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Abstract    13 

Geochemical cycling and biological toxicity of sulfur in marine sediments is 14 

closely related to the activity of organisms. This study investigated the distribution 15 

and potential impact on benthic environments of acid volatile sulfur (AVS), 16 

chromium (II)-reducible sulfur (CRS), elemental sulfur (ES), total S, C, N and Fe in 17 

superficial sediments across the Bohai Sea, Yellow Sea and East China Sea. The 18 

composition of reduced inorganic sulfur in the three study areas was dominated by 19 

CRS (averaging 72% of total reduced inorganic sulfur). The low AVS content 20 
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(average of 1.12 µmol g-1) of the sediments and the low values of AVS/CRS (average 1 

0.34 µmol g-1), degree of pyritization and degree of sulphidization indicate that there 2 

is sufficient available iron in the sediment to restrict the threat of sulphide toxicity to 3 

benthic organisms in most of the study areas. However, high organic matter loads in 4 

parts of the study areas have resulted in enhanced accumulation of AVS, resulting in a 5 

higher toxicity risk. 6 

 7 

Keywords: Sulfur compounds; Sedimentary environments; Offshore; Benthic 8 

environment   9 

1. Introduction 10 

Sulfur is essential to life and one of the key players in global biogeochemical cycles. 11 

However the most reduced form, sulfide, is generally toxic to organisms and 12 

influences water quality (Bagarinao, 1992; Sheng et al., 2011). Sulfur is cycled 13 

between and fixed in many different forms in marine sediments (Morse and Berner, 14 

1995; Canfield et al., 2005; Bottrell et al., 2009; Alvarez and Rubio, 2012). Therefore, 15 

understanding sulfur speciation in marine sediments is essential in evaluating its 16 

response to environmental change and the potential biological impact of sulfide. The 17 

availability of sulfide in the coastal environment will have implications for overlying 18 

water quality.    19 

The sulfur cycle in marine sediments can be divided into reductive and oxidative 20 

processes. The reductive side of the cycle is driven by microorganisms that reduce 21 
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sulfate to sulfide in anaerobic environments and rates of sulfate reduction can be very 1 

high under such conditions (Morse et al., 2007; Tarpgaard et al., 2011). 2 

SO4
2- + 2CH2O => H2S + 2HCO3

-             (1) 3 

In the oxidative side of the cycle sulfide reacts with a variety of oxidants such as O2 4 

and Fe(III) oxides to produce sulfate or intermediate S forms (e.g. elemental S). The 5 

majority of the sulfide produced in marine sediment is reoxidized (Canfield and 6 

Thamdrup 1994; Poulton 2003; Bottrell and Newton, 2006). Sulfide produced is also 7 

removed by reaction with mineral-derived Fe, initially producing a monosulfide 8 

“FeS” which transforms to more stable pyrite, FeS2 (Berner 1970, 1984). However, 9 

the reactivity of mineral iron forms is highly variable (Canfield et al. 1992) and may 10 

limit the removal of sulfide. Where supply of oxidants is also restricted, production of 11 

sulfide may outcompete rates of removal and concentrations of toxic sulfide will 12 

increase in shallow pore-waters and bottom waters (Phillips et al. 1997). Furthermore, 13 

iron monosulfide species formed in sediment are often highly reactive and will rapidly 14 

react with and remove dissolved oxygen from bottom waters if sediment is 15 

resuspended. 16 

The reactivity of sulfide stored in sediment when resuspension occurs is 17 

dependent on the form in which sulfide is present; dissolved sulfide is most reactive, 18 

followed by monosulfide, and pyrite is least reactive (Morse and Rickard 2004). In 19 

many sediments conversion of monosulfide to pyrite is rapid (Schoonen and Barnes 20 

1991; Butler and Rickard 2005) such as reoxidation of AVS in the uppermost layer 21 
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and thus monosulfide concentrations are low or negligible (e.g. Rozan et al. 2002; 1 

Rickard and Morse 2005). However in other situations (e.g. high pH (>7.8) sediments 2 

and under organic-rich eutrophic conditions) Fe monosulfides are persistent and 3 

represent a significant pool of reactive sulfide in the sediment (Hurtgen et al. 1999; 4 

