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Eclectic interests – but the general theme is Geometry &
Symmetry and their Applications

Worked on a few different things: HEP – strings, particles and
cosmology, pure maths and mathematical biology and Clifford
algebras and mathematical physics

Unifying themes of symmetry and geometry (euclidean,
conformal, hyperbolic, spherical)

Continuous Lie groups, e.g. for modeling cosmological
spacetimes (Bianchi models), gauge symmetries,
compactifications &c

Discrete Coxeter groups and Kac-Moody algebras describe
gravitational singularities/hidden symmetries in HEP theory,
viruses, fullerenes, &c
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What’s new?

In HEP, mostly come from Lie groups, then Lie algebras, then
their Weyl groups and root systems

This only gives the crystallographic Coxeter groups

Do the non-crystallographic Coxeter groups have something
interesting to offer? In particular, affine extensions?

Interesting connections between the geometries of different
dimensions: Relation between crystallographic and
non-crystallographic (E8 and H4) and my spinor construction
(3D & 4D (D4,F4,H4), 8D (E8))

Both could have interesting consequences for HEP (4D groups
and E8 feature heavily) and other applications (viruses,
quasicrystals, proteins, fullerenes...)
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Singularities in cosmology/general relativity

In PhD, was looking at non-singular models of the universe
(topologically S3) using conformal geometry and Clifford
algebra techniques

Rather difficult to arrange – need very special conditions

Generic case: there are singularities (Hawking and Penrose)

Analytic structure/approach to singularity described by
hyperbolic Coxeter groups
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PhD: Theoretical Cosmology

Analytic structure/approach to singularity described by
hyperbolic Coxeter groups

Actually holds for large class of gravitational theories in
various dimensions (general relativity, supergravity, string
derived models)

Damour-Henneaux-Nicolai conjecture: These are the Weyl
groups of some underlying Lorentzian Kac-Moody algebra
symmetry of the gravitational theory
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Icosahedral Viruses

Rotational icosahedral group is I = A5 of order 60

Full icosahedral group is H3 of order 120 (including
reflections/inversion); generated by the root system
icosidodecahedron
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Affine extensions of non-crystallographic Coxeter groups?

Translation of length τ = 1
2(1 +

√
5)≈ 1.618 (golden ratio)

T

G

Cartoon version of a virus or carbon onion. Would there be an
evolutionary benefit to have more than just compact symmetry?

The problem has an intrinsic length scale.

Pierre-Philippe Dechant A new take on polyhedral things



Affine extensions of non-crystallographic Coxeter groups

2D and 3D point arrays for applications to viruses, fullerenes,
quasicrystals etc

Two complementary ways to construct these
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Use in Mathematical Virology
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New insight into RNA virus assembly

There are specific interactions between RNA and coat protein
(CP) given by symmetry axes

Essential for assembly as only this RNA-CP interaction turns
CP into right geometric shape for capsid formation

The RNA forms a Hamiltonian cycle visiting each CP once –
dictated by symmetry

A patent for a new antiviral strategy (Reidun Twarock)
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Viruses and fullerenes – symmetry as a common thread?

Get nested arrangements like Russian dolls: carbon onions
(e.g. June: Nature 510, 250253)

Potential to extend to other known carbon onions with
different start configuration, chirality etc

Acta Crystallographica Section A

Foundations and
Advances
Editors: S. J. L. Billinge and J. Miao

journals.iucr.org

International Union of Crystallography
Wiley-Blackwell

ISSN 2053-2733

Volume 70

Part 2

March 2014

Pierre-Philippe Dechant A new take on polyhedral things



Two major areas for Affine extensions of
non-crystallographic Coxeter groups

Non-compact symmetry that relates different structural
features in the same polyhedral object

Novel symmetry principle in Nature, shown that it seems to
apply to at least fullerenes and viruses
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Applications of these group structures in particle physics
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Purer Aspects of the Geometry

Coxeter plane geometry, quaternionic representations, modular
group etc

Each 3D root system induces a 4D root system

H3 (icosahedral symmetry) induces the E8 root system

Clifford algebra is a very natural framework for root systems
and reflection groups
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Clifford Algebra and orthogonal transformations

Form an algebra using the Geometric Product for two vectors

ab ≡ a ·b+a∧b

Inner product is symmetric part a ·b = 1
2(ab+ba)

Reflecting a in b is given by a′ = a−2(a ·b)b =−bab (b and

−b doubly cover the same reflection)

Via Cartan-Dieudonné theorem any orthogonal
(/conformal/modular) transformation can be written as
successive reflections

x ′ =±n1n2 . . .nkxnk . . .n2n1 =±AxÃ

Pierre-Philippe Dechant A new take on polyhedral things



Clifford Algebra of 3D

E.g. Pauli algebra in 3D (likewise for Dirac algebra in 4D) is

{1}︸︷︷︸
1 scalar

{e1,e2,e3}︸ ︷︷ ︸
3 vectors

{e1e2,e2e3,e3e1}︸ ︷︷ ︸
3 bivectors

{I ≡ e1e2e3}︸ ︷︷ ︸
1 trivector

We can multiply together root vectors in this algebra αiαj . . .

A general element has 8 components, even products
(rotations/spinors) have four components:

R = a0 +a1e2e3 +a2e3e1 +a3e1e2⇒ RR̃ = a20 +a21 +a22 +a23

So behaves as a 4D Euclidean object – inner product

(R1,R2) =
1

2
(R2R̃1 +R1R̃2)
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Thank you!
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