
Downloaded from: http://ray.yorksj.ac.uk/id/eprint/5226/

The version presented here may differ from the published version or version of record. If you intend to cite from the work you are advised to consult the publisher's version: http://dx.doi.org/10.1016/j.exger.2021.111373

Research at York St John (RaY) is an institutional repository. It supports the principles of open access by making the research outputs of the University available in digital form. Copyright of the items stored in RaY reside with the authors and/or other copyright owners. Users may access full text items free of charge, and may download a copy for private study or non-commercial research. For further reuse terms, see licence terms governing individual outputs. Institutional Repository Policy Statement

RaY
Research at the University of York St John
For more information please contact RaY at ray@yorksj.ac.uk
Six weeks of high intensity interval training (HIIT) preserves aerobic capacity in sedentary older males and male masters athletes for four years: A reunion study

Peter Herbert¹, Lawrence D Hayes²*, Alexander J Beaumont³, Fergal M Grace⁴, and Nicholas F Sculthorpe²

¹School of Sport, Health and Outdoor Education, Trinity Saint David, University of Wales, U.K.
²School of Health and Life Sciences, University of the West of Scotland, U.K.
³School of Science, Technology and Health, York St John University, U.K.
⁴Faculty of Health, Federation University, Victoria, Australia.

ORCID IDs

PH: 0000-0002-3439-3215
LDH: 0000-0002-6654-0072
AJB: 0000-0002-5773-6356
FMG: 0000-0002-3144-5999
NFS: 0000-0001-8235-8580

* L.D. Hayes
School of Health and Life Sciences,
University of the West of Scotland,
Glasgow, G72 0LH, UK
E-mail: Lawrence.Hayes@UWS.ac.uk

Word count: 4549
Abstract
Long-term implications of acutely increased cardiorespiratory fitness following short-term exercise interventions in older adults are unknown. In this study, we examined peak oxygen uptake (VO$_{2}$peak) after four years of ‘free-living’ after a high intensity interval training (HIIT) intervention. Seventeen lifelong exercisers (LEX) and 17 previously sedentary (SED) males (55–74 years of age in 2012) were tested four years (phase D) after our previous experiment which included 6-weeks of aerobic moderate intensity exercise (phase B), followed by 6-weeks of HIIT (phase C). At all stages, a standard incremental exercise protocol on a cycle ergometer was completed to determine VO$_{2}$peak. SED (P=1.000, Cohen’s d=0.01) and LEX (P=1.000, Cohen’s d=0.11) VO$_{2}$peak at phase D was not different from phase A (enrolment). SED experienced a large decrease in VO$_{2}$peak from phase C to phase D (32 ± 6 ml·kg·min$^{-1}$ to 27 ± 6 ml·kg·min$^{-1}$ [P<0.001, Cohen’s d=0.81]). LEX experienced a small decrease in VO$_{2}$peak from phase C to phase D (42 ± 7 ml·kg·min$^{-1}$ to 39 ± 9 ml·kg·min$^{-1}$ [P<0.001, Cohen’s d=0.46]). At phase D, LEX had greater VO$_{2}$peak than SED (P<0.001, Cohen’s d=1.73). The proportion of subjects who reported discontinuing training, maintaining moderate training, and maintaining HIIT differed between groups (P=0.023), with LEX self-reporting more HIIT, and SED self-reporting more discontinuation from exercise. Those who continued exercising experienced a reduction in VO$_{2}$peak over the four years from 39 ± 7 ml·kg·min$^{-1}$ to 36 ± 9 ml·kg·min$^{-1}$ (N=25, P<0.001, Cohen’s d=0.37), and those who discontinued exercising also experienced a reduction in VO$_{2}$peak from 30 ± 7 ml·kg·min$^{-1}$ to 25 ± 9 ml·kg·min$^{-1}$ (N=9, P=0.003, Cohen’s d=0.62). Four years after completing a brief period of aerobic exercise and HIIT, older males demonstrated a preservation of VO$_{2}$peak, irrespective of training status (LEX or SED). However, LEX exhibited greater VO$_{2}$peak than SED after 4-years of unsupervised ‘free-living’. Finally, those who discontinued exercising experienced a greater reduction in VO$_{2}$peak. These findings infer that to maintain aerobic capacity, 6 weeks of HIIT every four year may be sufficient, but to attenuate the decline, exercise should be maintained.