Morse 1999; Burton et al. 2011; Morgan et al., 2012). Sulfide is toxic to aquatic plants 5 

and organisms. Its accumulation in upper sediment layers in coastal areas exerts an 6 

impact upon not only local benthos but also the pelagic biota due to the potential 7 

release of free sulfide into the water column (Bagarinao, 1992). Furthermore, 8 

re-suspension of sediment can result in oxidation of H2S and reactive sulfides, 9 

changing the redox conditions of the overlying water and leading to hypoxia at the sea 10 

floor (Phillips et al., 1997; Sorokin and Zakuskina, 2012). Oxidation of monosulfide 11 

in surface sediments may also lead to the release of toxic heavy metals (coprecipitated 12 

with FeS) into more bioavailable forms, such as dissolved Cu and Zn (Simpson et al., 13 

2012; Rodrigues et al., 2013). Most organisms live within oxic surface sediments or in 14 

oxygenated microenvironments created within sub-oxic and anoxic sediments 15 

(Simpson et al., 2012), and hence are vulnerable to shifts in redox and associated 16 

changes in sulfur speciation and toxicity.   17 

The degree of pyritization (DOP) and the degree of sulphidization (DOS) are 18 

two parameters that can be used to distinguish between situations where pyrite and Fe 19 

sulfide formation is either C- or Fe-limited and to measure the completeness of the 20 

reaction of reactive Fe (operationally defined as the fraction of Fe that is soluble in 1 21 

M HCl for 16h) with aqueous sulfide (Raiswell and Berner, 1985). In sediments that 22 
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contain a significant amount of Fe monosulfide, DOP underestimates the amount of 1 

Fe that has reacted with H2S (Boesen and Postma, 1988). Instead, DOS represents the 2 

degree to which reactive Fe has been transformed into sulfide and, therefore, provides 3 

a better indication of Fe limiting conditions (Yin et al., 2008). In sediments where Fe 4 

availability becomes limiting pore-water sulfide concentrations are likely to increase, 5 

enhancing the likelihood of sulfide toxicity. Conversely, if sulfide production is 6 

limited by the availability of a labile organic substrate, pore-water sulfide 7 

concentrations may be very low.  8 

The Bohai Sea, Yellow Sea and East China Sea are situated north-east (NE) of 9 

China. They are important production bases for fishery and marine industries. This 10 

study area can be characterized as a region surrounded by areas of high population 11 

growth and economic development. A large amount of pollutants are discharged into 12 

these areas in industrial and municipal wastewaters via rivers (i.e. Yellow River, 13 

Yangtze River and other smaller rivers), along with excess inputs of nutrients from 14 

mariculture. This pollution may influence the cycles of iron, sulfur and phosphorus 15 

(Rozan et al., 2002), leading to offshore eutrophication and benthic macroalgal 16 

blooms, especially large offshore phytoplankton blooms e.g. enteromotpha prolifera 17 

in Yellow Sea (Liu et al., 2013). Previous studies on the effects of biogenic elements 18 

in sediments in these areas were focused mainly on carbon, nitrogen and phosphorus 19 

(Liu et al., 2004; Liu and Yin, 2007). However, to date, only limited effort has been 20 

devoted to the study of sedimentary geochemistry of reduced inorganic sulfur (RIS) in 21 

the offshore areas of NE China (Kang et al., 2014), and its potential impact on the 22 
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marine ecosystem remains unclear. 1 

 In this study, acid volatile sulfur (AVS), chromium (II)-reducible sulfur (CRS, 2 

pyritic sulfur), elemental sulfur (ES), total sulfur (TS), reactive iron, total organic 3 

carbon (TOC) and total nitrogen (TN) were analyzed in surface sediments from the 4 

study area. The partitioning of RIS was used to understand sulfur biogeochemistry 5 

within the sediments, and to predict the potential for ecotoxicological risk due to 6 

release of toxic sulfide.  7 

 8 

2. Methods and materials  9 

2.1 Samples collection and handling 10 

A total of 82 sediment samples were collected from the Bohai Sea, Yellow Sea 11 

and East China Sea (Fig. 1). Surface sediments (0-20 cm) were collected using a 12 

stainless steel grab sampler and were immediately isolated from the atmosphere in 13 

plastic zip-lock bags with all air expelled by N2 gas (a N2 gas cylinder was aboard 14 

ship). Samples were frozen and stored in an icebox (-20°C) until arrival at the 15 

laboratory. Samples were processed immediately upon return to the laboratory. In the 16 

laboratory, the plastic sample bags were first flushed with high purity N2 again. 17 

