotation group II: The Coxeter plane

Quaternions and Cli↵ord Algebra

The unit spinors {1; Ie
1

; Ie
2

; Ie
3

} of Cl(3) are isomorphic to the
quaternion algebra H (up to sign)

The 3D Hodge dual of a vector is a pure bivector which
corresponds to a pure quaternion, and their products are
identical (up to sign)
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Discrete Quaternion groups

The 8 quaternions of the form (±1,0,0,0) and permutations
are called the Lipschitz units, and form a realisation of the
quaternion group in 8 elements.

The 8 Lipschitz units together with 1

2

(±1,±1,±1,±1) are
called the Hurwitz units, and realise the binary tetrahedral
group of order 24. Together with the 24 ‘dual’ quaternions of
the form 1p

2

(±1,±1,0,0), they form a group isomorphic to

the binary octahedral group of order 48.

The 24 Hurwitz units together with the 96 unit quaternions of
the form (0,±t,±1,±s) and even permutations, are called
the Icosians. The icosian group is isomorphic to the binary
icosahedral group with 120 elements.
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Quaternionic representations of 3D and 4D Coxeter groups

Groups E
8

, D
4

, F
4

and H
4

have representations in terms of
quaternions

Extensively used in the high energy
physics/quasicrystal/Coxeter/polytope literature and thought
of as deeply significant, though not really clear why

e.g. H
4

consists of 120 elements of the form (±1,0,0,0),
1

2

(±1,±1,±1,±1) and (0,±t,±1,±s)

Seen as remarkable that the subset of the 30 pure quaternions
is a realisation of H

3

(a sub-root system)

Similarly, A
3

, B
3

, A
1

⇥A
1

⇥A
1

have representations in terms
of pure quaternions

Will see there is a much simpler geometric explanation
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Quaternionic representations used in the literature

e1 e2 e3 1 e1 e2 e3

A1 ⇥A1 ⇥A1 A1 ⇥A1 ⇥A1 ⇥A1

e1 + e2 e3 � e2 e2 � e1 e1 1
2 (1� e1 � e2 � e3) e2

e3

A3 = D3 D4

e1 � e2 e2 � e3
p
2e3

4

1
2 (1� e1 � e2 � e3) e3 1

2 (e2 � e3)
1
2 (e1 � e2)

4

B3 F4

5

�e1
1
2 (⌧e1 + e2 + �e3) �e2

5

�e1
1
2 (⌧e1 + e2 + �e3) �e2

1
2 (� + e2 + ⌧e3)

H3 H4
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Demystifying Quaternionic Representations

3D: Pure quaternions = Hodge dualised (pseudoscalar) root
vectors

In fact, they are the simple roots of the Coxeter groups

4D: Quaternions = disguised spinors – but those of the 3D
Coxeter group i.e. the binary polyhedral groups!

This relation between 3D and 4D via the geometric product
does not seem to be known

Quaternion multiplication = ordinary Cli↵ord reflections and
rotations
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Demystifying Quaternionic Representations

Pure quaternion subset of 4D groups only gives 3D group if
the 3D group contains the inversion/pseudoscalar I

e.g. does not work for the tetrahedral group A
3

, but A
3

! D
4

induction still works, with the central node essentially
‘spinorial’

In fact, it goes the other way around: the 3D groups induce
the 4D groups via spinors

The rank-4 groups are also generated (under quaternion
multiplication) by two quaternions we can identify as
R
1

= a
1

a
2

and R
2

= a
2

a
3

Can see these are ‘spinor generators’ and how they don’t
really contain any more information/roots than the rank-3
groups alone
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Quaternions vs Cli↵ord versors

Sandwiching is often seen as particularly nice feature of the
quaternions giving rotations

This is actually a general feature of Cli↵ord algebras/versors
in any dimension; the isomorphism to the quaternions is
accidental to 3D

However, the root system construction does not necessarily
generalise

2D generalisation merely gives that I
2

(n) is self-dual

Octonionic generalisation just induces two copies of the above
4D root systems, e.g. A

3

! D
4

�D
4
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