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Root systems – A2

α1

α2

−α1

−(α1 + α2)

α1 + α2

−α2

Root system Φ: set of
vectors α such that

1. Φ∩Rα = {−α,α} ∀ α ∈ Φ

2. sα Φ = Φ ∀ α ∈ Φ

Simple roots: express
every element of Φ via a
Z-linear combination

(with coefficients of the
same sign).
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Coxeter groups

A Coxeter group is a group generated by some involutive

generators si ,sj ∈ S subject to relations of the form (si sj)
mij = 1

with mij = mji ≥ 2 for i 6= j .

The finite Coxeter groups have a geometric representation where
the involutions are realised as reflections at hyperplanes through
the origin in a Euclidean vector space E . In particular, let (·|·)

denote the inner product in E , and v , α ∈ E .
The generator sα corresponds to the reflection

sα : v → sα (v) = v −2
(v |α)

(α|α)
α

at a hyperplane perpendicular to the root vector α.
The action of the Coxeter group is to permute these root vectors.
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Cartan Matrices

Cartan matrix of αi s is Aij = 2
(αi ,αj)

(αi ,αi )
= 2
|αj |
|αi |

cosθij

A2: A =

(
2 −1
−1 2

)
Coxeter-Dynkin diagrams: node = simple root, no link = roots

orthogonal, simple link = roots at π

3 , link with label m = angle π

m .

A3 B3
4

H3
5

I2(n)
n
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Reflections

Clifford algebra is very efficient at performing reflections

Consider reflecting the vector a in a hypersurface with unit
normal n:

a′ = a⊥−a‖ = a−2a‖ = a−2(a ·n)n

c.f. fundamental Weyl reflection si : v → si (v) = v −2 (v |αi )
(αi |αi )

αi

But in Clifford algebra have n ·a = 1
2(na+an) so reassembles

into (note doubly covered by n and −n) sandwiching

a′ =−nan

So both Coxeter and Clifford frameworks are ideally suited to
describing reflections – combine the two
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Rotations

Generate a rotation in the plane m∧n when compounding
two reflections wrt n then m:

a′′ = mnanm ≡ RaR̃

where R = mn is called a rotor and a tilde denotes reversal of
the order of the constituent vectors (RR̃ = 1)

Multivectors transform covariantly e.g.

MN → (RMR̃)(RNR̃) = RMR̃RNR̃ = R(MN)R̃

so transform double-sidedly

Spinors form a group, which gives a representation of the Spin
group Spin(n) – they transform single-sidedly (obvious it’s a
double (universal) cover)
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Geometric Algebra and orthogonal transformations

Cartan-Dieudonné: every isometry is at most d reflections

Since have a double cover of reflections (n and −n) we have a
double cover of O(p,q): Pin(p,q)

x ′ =±n1n2 . . .nkxnk . . .n2n1

Pinors = products of vectors n1n2 . . .nk encode orthogonal
transformations via ‘sandwiching’

Cartan-Dieudonné: rotations are an even number of
reflections: Spin(p,q) doubly covers SO(p,q)
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3D Platonic Solids

There are 5 Platonic solids

Tetrahedron (self-dual) (A3)

Dual pair octahedron and cube (B3)

Dual pair icoshahedron and dodecahedron
(H3)

Only the octahedron is a root system
(actually for (A3

1))
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Clifford and Coxeter: Platonic Solids

Platonic Solid Group root system

Tetrahedron A3 Cuboctahedron
A3
1 Octahedron

Octahedron B3 Cuboctahedron
Cube +Octahedron

Icosahedron H3 Icosidodecahedron
Dodecahedron

Platonic Solids have been known for
millennia

Described by Coxeter groups
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4D ‘Platonic Solids’

In 4D, there are 6 analogues of the Platonic Solids:

5-cell (self-dual) (A4)

24-cell (self-dual) (D4) – a 24-cell and its dual together are
the F4 root system

Dual pair 16-cell and 8-cell (B4)

Dual pair 600-cell and 120-cell (H4)

These are 4D analogues of the Platonic Solids: regular convex
4-polytopes
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4D ‘Platonic Solids’

24-cell, 16-cell and 600-cell are all root systems, as is the
related F4 root system

8-cell and 120-cell are dual to a root system, so in 4D out of 6
Platonic Solids only the 5-cell (corresponding to An family) is
not related to a root system!