Samples were then homogenized under this inert atmosphere (a glove box) by mixing 18 

with a plastic spatula. Four replicates were used throughout. 19 

  20 

 Fig. 1 21 

 22 
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2.2 Sample analysis 1 

    The reagents used were all analytical grade or above, and deionized water 2 

(milli-Q) was used to prepare reagent solutions. All glass and plastic were soaked in 3 

10% HNO3 for 48 h and rinsed with milli-Q water three times before use. Total 4 

organic carbon (TOC) in sediments was determined by a Shimadzu 5 

TOC-VCPH/SSM-5000A. Total nitrogen (TN) and total sulfur (TS) were determined 6 

by an Elementar vario MACRO cube CHNS analyzer. The precision of the 7 

measurements was within 5% based on three replicate sediment analyses. Prior to 8 

grain size analysis, each sediment sample was treated with sodium hypochlorite 9 

(NaOCl) to remove organic matter. Sample granulometry was analyzed using a 10 

Malvern Mastersizer 2000 laser diffractometer capable of analyzing particle sizes 11 

between 0.02 and 2,000 µm. The percentages of samples in each of the following 12 

three grain-size groups were determined: < 4 µm (clay), 4-63 µm (silt), and >63 µm 13 

(sand). 14 

The separation and determination of AVS, CRS and ES were conducted using a 15 

modified procedure described by Newton et al. (1995) and Hsieh & Shieh (1997). 16 

Reagents and extraction steps of sulfur species separation are the same as the 17 

description of Hsieh & Shieh (1997), the detection of H2S is the same as the 18 

description of Newton et al. (1995). In this method, a thin glass pipe (with N2 gas 19 

inside) was dipped into corresponding solutions (shaking occasionally) to accelerate 20 

the emission of H2S (1.5 h). All subsequent processing of sediment was performed 21 

under a N2 atmosphere inside a glove box at room temperature. Briefly, AVS, CRS 22 
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and ES were separated sequentially by 6 M HCl, acidic Cr (II) and Cr (II) plus N, 1 

N-dimethylformamide, respectively, using pure N2 as carrier gas to purge and trap 2 

H2S, at a temperature of ~ 60 °C (by electric hot plate). The liberated H2S was trapped 3 

in a 0.1 mol L-1 CuCl2 solution. The amount of H2S evolved from the sample for each 4 

solid-phase RIS species was determined by titrating the Cu remaining in solution with 5 

0.1 mol L-1 EDTA (assuming a precipitate of CuS stoichiometry). Three to four drops 6 

of glycine cresol red (0.5% aqueous) was used as an indicator and the titration was 7 

buffered with 70 ml of 1 mol L-1 sodium acetate solution (adjusted to pH 5.5 with 8 

acetic acid). The endpoint was sharp and marked by a colour change from dark blue to 9 

a light green. Sulfide solutions (Na2S) with concentrations of 0.5 and 1 mg L-1 were 10 

used in recovery experiments. Average sulfide recovery rate was 96%. Measured 11 

sulfide data were converted to real sulfide contents after correction for the recovery 12 

rate. The precision of triplicate analysis was within 5% for different fractions of RIS. 13 

The fractions of Fe were determined by sequential acid digestion. Reactive Fe is the 14 

fraction of Fe that is soluble in 1 mol L-1 HCl (16h, FeR) and pyrite Fe (Fepy) is the Fe 15 

that is soluble in concentrated HNO3, after removal of the Fe associated with silicates 16 

and organic matter (Huerta-Dı′az & Morse, 1990). The concentrations of different Fe 17 

fractions (extracted by corresponding acid) were detected by an Atomic Absorption 18 

