Est. | YORK 1841 | ST JOHN | UNIVERSITY

Dechant, Pierre-Philippe ORCID logoORCID: https://orcid.org/0000-0002-4694-4010 (2019) Machine-learning a virus assembly fitness landscape. In: SIAM Conference on Applied Algebraic Geometry, 9th - 13th July 2019, University of Bern, Bern, Switzerland. (Unpublished)

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/4026/

Research at York St John (RaY) is an institutional repository. It supports the principles of open access by making the research outputs of the University available in digital form. Copyright of the items stored in RaY reside with the authors and/or other copyright owners. Users may access full text items free of charge, and may download a copy for private study or non-commercial research. For further reuse terms, see licence terms governing individual outputs. Institutional Repository Policy Statement

RaY

Research at the University of York St John For more information please contact RaY at <u>ray@yorksj.ac.uk</u>

Machine-learning a virus assembly fitness landscape SIAM Algebraic geometry, data science and fundamental physics Bern, July 12, 2019

Pierre-Philippe Dechant

work with Y-H He and R Twarock

Pro Vice Chancellor's Office, York St John University York Cross-disciplinary Centre for Systems Analysis, University of York Department of Mathematics, University of York

Rationale

- Input vector: Genotype/Phenotype of length 12 (packaging signal strengths in 3 bands)
- Output vector: Assembly efficiency (out of 2000 possible capsids)
- Black box: Molecular dynamics simulations (computationally very costly)

Rationale

- Input vector: Genotype/Phenotype of length 12 (packaging signal strengths in 3 bands)
- Output vector: Assembly efficiency (out of 2000 possible capsids)

크

• Black box: Machine learning via a neural network

Rationale

	Genome	Fitness
0	1111111111111	200
1	1111111111112	1393
2	111111111113	1869
3	1111111111121	1597
4	111111111122	1896
5	111111111123	1960
6	111111111131	1875
7	111111111132	1959
8	111111111133	1961
9	111111111211	1639
10	111111111212	1683
11	111111111213	1895
12	111111111221	1848
13	111111111222	1904
14	111111111223	1964
15	111111111231	1904
16	111111111232	1949
17	111111111233	1959
18	111111111311	1852
19	111111111312	1858

$3^{12} \sim \frac{1}{2}$ Million data points

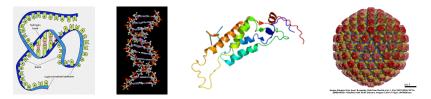
◆□ > ◆□ > ◆注 > ◆注 > ─ 注

Overview

1

- Virus structure and assembly
- Toy model and evolutionary fitness landscape

2

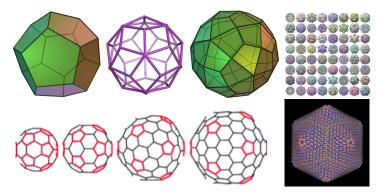

Neural networksPredictions

Virus structure and assembly

Toy model and evolutionary fitness landscape

What is a Virus?

- Piece of genetic information in the form of RNA or DNA
- Protected by a protein shell: capsid made of geometric protein building block

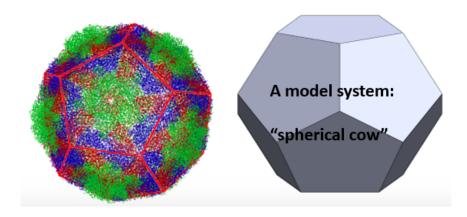


Virus structure and assembly

Toy model and evolutionary fitness landscape

• □ ▶ • • □ ▶ • • □ ▶

Most viruses are icosahedral


- Highly developed structure theory
- Nucleic acid component thought to be disordered

