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Overview

Mathematical Modelling

Watson & Crick: Icosahedral and helical symmetry

Caspar & Klug: Triangulations

Twarock: More general surface tilings

Affine symmetry: genome and capsid

Computational Modelling

Bioinformatics: packaging signals

Gillespie stochastic simulations: epidemiological, infection,
assembly

Machine learning: fitness landscape
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Main references

Models of Viral Capsid Symmetry as a Driver of Discovery in
Virology and Nanotechnology

P-P Dechant, R Twarock, The Biochemist, 2021

Machine-learning a virus assembly fitness landscape
P-P Dechant, Y-H He, PLOS One, arXiv preprint

arXiv:1901.05051, 2021
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What is a Virus?

Transported piece of genetic information that e.g. can run a
programme in a host cell

Genome: RNA or DNA – single- or double-stranded

Fragile – needs to be protected by a protein shell: capsid

Gene → mRNA → protein (transcription and translation)

Each protein = amino acid chain folds into a 3D shape: one
geometric building block
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Many viruses are icosahedral – others helical
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Watson and Crick: Principle of Genetic Economy

Watson & Crick: Genetic economy → symmetry →
icosahedral is largest

Rotational icosahedral group is I = A5 of order 60

Full icosahedral group is the Coxeter group H3 of order 120
(including reflections/inversion); generated by the root system
icosidodecahedron
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Icosahedral solids

Other tile shapes can also give icosahedral tilings: pentagons
(dodecahedron), rhombuses (rhombic triacontahedron), kites
(deltoidal hexecontahedron)
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Assembling an Icosahedron

Assemble from 20 identical triangular building blocks

The order of addition gives a Hamiltonian path on the dual
dodecahedron
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Assembly and thermodynamics – Hamiltonian paths
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More than just icosahedral symmetry?

Solved the original problem

But with that solution (triangular building blocks), can viruses do
better?
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Caspar and Klug: Triangulations

A compromise between mathematics & biology: quasi-equivalence

Mathematical upper limit of 60 for equivalent subunits, but
biologically want to do better!

Gene → can already make a triangle → might as well make
many! Triangles are distinguished in that they can be
decomposed into smaller triangles.

Caspar-Klug ideas of quasi-equivalence and triangulations
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Caspar-Klug Triangulations

Triangulation number T

Counts the number of small triangles per icosahedral face

E,g. Hepatitis B virus (only one structural gene) has T = 4
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Viruses: Caspar-Klug triangulations T = h2 +hk +k2

Integer steps h and k in hexagonal directions

give allowed triangulation numbers T = h2 +hk +k2.

T orbits so 60T proteins

60 of which form 12 pentamers, and 60(T −1) form 10(T −1)
hexamers.
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Viruses: Caspar-Klug T = h2 +hk +h2 triangulations
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A recent discovery: Giant viruses
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A family of cages with a common approach – little hooks

Pentasymmetrons and trisymmetrons
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A common approach – little hooks

Pentasymmetrons and trisymmetrons
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A family of solutions: h = 7 – and some gaps

Chilo iridescent virus: T = 147, h = 7 and k = 7

Paramecium bursaria Chlorella virus 1: T = 169, h = 7 and
k = 8

Phaeocystis pouchetti virus: T = 219, h = 7 and k = 10

Faustovirus: T = 277, h = 7 and k = 12

Pacman virus: T = 309, h = 7 and k = 13

Cafeteria roenbergensis: T = 499, h = 7 and k = 18
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Major capsid protein

T is an area, so
√
T gives size of triangle and thus also particle

diameter
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Major capsid protein – evolutionary conservation

For same size tessellating unit particle size should scale as
√
T
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Predict a scaling relation

Missing points allowed geometrically but less stable? Or just not
yet discovered? Predict Tetraselmis virus 1 TetV-1 of
257nm±9nm is exactly T = 343. Predict holes in family exist and
sizes are given by this scaling
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Trisymmetrons and Pentasymmetrons
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Major capsid protein - trimer, pseudohexamer
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Build from prearranged blocks? Back to Hamiltonian paths

Are the trisymmetrons and pentasymmetrons preformed? (or
is that just what virions fall apart into?)