Keywords
Ageing; Exercise; HIIT; Masters athletes; Oxygen uptake; Sedentary
1 Introduction

Biological ageing is characterised by a progressive loss of physical function and increased risk of developing various common diseases, including cardiovascular disease (CVD), type II diabetes, and many cancers (Butler et al., 2008). Indeed, cardiovascular fitness is a powerful predictor of loss of independence (de Oliveira Brito et al., 2014), and risk of morbidity (Blair et al., 1989; Seccareccia and Menotti, 1992) and mortality (Imboden et al., 2018). Thus, the decline in physiological function that accompanies advancing age presents a major obstacle to achieving increased health span (Beard and Bloom, 2015), the phase of life without disability and free from serious chronic diseases (Seals and Melov, 2014). Lifestyle interventions capable of ameliorating the deleterious changes in physiological system (e.g. muscular, cardiovascular, endocrine, immune, to name but a few) associated with chronological ageing will prolong the health span (Seals and Melov, 2014), whilst also reducing risk of age-related CVD (Chiao and Rabinovitch, 2015). One such strategy is physical activity, with recent meta-analytical work demonstrating running activities were associated with a 30% reduction in cardiovascular mortality (Pedisic et al., 2019). This corroborates the recently published narrative by the United Kingdom government, identifying a curvilinear dose-response relationship between physical activity and health outcomes (UK Chief Medical Officers’ report). Furthermore, exercise has been proposed as a countermeasure to biological ageing in humans, whereby physically active humans are phenotypically younger than sedentary counterparts, or where individuals display a ‘younger’ phenotype as a result of exercise training (Beaumont et al., 2019; Campbell et al., 2019; Elliott et al., 2017; Hayes et al., 2015a, 2015b; Mcleod et al., 2019; Piasecki et al., 2019; Sellami et al., 2019, 2018, 2017; Stenbäck et al., 2019a, 2019b). Moreover, the ‘masters athlete’ – broadly defined as an individual older than 45 or 50 years of age involved with competitive exercise (D’Andrea et al., 2007; Wilson et al., 2010) – represents a non-pharmacological model to isolate the inexorable from the preventable declines in cardiovascular ageing (Beaumont et al., 2018).

One characteristic of advancing age is a reduced peak oxygen uptake (VO$_{2peak}$) (Astrand, 1960; Beaumont et al., 2020; Dill et al., 1967; Rogers et al., 1990). This decrease accelerates with age (Hawkins and Wiswell, 2003) such that there is a ~16% decrease across the fifth decade but a ~26% decrease during the seventh decade and above (Fleg et al., 2005). Indeed, lower levels of cardiorespiratory fitness are associated with an increased risk of cardiovascular and all-cause mortality (Imboden et al., 2018; Paffenbarger et al., 1993). Although decreased VO$_{2peak}$ with increased age occurs irrespective of training status (Pimentel et al., 2003), the rate of decline may be “flattened” through exercise training, as masters athletes exhibit less VO$_{2peak}$ loss over 8 years than sedentary counterparts (Rogers et al., 1990). This “flattened” decline with regular training becomes important given that small improvements in cardiorespiratory fitness have a disproportionately large impact on health and survival (Kaminsky et al., 2013b; Kodama et al., 2009). Although these studies report improved health and fitness with regular exercise training over the life course, sedentary individuals who take-up exercise later in life may also achieve considerable health benefits (Knowles et al., 2015).