Spectrometer (TAS 990, Beijing Purkinje General Instrument Co.Ltd., Beijing), 19 

precision was to within 2% based on triplicate analysis.   20 

        21 

2.3 Data calculation  22 
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DOP was taken to be the percentage of pyrite-Fe in the bioavailable iron, which 1 

was calculated as Fepy/(FeR + Fepy) (Berner, 1970). Fepy was calculated from FeS2 2 

stoichiometry. DOS was taken to be the percentage of Fe that has been transformed 3 

into sulfide, which was defined by (Fepy + FeAVS)/(Fepy + FeR) (Boesen and 4 

Postma,1988). FeAVS is sulfide-bound Fe(II) assuming that AVS predominantly 5 

occurs as FeS, though this assumption remains controversial (Morse and Rickard, 6 

2004; Rickard and Morse, 2005).   7 

 8 

3. Results and discussion 9 

3.1 Distribution of grain size  10 

 11 

Fig. 2 12 

 13 

The grain size of the sediments plays a significant role in the accumulation of 14 

organic matter, and can influence the spatial distribution of C, N and S (Zhou et al., 15 

2007). The variations of grain size in the surface sediments are shown in Fig. 2. The 16 

data reveal a predominance of silt (4-63 µm), which accounted for an average of 57%, 17 

57% and 47% of the particles in Bohai Sea, Yellow Sea and East China Sea, 18 

respectively. Compared to the East China Sea, high proportions of silt in the Bohai 19 

Sea and the Yellow Sea are most likely related to transport of suspended sediments 20 

down the Yellow River (Qiao et al., 2010). The surface sediments of Bohai Sea were 21 

dominated by silt, except for samples B52, B53 and B54 (Fig. 1). These sites were 22 
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located in the main water exchange channel between the Bohai Sea and the Yellow 1 

Sea (Liu et al., 2004), so the small particles (clay) may be winnowed by strong water 2 

currents, resulting in a predominance of sand in this area (Fig.2). In the East China 3 

Sea, driven by the Zhejiang-Fujian coastal current, a large amount of fine grained 4 

particulates from the Yangtze Estuary are transported southward along the coast and 5 

trapped in the inner shelf by the blocking of the northward warm Taiwan current 6 

offshore, developing mud wedges outside the Yangtze River mouth (Xu et al., 2009). 7 

Therefore, at site E01 (Fig. 1), the sediment was dominated by fine grained 8 

particulates, with silt and clay accounting for ~ 97% of total grains (Fig. 2).      9 

 10 

3.2 Distribution of TOC, TN and TS 11 

The surface sediments were characterized by variable concentrations of TN, 12 

TOC and TS. TN varied from 0.03-0.21% (% dry weight of the sediment), TOC from 13 

0.11- 2.49% and TS from 0.11-0.40%. The average TN in the Bohai Sea, Yellow Sea 14 

and East China Sea were 0.07%, 0.08% and 0.06%, respectively. The averages for 15 

TOC were 1.23%, 1.07% and 1.09% respectively (Fig. 3). The highest TOC contents 16 

were recorded at site B66 (2.3%) in the Bohai Sea, B31 (2.5%) in the Yellow Sea and 17 

E01 (1.6%) in the East China Sea. In the Bohai Sea, TN, TOC and TS exhibited high 18 

values in Bohai Bay and Laizhou Bay. In the Yellow Sea, the TOC and TS contents in 19 

sediments at B31 and B32 were high (2.5% and 1.5% respectively), indicating high 20 

organic pollution loads in these areas, most likely related to the Dalian crude oil spill  21 

in 2010 (Lv et al., 2011). This organic pollution may provide an additional substrate 22 
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for sulfate reduction and lead to increased sulfide production and accumulation in the 1 

sediment.  2 

   3 

                    Fig. 3 4 

 5 

3.3 Distribution characteristics of different fractions of RIS 6 

Fig. 4 presents the AVS, CRS and ES concentrations in the surface sediment 7 

samples of the Bohai Sea, Yellow Sea and East China Sea. The AVS, CRS, and ES 8 

values were in the ranges 0.2-4.1µmol g-1, 0.6-101µmol g-1, and 0.5-3.9µmol g-1, 9 

respectively. AVS contents in the Bohai Sea, Yellow Sea and East China Sea are 10 

close to the ranges of AVS contents for Jiaozhou Bay sediments (0.06-13.7µmol g-1) 11 