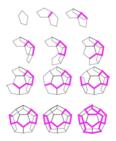
Virus structure and assembly

Toy model and evolutionary fitness landscape

イロト イヨト イヨト イヨト

Simplest model: a dodecahedron

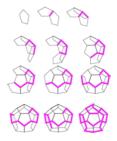
Virus structure and assembly


Toy model and evolutionary fitness landscape

< ∃⇒

<ロト < 回ト < 回ト

æ

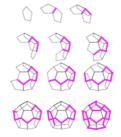

Assembly and thermodynamics – Hamiltonian paths

Virus structure and assembly

Toy model and evolutionary fitness landscape

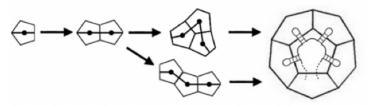
Assembly and thermodynamics – Hamiltonian paths

<ロト < 回 > < 回 > < 回 >

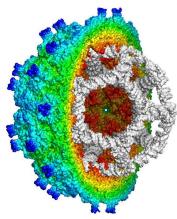

臣

∢ ≣⇒

Virus structure and assembly


Toy model and evolutionary fitness landscape

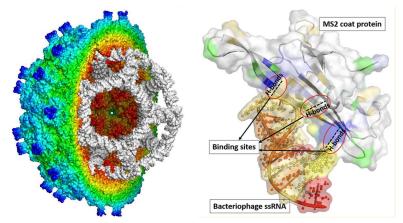
Assembly and thermodynamics – Hamiltonian paths


∢ ≣⇒

Virus structure and assembly

Toy model and evolutionary fitness landscape

3D distribution: RNA-CP contacts

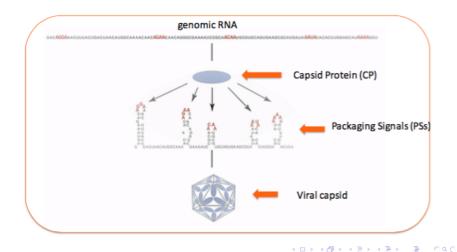

There are specific interactions between RNA and coat protein (CP) given by icosahedral symmetry axes

Virus structure and assembly

Toy model and evolutionary fitness landscape

イロト イヨト イヨト イヨト

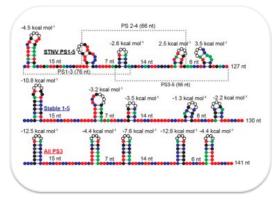
3D distribution: RNA-CP contacts



There are specific interactions between RNA and coat protein (CP) given by icosahedral symmetry axes

Virus structure and assembly

Toy model and evolutionary fitness landscape

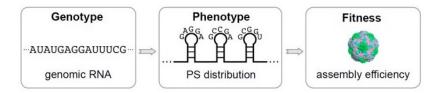

Packaging signal-mediated assembly

Virus structure and assembly

Toy model and evolutionary fitness landscape

Engineering Packaging Signals to make VLPs

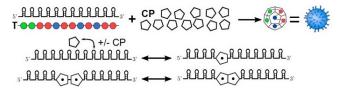
Virus-like particles with improved PS sequences assemble twice as efficiently. Potential applications to vaccines or drug delivery.


Virus structure and assembly

Toy model and evolutionary fitness landscape

・ロト ・回ト ・ヨト ・ヨト

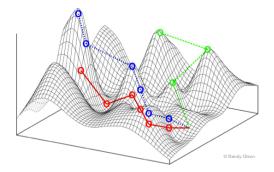
臣


Genotype – Phenotype – Fitness map

Virus structure and assembly

Toy model and evolutionary fitness landscape

Simplest model: the dodecahedron

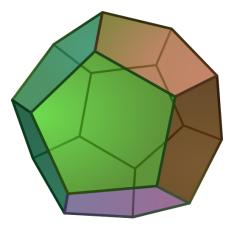


- 12 PSs in 3 bands (strong/intermediate/weak, 12/8/4, 3/2/1, green/blue/red)
- Molecular dynamics simulation: stochastically select one possible reaction at a time
- Enough resources for 2000 virus capsids

Virus structure and assembly

Toy model and evolutionary fitness landscape

Fitness Landscape


Generally messy (many contributions) and difficult to quantify. Here capture the assembly contribution for the phenotype space of 3^{12} points with (stochastic) assembly efficiency (< 2000).