Despite convincing evidence for improved cardiorespiratory fitness as a consequence of engaging in short term exercise (Esfandiari et al., 2014; Grace et al., 2018; Knowles et al., 2015), long-term implications of these benefits in older adults are unclear. Whilst a supervised exercise intervention is known to improve cardiorespiratory fitness, the longer-term effect of this during subsequent unsupervised years is unknown.

In 2012, we completed a study of adaptation to low-volume high intensity interval training (HIIT) in older lifelong exercising (LEX) masters athletes and age matched longstanding sedentary (SED) men (Grace et al., 2015; Knowles et al., 2015). On completion, participants were provided with a detailed summary of their cardiovascular and metabolic health and returned to the community. Apart from this debrief and an open offer of advice from...
the lead investigator, there was no formal support. The present study attempted to address the
dearth of information regarding legacy effects of training interventions by presenting a follow-
up of our previous work (Knowles et al., 2015). In medicine, a legacy effect, first discussed by
Holman et al. (2008) describes the lasting benefit of a treatment long after cessation of said
treatment (Coppo, 2013).
Therefore, the aim of the present investigation was to examine the legacy effect of 6-
weeks of conditioning exercise followed by 6-weeks of supervised HIIT, on cardiorespiratory
fitness after 4 years of ‘free-living’. We examined VO$_{2peak}$ 4 years later, in a ‘reunion’ study to
ascertain long-term implications. We hypothesised 1) both groups would experience a decline
in VO$_{2peak}$, 2) LEX would experience less of a decline in VO$_{2peak}$, and 3) VO$_{2peak}$ would be
greater in LEX compared to SED at follow up.

2 Materials and Methods
2.1 Participants
In 2012, we recruited 39 participants aged 55–74 years from a random sample of the local
community to participate in a HIIT study (participant descriptions in Table 1). To be eligible,
participants were required to be healthy and have no medical conditions liable to contraindicate
the training programme. Following approval to exercise by their general practitioner,
participants provided informed written consent prior to the study which was approved by the
University of the West of Scotland and the University of Wales ethics committees. The
investigation adhered to the declaration of Helsinki. A SED and LEX group participated in the
study as previously described (Grace et al., 2018; Hayes et al., 2020; Knowles et al., 2015). In
2016, participants were invited to participate in a reunion study to identify changes in
cardiorespiratory fitness. These participants were not informed of a follow-up study during the
original investigation in 2012 and thus, were only invited back a few weeks prior to the
scheduled testing in 2016. The same inclusion criteria were used as for the 2012 assessments.
SED participants had not participated in organised exercise programmes for >30 years prior to
enrolment in the 2012 study. The LEX group were highly active exercisers and had been so for
the previous >30 years. They consisted of current masters athletes in sports including water-
polo, triathlon, track cycling, road cycling, and distance running. Participants arrived in the
exercise physiology laboratory between the hours of 07.00–09.00 h, following an overnight
fast and having abstained from strenuous exercise for a minimum of 48 h. Participants were
reminded to maintain standardised conditions prior to each assessment point which included
arriving in a hydrated state having abstained from caffeine and alcohol consumption for 36 h.

Table 1: Participant characteristics at baseline. SED = lifelong sedentary older males. LEX =
life long exercising older males. VO$_{2peak}$ = Peak oxygen uptake. *Different to SED at the P<0.05
level.