(Zhu et al., 2012) and East China Sea shelf sediments (0-25µmol g-1) (Lin et al., 2000; 12 

Zhu et al., 2013). For CRS, the concentrations are 0.6-101µmol g-1, dominating the 13 

total RIS in all studied areas, with an average 75% share in the Bohai Sea, 59% in the 14 

Yellow Sea and 87% in the East China Sea (Fig. 4 and Table 1). This finding was 15 

consistent with the reports of Zhu et al. (2012) in Jiaozhou Bay (CRS: 8.7-51.1µmol 16 

g-1), Sheng et al. (2013) in the coastal zone of the Yellow Sea (CRS: 5.5-13.1µmol g-1) 17 

and Zhu et al. (2013) in the East China Sea inner shelf (CRS: 2.7-38.3µmol g-1). In 18 

this study, although there are some values of RIS at sites B30, B31 and B32 associated 19 

with an oil spill, even these highest values (101.2 µmol g-1) are much lower than the 20 

peak value for the southern East China Sea slope sediments (range: 0-240 µmol g-1) 21 

(Lin et al., 2002). CRS dominates over AVS in the RIS pool in the Bohai Sea, Yellow 22 
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Sea and East China Sea sediments and thus in all these locations AVS produced by 1 

sulfate reduction has been efficiently transformed to pyrite and there is limited 2 

accumulation of reactive monosulfide. Because of high concentrations of reactive iron 3 

(average is approximately 100 µmol g-1) in these areas, the sulfide may be removed 4 

quickly by the formation of FeS, then it was transformed to FeS2 due to sufficient ES 5 

(0.5-3.9 µmol g-1) is present under anoxic conditions (reoxidation of AVS would be 6 

restrained because of limited free oxygen in benthic bottom), resulting in high 7 

concentration of CRS. Overall, accumulation concentrations of labile sulfides (i.e. 8 

AVS) in the study area is much lower than levels known to be potentially toxic for 9 

aquatic biota (200 mg S L-1 of wet silt, Sorokin and Zakuskina, 2012), suggesting the 10 

environmental conditions are low risk for the local marine ecosystem.  11 

Generally, RIS concentrations were higher in the Yellow Sea than in the Bohai 12 

Sea and East China Sea, especially at sites B30, B31 and B32. This phenomenon is 13 

consistent with the variation of TOC and TS in same sites, and is most likely related 14 

to the Dalian crude oil spill summer 2010 (Lv et al., 2011). Deposited crude oil may 15 

result in a high load of organic pollutants in these areas, increasing TOC accumulation 16 

in the sediment (B30, B31 and B32). Furthermore, these organic compounds may 17 

provide an additional substrate for sulfate reduction and lead to increased sulfide 18 

production and accumulation in the sediment. Whilst the oil spill has modified the 19 

sediment geochemistry and increased AVS content, in the samples analyzed this 20 

increase is small and lies within the range of many sediments that have not been 21 

polluted by oil spills.   22 
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 1 

                          Fig. 4 2 

 3 

3.4 Relationships between C, N, S and different fractions of RIS 4 

The atomic molar ratios of C/N, C/S and AVS/CRS are listed in Table 1. C/N and 5 

C/S are ratios of TOC concentrations against TN and TS concentrations, respectively

C/N is widely applied in biogeochemical studies of terrestrial, riverine, estuarine, and 7 

marine environments, most commonly to estimate the fraction of terrestrially derived 8 

organic matter in marine sedimentary samples (Meyers, 1997). In this study, the C/N 9 

ratio (molar ratio) varied from 10.1 to 48.4 (average: 18.9) in the Bohai Sea, 7.7-41.3 10 

(average: 15.1) in the Yellow Sea and 16.5-20.7 (average: 17.8) in the East China Sea 11 

(Table 1). These results suggest that the studied areas are abundant in 12 

terrestrial-derived organic matter with high C/N ratios (always higher than 10) 13 