Virus structure and assembly

Toy model and evolutionary fitness landscape

◆□ > ◆□ > ◆注 > ◆注 > ─ 注

Fundamental Physics

Virus structure and assembly

Toy model and evolutionary fitness landscape

・ロト ・日ト ・ヨト ・ヨト

E.

Genotype-fitness map

	Genome	Fitness
0	11111111111111	200
1	1111111111112	1393
2	1111111111113	1869
3	1111111111121	1597
4	111111111122	1896
5	111111111123	1960
6	1111111111131	1875
7	111111111132	1959
8	111111111133	1961
9	111111111211	1639
10	111111111212	1683
11	111111111213	1895
12	111111111221	1848
13	111111111222	1904
14	111111111223	1964
15	111111111231	1904
16	111111111232	1949
17	111111111233	1959
18	1111111111311	1852
19	111111111312	1858

$3^{12} \sim \frac{1}{2}$ Million data points

Overview

- Virus structure and assembly
- Toy model and evolutionary fitness landscape

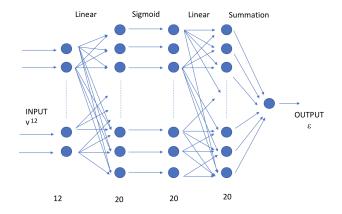
(日) (四) (문) (문) (문)

2

- Neural networks
- Predictions

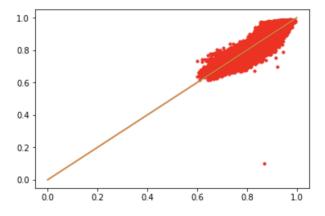
Neural networks Predictions

Rationale



- Input vector: Genotype/Phenotype of length 12 (packaging signal strengths in 3 bands)
- Output vector: Assembly efficiency (out of 2000 possible capsids)
- Black box: Machine learning via a neural network

イロン 不通 とうほう 不同 とう

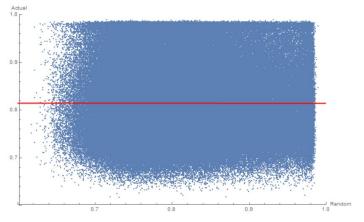

æ,

Machine Learning with a Neural Network

Neural networks Predictions

Predictions

predicted vs actual value of assembly efficiency

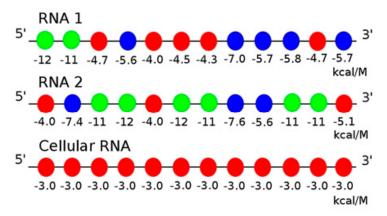

Image: A mathematical states and a mathem

< ∃⇒

æ

Neural networks Predictions

Predictions



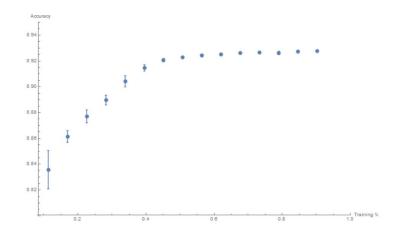
vs random assignments of assembly efficiency

・ロト ・回ト ・ヨト ・ヨト

Neural networks Predictions

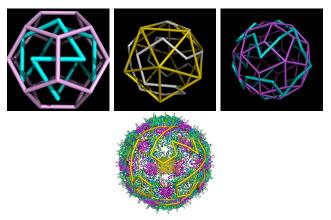
Not just random, intrinsic features?

Definite starting point with strong binding, then weaker binding in an error-correcting bit, driven to completion by thermodynamics


イロト イヨト イヨト イヨト

臣

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶


æ,

Learning Curve

Neural networks Predictions

Conclusions

Do more realistic models in future – geometry, binding gradation. Partially explore the landscape and predict the rest (procedurally)?

イロト イヨト イヨト イヨト

臣

Thank you!

Machine-learning a virus assembly fitness landscape P-P Dechant, Y-H He, arXiv preprint arXiv:1901.05051, 2019