<table>
<thead>
<tr>
<th></th>
<th>SED (n=22)</th>
<th>LEX (n=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62 ± 2 (range 55-74)</td>
<td>60 ± 5 (range 53-71)</td>
</tr>
<tr>
<td>Stature (cm)</td>
<td>175 ± 6</td>
<td>173 ± 6</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>91 ± 16</td>
<td>78 ± 12*</td>
</tr>
<tr>
<td>BMI (kg·m$^{-2}$)</td>
<td>29.5 ± 4.9</td>
<td>26.0 ± 2.5*</td>
</tr>
<tr>
<td>Fat free mass (kg)</td>
<td>67 ± 7</td>
<td>65 ± 6</td>
</tr>
<tr>
<td>Body fat percentage (%)</td>
<td>24 ± 17</td>
<td>16 ± 6*</td>
</tr>
<tr>
<td>VO$_{2peak}$ (ml·kg·min$^{-1}$)</td>
<td>28 ± 6</td>
<td>39 ± 6*</td>
</tr>
<tr>
<td>Peak power output (W)</td>
<td>699 ± 173</td>
<td>766 ± 163*</td>
</tr>
<tr>
<td>Peak power output (W·kg$^{-1}$)</td>
<td>7.7 ± 1.6</td>
<td>9.7 ± 1.8*</td>
</tr>
</tbody>
</table>

2.2 Peak oxygen uptake determination
Peak oxygen uptake was determined using a Cortex II Metalyser 3B-R2 (Cortex, Biophysik, Leipzig, Germany) utilising methods previously described (Knowles et al., 2015) and a modified Storer Test (Storer et al., 1990) on an air-braked cycle ergometer (Wattbike Ltd., Nottingham, UK). Coefficient of variation for VO$_{2\text{peak}}$ determination in our laboratory is <3%, and the metabolic equipment was serviced and maintained according to manufacturer’s recommendations. The same equipment was used at all testing phases. Cycle ergometers were numbered, and each participant used the same ergometer for training and testing at all time points. Manufacturer reliability has been specified as ± 2% across the full power range.

2.3 Body composition determination

Stature was measured to the nearest 0.1 cm using a stadiometer (Seca, Birmingham, UK), and body mass and body composition was determined by a multi frequency bioelectrical impedance analyser (BIA [Tanita MC-180MA Body Composition Analyser, Tanita UK Ltd.]). GMON software (v1.7.0, Tanita UK Ltd.) was used to determine absolute and relative body fat. Fat free mass (FFM) was calculated by subtracting fat mass from total body mass.

2.4 Exercise training

To account for the contribution of aerobic conditioning exercise in SED, participants were initially tested at three phases in 2012 (A, B, and C; Figure 1), which were interspersed with two six week training blocks as previously described (Knowles et al., 2015). Briefly, training block 1 (between phase A and B) consisted of moderate aerobic training amounting to 150 min·wk$^{-1}$ for the SED group, in line with the physical activity guidelines (Garber et al., 2011). During this time, LEX maintained their current training, which allowed us to capture training volumes and intensities. SED completed a minimum of two sessions per week. Participants were given verbal instructions on the use of a Polar FT1 heart rate monitor (Polar, Kempele, Finland) and exercise intensities were self-monitored, enabling recording of exercise time, and average and peak heart rate (exercise was unsupervised, but heart rate was checked). The aim was to achieve an average heart rate reserve (HRR ([Karvonen and Vuorimaa, 1988]) of approximately 55% for the first two weeks of the intervention. This was increased to 60% HRR for the subsequent weeks including 5-10 s of increased intensity (prescribed as ‘vigorous’ in line with the ACSM guidelines (Garber et al., 2011)) every 10 min. The final two weeks included brief periods of exercise which elicited a HRR of 60-65% every 5 min. The mode of training was optional, and included walking, jogging, and cycling. During the six-weeks of preconditioning, SED exercised for 160 ± 15 min·wk$^{-1}$. Heart rate was recorded, using %HRR as a determinant of exercise intensity. Exercise training logs, including heart rate data, were submitted to the research team on a weekly basis to ensure participants adhered to instructions. If required, interventions were amended, ensuring intensity and duration were achieved. No nonexercise component (e.g. dietary guidance) was provided and no adverse events occurred, according to self-reporting, when questioned at each training session by the lead researcher. Whilst SED underwent preconditioning, LEX maintained their habitual training (unsupervised) which totalled 281 ± 144 min·wk$^{-1}$ structured training. Exercise type, frequency, intensity (recorded by heart rate telemetry), and duration of training was recorded. 214 ± 131 min·wk$^{-1}$ and 67 ± 52 min·wk$^{-1}$ was spent at <65% HRR, and >65% HRR respectively.