If trisymmetrons are assembled then we’re back to a
Hamiltonian path for the icosahedron

If pentasymmetrons then get a slightly new polyhedron
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Other objects made from identical building blocks:
Fullerenes

Other icosahedral objects in nature: football-shaped fullerenes

Different shells with icosahedral symmetry: e.g. C60, C240,
C540

Follow Caspar-Klug-like layouts (e.g. T = h2 and T = 3h2

families)
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Fullerenes

Other icosahedral objects in nature: football-shaped fullerenes

Recover different shells with icosahedral symmetry from affine
approach: carbon onions (C80−C180−C320)
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More general tile shapes from other icosahedral tilings

Other tile shapes can also give icosahedral tilings: pentagons
(dodecahedron), rhombuses (rhombic triacontahedron), kites
(deltoidal hexecontahedron)
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triangulations vs other quasi-equivalent tilings

Two viral surface layouts: a T = 4 triangulation (e.g. HBV) and a
rhombus tiling (MS2) for a pseudo T = 3 triangulation
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Other quasi-equivalent tilings

Three (pseudo) T = 3 capsids: Polio, MS2 and Pariacoto.
Different building blocks depending on the underlying biology:
dimer vs trimer interactions.
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A puzzle: non-quasiequivalent tilings – Penrose

More general icosahedral tilings: Cryo-EM reconstruction of
Human Papillomavirus (HPV), a kite-rhombus tiling and a pseudo
T = 7 triangulation (but only 6 orbits).
Reidun Twarock: Viral Tiling theory
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Architecture

Triangulations: Buckminster Fuller geodesic domes

Kite-rhombus tiling: the new Amazon HQ
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Nanotech 1: Self-assembling protein nanoparticles

De novo design of nanoparticles from identical building blocks.

Quantised number of building blocks (e.g. in mass spec) -
mathematically predict structure and properties. Particles used for
vaccine design (malaria).

Pierre-Philippe Dechant
Mathematical and computational modelling in Mathematical Virology Plymouth, December 3, 2020



Mathematical Modelling
Computational Modelling

More generalised: Archimedean tilings

Reidun Twarock & Antoni Luque: Put an icosahedral net on more
general hexagonal tilings.
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Beyond quasi-equivalence: Archimedean tilings

More general surface tilings e.g. for phage Basilisk and Herpes
Simplex Virus.
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More general symmetry still? Affine symmetry ideas.

Description only in terms of surface structures.

Making the symmetry non-compact might allow more general
symmetry, simultaneously constraining different ‘radial levels’

Non-compact generator is a translation – motivates looking
into affine extensions of icosahedral symmetry

There is an inherent length scale in the problem – given by
size of nucleic acid/protein molecules
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Affine extensions - A2

Unit translation of a unit hexagon

A random translation would give 6 secondary hexagons, i.e. 36
points. Here we have degeneracies due to ‘coinciding points’, and
building up the hexagonal lattice.
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Affine extensions of non-crystallographic groups?

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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Affine extensions of non-crystallographic root systems?

Translation of length τ = 1
2(1 +

√
5)≈ 1.618 (golden ratio)

T

G

Cartoon version of a virus or carbon onion. Would there be a
biological benefit to have more than just compact symmetry? The

problem has an intrinsic length scale.
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Affine extensions of non-crystallographic Coxeter groups

2D and 3D point arrays for applications to viruses, fullerenes,
quasicrystals, proteins etc

Two complementary ways to construct these

Journal of
Mathematical Physics

September 2013 Volume 54 Number 9

jmp.aip.org

Acta Crystallographica Section A

Foundations and
Advances
Editors: S. J. L. Billinge and J. Miao

journals.iucr.org

International Union of Crystallography
Wiley-Blackwell

ISSN 2053-2733

Volume 70

Part 2

March 2014
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Extension to fullerenes: carbon onions

Extend idea of affine symmetry to other icosahedral objects in
nature: football-shaped fullerenes

Recover different shells with icosahedral symmetry from affine
approach: carbon onions (C80−C180−C320)
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Use in Mathematical Virology
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3D distribution: RNA-CP contacts

There are specific interactions between RNA and coat protein (CP)
given by icosahedral symmetry axes
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New insight into RNA virus assembly

There are specific interactions between RNA and and inner
(capsid) surface

Essential for (co-)assembly, as only this RNA-CP interaction
turns CP into right geometric shape for capsid formation for
MS2

Hamiltonian cycle visiting each RNA-CP contact once –
dictated by symmetry

Even the RNA has an icosahedrally ordered component
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RNA is involved in a co-assembly process through
packaging signals

These packaging signals help recruit coat protein (CP) in a
co-assembly process.