The 4D Platonic solids are not normally thought to be related
to the 3D ones except for the boundary cells

They have very unusual automorphism groups

Some partial case-by-case algebraic results in terms of
quaternions – here we show a uniform construction offering
geometric understanding
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Mysterious Symmetries of 4D Polytopes

Spinorial symmetries
rank 4 |Φ| Symmetry

D4 24-cell 24 2 ·242 = 576

F4 lattice 48 482 = 2304

H4 600-cell 120 1202 = 14400

A4
1 16-cell 8 3! ·82 = 384

A2⊕A2 prism 12 122 = 144

H2⊕H2 prism 20 202 = 400

I2(n)⊕ I2(n) 2n (2n)2

Similar for Grand Antiprism (H4 without H2⊕H2) and
Snub 24-cell (2I without 2T ).
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A new connection

Platonic Solids have been known for
millennia; described by Coxeter groups

Concatenating reflections gives Clifford
spinors (binary polyhedral groups)

These induce 4D root systems
ψ = a0 +ai Iei ⇒ ψψ̃ = a20 +a21 +a22 +a23
4D analogues of the Platonic Solids and
give rise to 4D Coxeter groups
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Induction Theorem – root systems

Theorem: 3D spinor groups give root systems.

Proof: 1. R and −R are in a spinor group by construction, 2.
closure under reflections is guaranteed by the closure property
of the spinor group

Induction Theorem: Every rank-3 root system induces a
rank-4 root system (and thereby Coxeter groups)

Counterexample: not every rank-4 root system is induced in
this way
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Induction Theorem – automorphism

So induced 4D polytopes are actually root systems.

Clear why the number of roots |Φ| is equal to |G |, the order
of the spinor group

Spinor group is trivially closed under conjugation, left and
right multiplication. Results in non-trivial symmetries when
viewed as a polytope/root system.

Now explains symmetry of the polytopes/root system and
thus the order of the rank-4 Coxeter group

Theorem: The automorphism group of the induced root
system contains two factors of the respective spinor group
acting from the left and the right.
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Recap: Clifford algebra and reflections & rotations

Clifford algebra is very efficient at performing reflections via
sandwiching

a′ =−nan

Generate a rotation when compounding two reflections wrt n
then m (Cartan-Dieudonné theorem):

a′′ = mnanm ≡ RaR̃

where R = mn is called a spinor and a tilde denotes reversal
of the order of the constituent vectors (RR̃ = 1)
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Spinors from reflections

The 3D Coxeter groups that are symmetry groups of the
Platonic Solids:

The 6/12/18/30 reflections in A1×A1×A1/A3/B3/H3

generate 8/24/48/120 spinors.

E.g. ±e1, ±e2, ±e3 give the 8 spinors ±1,±e1e2,±e2e3,±e3e1
The discrete spinor group is isomorphic to the quaternion
group Q / binary tetrahedral group 2T/ binary octahedral
group 2O/ binary icosahedral group 2I ).
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Spinors and Polytopes

The space of Cl(3)-spinors and quaternions have a 4D
Euclidean signature: ψ = a0 +ai Iei ⇒ ψψ̃ = a20 +a21 +a22 +a23
Can reinterpret spinors in R3 as vectors in R4

Then the spinors constitute the vertices of the 16-cell, 24-cell,
24-cell and dual 24-cell and the 600-cell

These are 4D analogues of the Platonic Solids: regular convex
4-polytopes
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Exceptional Root Systems

The 16-cell, 24-cell, 24-cell and dual 24-cell and the 600-cell
are in fact the root systems of A1×A1×A1×A1, D4, F4 and
H4

Exceptional phenomena: D4 (triality, important in string
theory), F4 (largest lattice symmetry in 4D), H4 (largest
non-crystallographic symmetry)

Exceptional D4 and F4 arise from series A3 and B3

In fact, as we have seen one can strengthen this statement on
inducing polytopes to a statement on inducing root systems
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Root systems in three and four dimensions

The spinors generated from the reflections contained in the
respective rank-3 Coxeter group via the geometric product are
realisations of the binary polyhedral groups Q, 2T , 2O and 2I ,

which were known to generate (mostly exceptional) rank-4 groups,
but not known why, and why the ‘mysterious symmetries’.

rank-3 group diagram binary rank-4 group diagram

A1×A1×A1 Q A1×A1×A1×A1

A3 2T D4

B3
4

2O F4
4

H3
5

2I H4
5
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General Case of Induction

Only remaining case is what happens for A1⊕ I2(n) - this gives a
doubling I2(n)⊕ I2(n)
rank 3 rank 4

A3 D4

B3 F4
H3 H4

A3
1 A4

1

A1⊕A2 A2⊕A2

A1⊕H2 H2⊕H2

A1⊕ I2(n) I2(n)⊕ I2(n)
Can do an analogous construction using 3 roots to generate a

discrete octonion group. These are again root systems, however
just two copies of the above.
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Automorphism Groups

So induced 4D polytopes are actually root systems via the
binary polyhedral groups.