Both groups underwent HIIT from phase B to C (training block 2). HIIT was performed on a cycle ergometer (Wattbike Ltd., Nottingham, UK) every five days, for six weeks (nine sessions in total). Rationale for this frequency comes from our previous work which identified
five days of rest was required for recovery of peak power output (PPO) following HIIT in older males (Herbert et al., 2015a). Sessions consisted of 6 x 30 s sprints at 40% PPO, with a cadence between 75 rpm and 100 rpm, interspersed with 3 min active recovery. Rationale for this intensity comes from our previous work which demonstrated this protocol achieved >90%HRR in a similarly aged cohort, and achieved improvements in muscle power (Sculthorpe et al., 2017) which is imperative in ageing cohorts (Manini and Clark, 2012). Sessions were conducted in groups of 4-6, supervised by a member of the research team in an exercise physiology laboratory. HIIT was conducted according to participants’ availability, but primarily during traditional working hours (i.e. 09.00-17.00 h). No adverse events were reported, and no nonexercised component (i.e. nutritional guidance) was provided. During this phase, HIIT was the sole exercise performed by both groups.

Phase D was completed 4 years later, using identical testing methods but without supervised training in the intervening 4 years (Figure 2). At follow-up (phase D), participants provided a current training diary. This included whether they were competing in masters events, the type of training (moderate aerobic conditioning, HIIT, and/or resistance training), and the training volume per week, in minutes.
Figure 1: The CONSORT (Consolidated Standards of Reporting Trials) flow chart depicting transition of lifelong sedentary (SED) and lifelong exercising (LEX) participants though the study. HIIT = high intensity interval training.
Figure 2: Peak oxygen uptake (VO$_{2peak}$) was determined at Phases A, B, C and D. Sedentary (SED) vs. lifelong exercisers (LEX) were compared at Phase D in their original groupings determined in Phase A. Phase A-B, 6 week intervention period whereby SED conducted pre-conditioning exercise and LEX maintained normal training; Phase B-C, 6 weeks high-intensity interval training (HIIT) in both LEX and SED; Phase C-D, period of free-living without intervention; Phase A-D, 4-year follow-up period.
2.5 Statistical Analysis
Data were analysed using Jamovi version 1.6.16. Following a Shapiro-Wilk test of normality
and Levene’s test for homogeneity of variance, a two-way (group [SED, LEX] x phase [A, B, C, D]) mixed factorial analysis of variance (ANOVA) was conducted to test for differences
between groups and time points. Subsequently, post hoc T-tests with Bonferroni correction
were conducted to determine differences between groups and between phases. A chi-square
test was conducted to determine differences in training habits between LEX and SED. To establish the effect of
continuing or discontinuing exercise, a two-way (exercise habit ['continue', 'discontinue'] x
phase [A, B, C, D]) mixed factorial ANOVA was conducted. Subsequently, post hoc T-tests
with Bonferroni correction were conducted to determine differences between groups (unpaired
T-tests) and between phases (paired T-tests). Alpha level is reported as exact P values as
suggested by Hurlbert et al. (2019) and effect size for paired comparisons is reported as Cohen’s
d whereby the difference in means between two samples was divided by the pooled standard
deviation (SD). Thresholds of 0.15, 0.40, and 0.75 for Cohen’s d were interpreted as small,
moderate, and large as these are appropriate in gerontology (Brydges, 2019). The analysis will
primarily deal with comparisons between phase A (enrolment) and D (follow up), and phase C
(post-HIIT) and D, consistent with other reunion studies (Johnson et al., 2019). Data are
presented as mean ± standard deviation (SD) in text and figures are presented as grouped dot
plots, as recommended by Drummond and Vowler (2012).