Pierre-Philippe Dechant
Mathematical and computational modelling in Mathematical Virology Plymouth, December 3, 2020



Mathematical Modelling
Computational Modelling

Overview

Mathematical Modelling

Watson & Crick: Icosahedral and helical symmetry

Caspar & Klug: Triangulations

Twarock: More general surface tilings

Affine symmetry: genome and capsid

Computational Modelling

Bioinformatics: packaging signals

Gillespie stochastic simulations: epidemiological, infection,
assembly

Machine learning: fitness landscape
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MS2 tiling and dimeric building blocks: A/B and C/C
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Need to bind RNA in 60 places

Peter Stockley (Leeds), Neil Ranson (Leeds), Eric Dykeman (York)
et al
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MS2 Hamiltonian path
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New insight into RNA virus assembly

Example of MS has 60 vertices with 41,000 paths

The RNA is actually circularised by Maturation Protein: only
66 cycles

With thermodynamical assembly kinetics and 5-fold averaging
experiments uniquely idenfied an evolutionarily conserved cycle

Patents for new antiviral strategies and virus-like nanoparticles
e.g. for drug delivery (Twarock group)
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Hamiltonian cycles on icosahedral solids

So interaction contacts are given by the symmetry

Orbits of the interaction points have to be visited by the RNA
exactly once

Even the RNA has an icosahedrally ordered component

Hamiltonian cycles for dodecahedron, icosahedron and
rhombic triacontahedron

Pierre-Philippe Dechant
Mathematical and computational modelling in Mathematical Virology Plymouth, December 3, 2020



Mathematical Modelling
Computational Modelling

Assembly via Multiple dispersed Packaging Signals
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Common Mechanism across groups of viruses
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Nanotech 2: Engineering Packaging Signals to make VLPs

Repurpose: Improved sequences optimised for assembly efficiency
(e.g. STNV). Potential applications to vaccines or drug delivery.
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Antivirals: Understanding assembly allows one to interfere

target RNA

target CP

introduces competitors

this might still drive evolution due to exerting selection
pressures but less so than biochemical antivirals
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Simulations

Stochastic simulations

rather than ODE models because of discrete nature and low
numbers: Gillespie-type algorithms that select a random reaction
to occur

SIR and spatial modelling (epidemiology)

Multi-scale model coupling of an intracellular model with an
immune system (infection model)

Assembly toy model simulations
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Basic epidemiological simulations

Gillespie SIR model and spatial/movement model.
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Infection model: intracellular model
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Infection model: immune system

T
λ−→ 2T (Target cell birth)

T
dT−−→ 0 (Target cell death)

T +pV
β−→ I (Infection of target cell)

I
a−→ rV (Infected cell death/lysis)

I +Z
π−→ Z (Infected cell removal by immune system)

V +Z
u−→ Z (Virion removal by immune system)

I +Z
c−→ I +2Z (Immune cell birth)

Z
b−→ 0 (Immune cell death)
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Chronic infections
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Acute infections

Pierre-Philippe Dechant
Mathematical and computational modelling in Mathematical Virology Plymouth, December 3, 2020



Mathematical Modelling
Computational Modelling

Antivirals: Evolutionarily stable drugs
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Simulating an assembly toy model: Dodecahedral cow
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A mathematical and biophysical assembly toy model

A phenomenological genome space of 12 packaging signals with 3
binding affinity bands (weak, medium, strong). Can compute the
whole space explicitly in terms of assembly efficiency.
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Simplest model: the dodecahedron

12 PSs in 3 bands (strong/intermediate/weak, 3/2/1,
green/blue/red)

Gillespie molecular simulation: stochastically select one
possible reaction at a time

Enough resources for 2000 virus capsids

Computed fitness landscape in 4 weeks on a supercomputer
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Fitness Landscape

Generally messy (many contributions) and difficult to quantify.
Here capture the assembly contribution for the phenotype space of

312 points with (stochastic) assembly efficiency (< 2000).
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A prime machine learning example

Input vector: Genotype/Phenotype of length 12 (packaging
signal strengths in 3 bands): 12D vector

Output vector: Assembly efficiency (out of 2000 possible
capsids): scalar

Black box: Expensive map: Molecular dynamics simulations
(computationally very costly)

Black box: Cheap approximation of map: Machine learning
via a neural network
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Input and Output dataset

312 ∼ 1
2 Million data points
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Machine Learning with a Neural Network
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Predictions

predicted vs actual value of assembly efficiency
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Predictions

vs random assignments of assembly efficiency
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Learning Curve
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Not just random, intrinsic features?

Definite starting point with strong binding, then weaker binding in
an error-correcting bit, driven to completion by thermodynamics
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Conclusions: Mathematical and Computational Virology

ML might allow us to do more realistic models in future –
geometry, binding strength gradation. Partially explore the

landscape and predict the rest (procedurally)?

Insights into mathematical and biophysical design principles open
up novel directions for biomedicine and nanotechnology.
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Further references
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Algebraic interests

Thank you!

Exceptional root systems/geometries (H4, E8 etc)

Clifford algebras

ADE correspondences

(Reflexive) polytopes

Pierre-Philippe Dechant
Mathematical and computational modelling in Mathematical Virology Plymouth, December 3, 2020


	Mathematical Modelling
	Computational Modelling