(Meyers, 1997), associated with material rich in cellulose which originates from 14 

terrestrial vascular plants and reaches the sediments via rivers, i.e. Yellow River and 15 

Yangtze River.  16 

TS and TOC/TS (C/S) are used for studying oxic/anoxic conditions in marine 17 

environments (Berner, 1984). The C/S ratios varied from 6.1 to 37.5, with an average 18 

of 12.8 in the Bohai Sea, 1.3-24.2 (average: 10.3) in the Yellow Sea and 6.5-17.0 19 

(average: 10.3) in the East China Sea. Generally, the ratio of C/S in normal marine 20 

sediment (deposited under an oxic water column) is 2.0-3.8 (Berner, 1982). Overall, 21 

the C/S ratio in this study was highly variable at 1.3-37.5 (average: 11.4), with values 22 
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in most sampling sites higher than is normal for marine sediments. This can be 1 

explained by the impact of freshwater input and mariculture activity, which can both 2 

significantly influence C/S ratios, e.g. site B66 (37.5), is close to the Yellow River 3 

estuary (with high TOC and low RIS values in sediment); site H1 (24.3) is close to 4 

Qingdao city, where there are many large wastewater treatment plants (over 1 million 5 

tons discharged per day); site H35 (21.7) is in a mariculture area. Generally, sewage 6 

and mariculture contribute more C but not more S, resulting in high C/S ratios. The 7 

result indicates that sulfate reduction or RIS accumulation was variable in surface 8 

sediment of different areas, and may be influenced by anthropogenetic activities 9 

(organic matter input) and redox conditions. AVS/CRS varied from 0.14 to 1.22, with 10 

an average of 0.48 in Bohai Sea, 0.01-1.09 (average: 0.22) in Yellow Sea and 11 

0.02-0.11 (average: 0.06) in East China Sea. Low ratios indicate that the sediment in 12 

these areas poses a low threat of toxicity to benthic organisms because CRS is more 13 

stable and less likely to release sulfide or metals than AVS, which is more soluble and 14 

reactive. 15 

 16 

3.5 DOP and DOS 17 

The relationship between sulfide and iron plays an important role in controlling of 18 

the sulfur cycle. As shown in Table 1, both DOP and DOS for the three areas are 19 

generally close to each other, with DOP ranging from 0.01 to 0.31 (averages of 0,02 20 

for the Bohai Sea, and 0.04 for both the Yellow Sea and East China Sea) and DOS 21 

ranging from 0.02 to 0.33 (averages of 0.04 for the Bohai Sea, 0.05) for the Yellow 22 



 

15 

 

Sea and 0.04 for the East China Sea. DOS values are slightly higher than the DOP 1 

values, which perhaps reflects the reaction of FeS and H2S to form pyrite (Rozan et al., 2 

2002). The three areas have much lower DOP and DOS in comparison with the 3 

averages for estuarine and bay sediments of the Gulf of Mexico (DOP 0.56-0.95 and 4 

DOS 0.63-2.66) (Morse et al., 2007), but are consistent with DOP (0.05-0.25) and 5 

DOS (0.05-0.39) for Jiaozhou Bay sediment in the Yellow Sea (Zhu et al., 2012). On 6 

the basis of the simple comparison above, it is inferred that maybe there was low 7 

availability of labile organic matter in the study areas, which has been limiting sulfide 8 

production (Zhu et al., 2012), resulting in low values of DOP and DOS. Furthermore, 9 

high concentrations of reactive iron (average is approximately 100 µmol g-1) and low 10 

values of DOP and DOS found in the present study further indicate that pyritization 11 

and sulfidization are not being limited by the availability of reactive Fe. Thus in these 12 

sediments the supply of mineral-Fe has been amply sufficient to match net sulfide 13 

production and thus limit the sulfide toxicity hazard.       14 

 15 

                                  Table 1 16 

 17 

4. Conclusions 18 

In order to elucidate the geochemical processes controlling the formation and 19 

stability of RIS species and its bioavailability in surface sediments, we have examined 20 

the relationship between the spatial variations in the values of sedimentary grain size, 21 