3 Results
3.1 Peak oxygen uptake
VO$_{2peak}$ data have been previously reported for phases A, B, and C of the original study
(Knowles et al., 2015). Briefly, both LEX and SED improved relative and absolute VO$_{2peak}$
following HIIT, and LEX VO$_{2peak}$ was greater than SED VO$_{2peak}$ at all phases (all P<0.05).
There was a main effect of time (P<0.001), and group (P<0.001) on relative VO$_{2peak}$.
However, there was no interaction between group and time (P=0.313). SED VO$_{2peak}$ was 27 ±
6 ml·kg·min$^{-1}$ at enrolment (phase A), which increased post-HIIT (32 ± 6 ml·kg·min$^{-1}$ at phase
C; P<0.001, Cohen’s d=0.81). Subsequently, SED VO$_{2peak}$ decreased to 27 ± 6 ml·kg·min$^{-1}$ at
phase D (P<0.001, Cohen’s d=0.81 compared to C). Importantly, SED VO$_{2peak}$ at phase D was
not different from phase A (P=1.000, Cohen’s d=0.01) or B (P=0.234, Cohen’s d=0.23). LEX
VO$_{2peak}$ was 38 ± 6 ml·kg·min$^{-1}$ at enrolment (phase A), which was increased post-HIIT (42 ±
7 ml·kg·min$^{-1}$ at phase C; P<0.001, Cohen’s d=0.67). Subsequently, LEX VO$_{2peak}$ decreased to
39 ± 9 ml·kg·min$^{-1}$ at phase D (P<0.001, Cohen’s d=0.46 compared to C). LEX VO$_{2peak}$ at
phase D was not different from phase A (P=1.000, Cohen’s d=0.11) or B (P=1.000, Cohen’s
d=0.15). VO$_{2peak}$ was lower in SED compared to LEX at phase D (P<0.001, Cohen’s d=1.73).

In terms of absolute VO$_{2peak}$, results were concomitant with relative VO$_{2peak}$ in that there
was a main effect of time (P<0.001), and group (P<0.001). However, there was no interaction
between group and time (P=0.641). SED VO$_{2peak}$ was 2.38 ± 0.33 l·min$^{-1}$ at enrolment (phase
A), which increased post-HIIT (2.80 ± 0.47 l·min$^{-1}$ at phase C; P<0.001, Cohen’s d=1.03).
Subsequently, SED VO$_{2peak}$ decreased to 2.39 ± 0.46 l·min$^{-1}$ at phase D (P<0.001, Cohen’s
d=0.88 compared to C). Importantly, SED VO$_{2peak}$ at phase D was not different from phase A
(P=1.000, Cohen’s d=0.02) or B (P=1.000, Cohen’s d=0.28). LEX VO$_{2peak}$ was 3.08 ± 0.50
l·min$^{-1}$ at enrolment (phase A), which was increased post-HIIT (3.43 ± 0.52 l·min$^{-1}$ at phase C;
P<0.001, Cohen’s d=0.69). Subsequently, LEX VO$_{2peak}$ decreased to 3.14 ± 0.55 l·min$^{-1}$ at
phase D (P=0.003, Cohen’s d=0.54 compared to C). LEX VO$_{2peak}$ at phase D was not different
from phase A (P=1.000, Cohen’s d=0.17) or B (P=1.000, Cohen’s d=0.05). Absolute VO$_{2peak}$
was lower in SED compared to LEX at phase D (P<0.001, Cohen’s d=1.48).
Figure 3: Peak oxygen uptake (VO\textsubscript{peak}), in a group of sedentary (SED; blue squares) and lifelong exercising (LEX; red circles) older males. Data are presented as means plus individual data points. *Denotes differences between groups at this experimental phase at the P<0.05 level. A = Different from phase A at the P<0.05 level. B = Different from phase B at the P<0.05 level. D = Different from phase D at the P<0.05 level.