Clear why the number of roots |Φ| is equal to |G |, the order
of the spinor group.

Spinor group is trivially closed under conjugation, left and
right multiplication. Results in non-trivial symmetries when
viewed as a polytope/root system.

Now explains symmetry of the polytopes/root system and
thus the order of the rank-4 Coxeter group

Theorem: The automorphism group of the induced root
system contains two factors of the respective spinor group
acting from the left and the right.
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Spinorial Symmetries of 4D Polytopes

Spinorial symmetries
rank 3 |Φ| |W | rank 4 |Φ| Symmetry

A3 12 24 D4 24-cell 24 2 ·242 = 576

B3 18 48 F4 lattice 48 482 = 2304

H3 30 120 H4 600-cell 120 1202 = 14400

A3
1 6 8 A4

1 16-cell 8 3! ·82 = 384

A1⊕A2 8 12 A2⊕A2 prism 12 122 = 144

A1⊕H2 12 20 H2⊕H2 prism 20 202 = 400

A1⊕ I2(n) n+ 2 2n I2(n)⊕ I2(n) 2n (2n)2

Similar for Grand Antiprism (H4 without H2⊕H2) and Snub
24-cell (2I without 2T ). Additional factors in the automorphism

group come from 3D Dynkin diagram symmetries!
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Some non-Platonic examples of spinorial symmetries

Grand Antiprism: the 100 vertices achieved by subtracting 20
vertices of H2⊕H2 from the 120 vertices of the H4 root
system 600-cell – two separate orbits of H2⊕H2

This is a semi-regular polytope with automorphism symmetry
Aut(H2⊕H2) of order 400 = 202

Think of the H2⊕H2 as coming from the doubling procedure?
(Likewise for Aut(A2⊕A2) subgroup)

Snub 24-cell: 2T is a subgroup of 2I so subtracting the 24
corresponding vertices of the 24-cell from the 600-cell, one
gets a semiregular polytope with 96 vertices and
automorphism group 2T ×2T of order 576 = 242.
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Sub root systems

The above spinor groups had spinor multiplication as the
group operation

But also closed under twisted conjugation – corresponds to
closure under reflections (root system property)

If we take twisted conjugation as the group operation instead,
we can have various subgroups

These are the remaining 4D root systems e.g. A4 or B4
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Arnold’s Trinities

Arnold’s observation that many areas of real mathematics can be
complexified and quaternionified resulting in theories with a similar

structure.

The fundamental trinity is thus (R,C,H)

The projective spaces (RPn,CPn,HPn)

The spheres (RP1 = S1,CP2 = S2,HP1 = S4)

The Möbius/Hopf bundles (S1→ S1,S4→ S2,S7→ S4)

The Lie Algebras (E6,E7,E8)

The symmetries of the Platonic Solids (A3,B3,H3)

The 4D groups (D4,F4,H4)

New connections via my Clifford spinor construction (see
McKay correspondence)
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Platonic Trinities

Arnold’s connection between (A3,B3,H3) and (D4,F4,H4) is
very convoluted and involves numerous other trinities at
intermediate steps:

Decomposition of the projective plane into Weyl chambers
and Springer cones

The number of Weyl chambers in each segment is
24 = 2(1 + 3 + 3 + 5),48 = 2(1 + 5 + 7 + 11),120 =
2(1 + 11 + 19 + 29)

Notice this miraculously matches the quasihomogeneous
weights ((2,4,4,6),(2,6,8,12),(2,12,20,30)) of the Coxeter
groups (D4,F4,H4)

Believe the Clifford connection is more direct
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A unified framework for polyhedral groups