TOC, TN, TS, AVS, CRS, ES, C/N ratio, C/S ratio, AVS/CRS ratio, DOP and DOS in 22 
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Bohai Sea, Yellow Sea and East China Sea. In the study area, CRS was the dominant 1 

fraction of RIS, indicating the RIS is dominantly in a stable form and thus poses a low 2 

threat of toxicity to marine ecosystem. Low values of DOP and DOS indicate that 3 

pyritization and sulphidization are not being limited by the availability of reactive Fe. 4 

Sediment in these areas restricts the threat from sulfide to benthic organisms. An oil 5 

spill in part of the studied area has resulted in enhanced accumulation of AVS in 6 

marine sediment, resulting in a higher toxicity risk.     7 

     8 
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Figure captions 1 

    2 

Fig. 1 Location of studying areas and sampling sites 3 

Fig. 2 Grain size distribution of surface sediments in different sampling sites 4 

Fig. 3 Concentrations of TOC, TN and TS in surface sediment in different locations 5 

Fig.4 Concentrations of different fractions of RIS in surface sediments (Note: sites 6 

B30, B31 and B32 were illustrated with the different scales) 7 

 8 
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Table 1 Calculation results of different measured geochemical parameters and different iron concentrations (µmol g-1). 

Yellow Sea C/N C/S AVS/CRS DOP DOS FeR Fepy Bohai Sea C/N C/S AVS/CRS DOP DOS FeR Fepy 