The proportion of subjects who reported discontinuing training, maintaining moderate training, and maintaining HIIT differed between groups (P=0.023), with LEX self-reporting more HIIT, and SED self-reporting more discontinuation from exercise. As there were not enough SED participants who continued HIIT, and not enough LEX participants who discontinued exercise, we pooled these data into two groups; those who continued to exercise (N=25; 15 LEX), and those who discontinued exercise (N=9; 2 LEX) in the four years of free living. When comparing relative VO\textsubscript{peak} at phase C and D, there was an effect of time (P<0.001), and exercise continuation (continued exercising or discontinued exercising; P=0.002), but no interaction between exercise continuation and time (P=0.399). In pairwise comparisons, those who continued exercising experienced a reduction in VO\textsubscript{peak} over the four years from 39 ± 7 ml·kg·min-1 to 36 ± 9 ml·kg·min-1 (N=25, P<0.001, Cohen’s d=0.37), and those who discontinued exercising also experienced a reduction in VO\textsubscript{peak} from 30 ± 7 ml·kg·min-1 to 25 ± 9 ml·kg·min-1 (N=9, P=0.003, Cohen’s d=0.62). When examining the SED cohort only, there was an effect of time (P<0.001), and exercise continuation (continued exercising, discontinued exercising; P=0.008), but no interaction between exercise continuation and time (P=0.755). In post hoc Bonferroni corrected comparisons, those who continued exercise experienced a reduction in VO\textsubscript{peak} from 35 ± 3 ml·kg·min-1 at phase C to 30 ± 3 ml·kg·min-1 at phase D (N=10, P<0.001, Cohen’s d=1.05), and those who discontinued exercising experienced a reduction in VO\textsubscript{peak} from 28 ± 6 ml·kg·min-1 at phase C to 23 ± 6 ml·kg·min-1 at phase D (N=9, P=0.003, Cohen’s d=0.62).
ml·kg⁻¹·min⁻¹ at phase D (N=7, P<0.001, Cohen’s d=0.83). At phase A, SED ‘continuers’ VO₂peak was 29 ± 4 ml·kg⁻¹·min⁻¹ and SED ‘discontinuers’ VO₂peak was 25 ± 7 ml·kg⁻¹·min⁻¹ (two-tailed post hoc Bonferroni corrected T-test P=0.109, Cohen’s d=0.84). At phase B, SED ‘continuers’ VO₂peak was 30 ± 3 ml·kg⁻¹·min⁻¹ and SED ‘discontinuers’ was 26 ± 5 ml·kg⁻¹·min⁻¹ (P=1.000, Cohen’s d=1.16). At phase C, SED ‘continuers’ VO₂peak was 35 ± 3 ml·kg⁻¹·min⁻¹ and SED ‘discontinuers’ was 28 ± 6 ml·kg⁻¹·min⁻¹ (P=0.289, Cohen’s d=1.42). At phase D, SED ‘continuers’ VO₂peak was 30 ± 3 ml·kg⁻¹·min⁻¹ and SED ‘discontinuers’ was 23 ± 6 ml·kg⁻¹·min⁻¹ (P=0.185, Cohen’s d=1.47).