Group Discrete subgroup Action Mechanism

SO(3) rotational (chiral) x → R̃xR

O(3) reflection (full/Coxeter) x →±ÃxA
Spin(3) binary (R1,R2)→ R1R2

Pin(3) pinor (A1,A2)→ A1A2

e.g. the chiral icosahedral group has 60 elements, encoded in
Clifford by 120 spinors, which form the binary icosahedral
group

together with the inversion/pseudoscalar I this gives 60
rotations and 60 rotoinversions, i.e. the full icosahedral group
H3 in 120 elements (with 240 pinors)

all three are interesting groups, e.g. in neutrino and flavour
physics for family symmetry model building
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Some Group Theory: chiral, full, binary, pin

Easy enough to calculate conjugacy classes etc of pinors in
Clifford algebra

Chiral (binary) polyhedral groups have irreps

tetrahedral (12/24): 1, 1′, 1′′, 2s , 2′s , 2′′s , 3

octahedral (24/48): 1, 1′, 2, 2s , 2′s , 3, 3′, 4s

icosahedral (60/120): 1, 2s , 2′s , 3, 3̄, 4, 4s , 5, 6s

Binary groups are discrete subgroups of SU(2) and all thus
have a 2s spinor irrep

Connection with the McKay correspondence!
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Affine extensions – E=
8

α0 α1 α2 α3 α4 α5 α6 α7

α8

−α0 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8

AKA E+
8 and along with E++

8 and E+++
8 thought to be the

underlying symmetry of String and M-theory

Also interesting from a pure mathematics point of view: E8 lattice,
McKay correspondence and Monstrous Moonshine.
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The McKay Correspondence
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The McKay Correspondence
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The McKay Correspondence

More than E-type groups: the infinite family of 2D groups, the
cyclic and dicyclic groups are in correspondence with An and Dn,
e.g. the quaternion group Q and D+

4 . So McKay correspondence
not just a trinity but ADE-classification. We also have I2(n) on top

of the trinity (A3,B3,H3)
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4D geometry is surprisingly important for HEP

4D root systems are surprisingly relevant to HEP

A4 is SU(5) and comes up in Grand Unification

D4 is SO(8) and is the little group of String theory

In particular, its triality symmetry is crucial for showing the
equivalence of RNS and GS strings

B4 is SO(9) and is the little group of M-Theory

F4 is the largest crystallographic symmetry in 4D and H4 is
the largest non-crystallographic group

The above are subgroups of the latter two

Spinorial nature of the root systems could have surprising
consequences for HEP
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Quaternions and Clifford Algebra

The unit spinors {1; Ie1; Ie2; Ie3} of Cl(3) are isomorphic to the
quaternion algebra H
The 3D Hodge dual of a vector is a pure bivector which
corresponds to a pure quaternion, and their products are
identical (up to sign)
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Discrete Quaternion groups

The 8 quaternions of the form (±1,0,0,0) and permutations
are called the Lipschitz units, and form a realisation of the
quaternion group in 8 elements.

The 8 Lipschitz units together with 1
2(±1,±1,±1,±1) are

called the Hurwitz units, and realise the binary tetrahedral
group of order 24. Together with the 24 ‘dual’ quaternions of
the form 1√

2
(±1,±1,0,0), they form a group isomorphic to

the binary octahedral group of order 48.

The 24 Hurwitz units together with the 96 unit quaternions of
the form (0,±τ,±1,±σ) and even permutations, are called
the Icosians. The icosian group is isomorphic to the binary
icosahedral group with 120 elements.
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Quaternionic representations of 3D and 4D Coxeter groups

Groups E8, D4, F4 and H4 have representations in terms of
quaternions

Extensively used in the high energy
physics/quasicrystal/Coxeter/polytope literature and thought
of as deeply significant, though not really clear why

e.g. H4 consists of 120 elements of the form (±1,0,0,0),
1
2(±1,±1,±1,±1) and (0,±τ,±1,±σ)

Seen as remarkable that the subset of the 30 pure quaternions
is a realisation of H3 (a sub-root system)

Similarly, A3, B3, A1×A1×A1 have representations in terms
of pure quaternions

Will see there is a much simpler geometric explanation
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Quaternionic representations used in the literature

e1 e2 e3 1 e1 e2 e3

A1 ×A1 ×A1 A1 ×A1 ×A1 ×A1

e1 + e2 e3 − e2 e2 − e1 e1 1
2 (1− e1 − e2 − e3) e2

e3

A3 = D3 D4

e1 − e2 e2 − e3
√
2e3

4

1
2 (1− e1 − e2 − e3) e3 1

2 (e2 − e3)
1
2 (e1 − e2)

4

B3 F4

5

−e1
1
2 (τe1 + e2 + σe3) −e2

5

−e1
1
2 (τe1 + e2 + σe3) −e2

1
2 (σ + e2 + τe3)

H3 H4
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Demystifying Quaternionic Representations

3D: Pure quaternions = Hodge dualised (pseudoscalar) root
vectors

In fact, they are the simple roots of the Coxeter groups

4D: Quaternions = disguised spinors – but those of the 3D
Coxeter group i.e. the binary polyhedral groups!