B01 7.84 6.67 0.08 0.04  0.04  147.43  5.70  B40 15.07 10.69 0.22 0.01  0.02  66.97  1.21  

B02 11.92 14.70 0.23 0.03  0.05  113.41  3.85  B41 16.01 9.46 0.90 0.03  0.06  76.03  1.11  

B03 17.22 11.81 0.94 0.02  0.07  65.53  1.12  B43 17.68 10.82 0.77 0.02  0.05  100.66  2.80  

B04 16.43 13.29 0.12 0.01  0.01  110.69  0.77  B44 19.49 11.99 0.74 0.02  0.05  92.21  2.08  

B05 16.09 17.28 0.17 0.03  0.04  71.51  2.04  B45 23.36 16.13 0.43 0.01  0.03  91.21  1.95  

B07 12.99 8.74 0.07 0.04  0.05  85.19  3.72  B46 18.79 15.11 0.40 0.03  0.05  110.01  1.64  

B09 10.00 11.28 0.09 0.03  0.04  65.35  2.17  B47 16.95 12.58 1.22 0.01  0.03  110.69  3.71  

B13 12.52 3.50 0.05 0.09  0.10  46.95  4.39  B48 18.81 15.97 0.43 0.01  0.03  94.68  1.27  

B15 8.34 1.31 0.15 0.02  0.03  22.56  0.39  B49 13.68 9.35 0.46 0.01  0.03  43.94  0.35  

B21 9.71 5.35 0.14 0.03  0.05  50.42  1.73  B50 13.90 12.94 1.19 0.01  0.10  83.22  1.13  

B23 11.58 5.45 0.06 0.04  0.05  63.96  3.00  B51 13.27 7.89 0.25 0.01  0.02  39.03  0.31  

B24 10.40 6.81 0.16 0.03  0.04  100.27  3.19  B52 10.07 11.13 0.15 0.01  0.01  117.96  1.67  

B25 9.60 9.07 0.08 0.06  0.07  84.73  5.43  B53 23.58 10.76 0.15 0.02  0.03  124.98  1.48  

B26 18.50 11.33 0.53 0.01  0.03  69.19  1.03  B54 15.51 6.17 0.20 0.03  0.04  66.43  1.20  

B28 24.53 18.66 0.33 0.01  0.02  56.19  0.43  B55 12.73 6.42 0.16 0.01  0.04  91.50  3.10  

B30 8.16 2.60 0.01 0.27  0.28  77.35  28.79  B56 15.11 6.99 0.19 0.02  0.02  65.25  0.97  

B31 41.32 12.47 0.02 0.31  0.33  39.32  17.74  B59 14.94 9.62 0.49 0.02  0.04  83.94  1.65  

B32 15.81 4.82 0.04 0.28  0.32  76.56  30.24  B60 14.90 12.83 0.14 0.04  0.04  78.57  1.65  

B33 20.87 10.37 0.19 0.03  0.07  28.29  0.98  B61 11.97 6.64 0.26 0.03  0.04  113.02  4.93  

B34 16.08 9.35 0.40 0.01  0.02  40.57  0.54  B62 10.48 10.93 0.16 0.02  0.03  138.62  3.62  

B37 14.10 12.85 0.28 0.02  0.05  53.68  1.13  B63 13.32 10.62 0.18 0.02  0.02  124.58  1.91  

B38 15.29 13.56 0.39 0.02  0.03  70.55  1.29  B64 18.40 12.39 0.77 0.02  0.03  114.49  2.04  

H01 24.94 24.28 0.64 0.01  0.01  102.20  0.79  B66 29.69 37.48 0.83 0.03  0.05  71.33  1.19  

H02 22.77 24.22 0.16 0.01  0.01  74.91  0.62  B67 27.41 13.18 0.14 0.01  0.02  88.67  2.65  
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H03 19.12 15.18 0.42 0.00  0.01  71.08  0.17  B68 34.54 12.45 0.20 0.02  0.02  66.03  0.69  

H04 11.89 9.41 0.51 0.01  0.02  110.87  1.55  B69 20.17 12.28 0.93 0.02  0.02  94.15  1.71  

H05 8.87 7.28 0.06 0.02  0.03  165.16  4.22  B70 21.00 15.01 1.20 0.04  0.04  91.89  1.60  

H06 8.32 6.14 1.09 0.02  0.03  163.58  3.16  YD1 48.41 30.10 0.36 0.01  0.02  77.82  0.68  

H07 7.71 6.92 0.05 0.02  0.02  172.32  3.55  Mean 18.90 12.78 0.48 0.02 0.04 89.92  1.80  

H08 8.35 7.45 0.18 0.02  0.03  185.00  3.82  East China Sea     
  

H09 8.25 6.32 0.08 0.04  0.04  159.28  6.35  H42 16.81 6.52 0.08 0.04  0.05  127.45  5.76  

H10 8.57 11.20 0.10 0.03  0.03  150.15  4.57  E01 16.73 13.32 0.11 0.03  0.04  171.85  4.92  

H11 9.58 5.87 0.02 0.04  0.04  179.19  7.25  E02 18.69 16.97 0.09 0.04  0.05  111.37  4.74  

H12 9.69 7.40 0.12 0.02  0.03  164.26  3.24  E03 17.96 6.50 0.04 0.03  0.03  148.40  4.47  

H14 10.80 10.14 0.46 0.01  0.03  91.82  1.04  E04 20.75 8.45 0.03 0.03  0.03  110.37  3.67  

H16 16.18 7.27 0.96 0.01  0.02  52.46  0.59  E05 15.64 10.20 0.04 0.04  0.04  111.37  4.76  

H43 9.26 9.02 0.11 0.03  0.04  181.77  5.49  Mean 17.76  10.33  0.07  0.04  0.04  130.14  4.72  

H44 9.10 10.15 0.15 0.02  0.03  178.48  4.47          

HF1 12.48 11.32 0.13 0.01  0.02  50.35  0.54          

HF3 8.34 8.38 0.05 0.03  0.04  138.33  4.48          

H29 12.53 12.26 0.08 0.02  0.03  140.30  3.29          

H31 14.47 7.65 0.18 0.03  0.04  134.50  3.53          

H32 17.42 13.03 0.08 0.02  0.03  147.61  3.20          

H33 24.68 8.46 0.07 0.02  0.04  108.76  2.76          

H34 20.65 8.10 0.07 0.03  0.03  140.27  3.69          

H35 40.87 21.72 0.07 0.02  0.02  105.43  1.64          

H36 33.38 16.84 0.17 0.02  0.03  98.98  2.00          

H38 20.68 13.88 0.08 0.02  0.02  139.05  2.91          

Mean 15.17  10.44  0.22  0.04  0.05  103.04  4.14          
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