This relation between 3D and 4D via the geometric product
does not seem to be known

Quaternion multiplication = ordinary Clifford reflections and
rotations
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Demystifying Quaternionic Representations

Pure quaternion subset of 4D groups only gives 3D group if
the 3D group contains the inversion/pseudoscalar I

e.g. does not work for the tetrahedral group A3, but A3→ D4

induction still works, with the central node essentially
‘spinorial’

In fact, it goes the other way around: the 3D groups induce
the 4D groups via spinors

The rank-4 groups are also generated (under quaternion
multiplication) by two quaternions we can identify as
R1 = α1α2 and R2 = α2α3

Can see these are ‘spinor generators’ and how they don’t
really contain any more information/roots than the rank-3
groups alone

Pierre-Philippe Dechant Platonic solids generate their four-dimensional analogues – a 3D spinorial view of 4D exceptional phenomena



Introduction
Combining Coxeter and Clifford

The Induction Theorem – from 3D to 4D
Automorphism Groups
Trinities and McKay correspondence

Quaternions vs Clifford versors

Sandwiching is often seen as particularly nice feature of the
quaternions giving rotations

This is actually a general feature of Clifford algebras/versors
in any dimension; the isomorphism to the quaternions is
accidental to 3D

However, the root system construction does not necessarily
generalise

2D generalisation merely gives that I2(n) is self-dual

Octonionic generalisation just induces two copies of the above
4D root systems, e.g. A3→ D4⊕D4
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Conclusions

Novel connection between geometry of 3D and 4D

In fact, 3D seems more fundamental – contrary to the usual
perspective of 3D subgroups of 4D groups

Spinorial symmetries

Clear why spinor group gives a root system and why two
factors of the same group reappear in the automorphism group

Novel spinorial perspective on 4D geometry

Accidentalness of the spinor construction and exceptional 4D
phenomena

Connection with Arnold’s trinities, the McKay correspondence
and Monstrous Moonshine
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Thank you!
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Motivation: Viruses

Geometry of polyhedra described by Coxeter groups

Viruses have to be ‘economical’ with their genes

Encode structure modulo symmetry

Largest discrete symmetry of space is the icosahedral group

Many other ‘maximally symmetric’ objects in nature are also
icosahedral: Fullerenes & Quasicrystals

But: viruses are not just polyhedral – they have radial
structure. Affine extensions give translations
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Affine extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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Affine extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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Affine extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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Affine extensions of non-crystallographic root systems

Translation of length τ = 1
2(1 +

√
5)≈ 1.618 (golden ratio)

T

G

Looks like a virus or carbon onion
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Extend icosahedral group with distinguished translations

Radial layers are simultaneously constrained by affine
symmetry

Works very well in practice: finite library of blueprints

Select blueprint from the outer shape (capsid)

Can predict inner structure (nucleic acid distribution) of the
virus from the point array

Affine extensions of the icosahedral group (giving translations) and
their classification.
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Use in Mathematical Virology

Suffice to say point arrays work very exceedingly well in
practice. Two papers on the mathematical (Coxeter) aspects.

Implemented computational problem in Clifford – some very
interesting mathematics comes out as well (see later).
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Extension to fullerenes: carbon onions

Extend idea of affine symmetry to other icosahedral objects in
nature: football-shaped fullerenes

Recover different shells with icosahedral symmetry from affine
approach: carbon onions (C60−C240−C540)

Pierre-Philippe Dechant Platonic solids generate their four-dimensional analogues – a 3D spinorial view of 4D exceptional phenomena



Introduction
Combining Coxeter and Clifford

The Induction Theorem – from 3D to 4D
Automorphism Groups
Trinities and McKay correspondence

Extension to fullerenes: carbon onions

Extend idea of affine symmetry to other icosahedral objects in
nature: football-shaped fullerenes

Recover different shells with icosahedral symmetry from affine
approach: carbon onions (C80−C180−C320)
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There are interesting applications to quasicrystals, viruses or
carbon onions, but here concentrate on the mathematical aspects
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