To further investigate the effect of the intervening four years on aerobic capacity, we examined self-reported exercise intensity (n=14 moderate intensity exercise only and n=11 self-reported maintaining HIIT) on VO₂peak from phase C to D. In this context, there was a main effect of time (P<0.001), and intensity group (HIIT or moderate intensity [P<0.001]) on relative VO₂peak. There was an interaction between intensity group and time (P=0.012). HIIT group VO₂peak was 39 ± 5 ml·kg⁻¹·min⁻¹ at enrolment (phase A), which increased post-HIIT (44 ± 7 ml·kg⁻¹·min⁻¹ at phase C, P<0.001, Cohen’s d=0.82). Subsequently, HIIT group VO₂peak was unchanged from C to D (43 ± 7 ml·kg⁻¹·min⁻¹ at phase D, P=1.000, Cohen’s d=0.14 compared to C). In terms of magnitude, the HIIT group VO₂peak at phase D was moderately increased from phase A (P=0.081, Cohen’s d=0.66). The moderate intensity group VO₂peak was 31 ± 6 ml·kg⁻¹·min⁻¹ at enrolment (phase A), which was greater post-HIIT (36 ± 5 ml·kg⁻¹·min⁻¹ at phase C: P<0.001, Cohen’s d=0.90). Subsequently, the moderate intensity group VO₂peak decreased to 30 ± 7 ml·kg⁻¹·min⁻¹ at phase D (P<0.001, Cohen’s d=1.20 compared to C). Moderate intensity group VO₂peak at phase D was not different from phase A (P=1.000, Cohen’s d=0.18) or B (P=0.403, Cohen’s d=0.54). VO₂peak was lower in the moderate intensity group compared to the HIIT at all phases (P≤0.038, Cohen’s d≥1.30).

3.2 Body composition

Body composition in both groups at all phases is displayed in Table 2. In brief, there was no main effect of time (P=0.071) or group (P=0.143) on total body mass at the P<0.05 level. However, there was an interaction between group and time (P=0.027). There was no main effect of time (P=0.440), group (P=0.163), or interaction (P=0.689) on lean body mass at the P<0.05 level. There was no main effect of time (P=0.156) on body fat percentage. However, the effect of group (P=0.005), and interaction between group and time (P=0.014) did reach the P<0.05 level.

Table 2: Body composition at phase A, B, C, and D in lifelong sedentary (SED) and lifelong exercising (LEX) older males.

<table>
<thead>
<tr>
<th></th>
<th>LEX (N=17)</th>
<th>SED (N=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total body mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase A</td>
<td>81.3 ± 12.4 kg</td>
<td>90.6 ± 17.8 kg</td>
</tr>
<tr>
<td>Phase B</td>
<td>81.0 ± 12.6 kg</td>
<td>89.6 ± 17.2 kg</td>
</tr>
<tr>
<td>Phase C</td>
<td>81.7 ± 12.6 kg</td>
<td>89.8 ± 18.1 kg</td>
</tr>
<tr>
<td>Phase D</td>
<td>83.5 ± 15.7 kgb</td>
<td>89.8 ± 18.6 kg</td>
</tr>
<tr>
<td>Lean body mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase A</td>
<td>62.9 ± 6.7 kg</td>
<td>63.7 ± 7.0 kg</td>
</tr>
<tr>
<td>Phase B</td>
<td>62.0 ± 6.8 kg</td>
<td>63.4 ± 7.5 kg</td>
</tr>
</tbody>
</table>
4 Discussion

In this reunion study, we evaluated changes in cardiorespiratory fitness 4 years after completing the original intervention, relative to assessments at enrolment. Accordingly, the present study represents the intervention-related changes plus those persisting over the intervening 4 years, aptly named the ‘legacy effect’. The main findings of this study are: (1) a short-term HIIT intervention which followed six weeks moderate intensity activity preserved VO$_{2\text{peak}}$ over a four-year timespan, (2) lifelong exercise results in greater aerobic capacity than is achievable following a short-term HIIT intervention, (3) a short-term HIIT intervention resulted in half of the original SED group maintaining self-reported exercise adherence for four years, and (4) even in a group of highly motivated, life-long exercisers there is a attrition rate in terms of exercise engagement of 12% over 4 years. Taken together these findings indicate that short-term HIIT interventions can have substantial impacts on aerobic capacity, and by extension cardiovascular risk.

The finding that a short-term HIIT intervention can preserve VO$_{2\text{peak}}$ over a four-year period is both novel and important. While the observation that LEX had greater cardiorespiratory fitness than LEX is not new, it is encouraging that irrespective of initial fitness levels, both groups exhibited a similar response pattern following short-term HIIT and then after 4-years of ‘free-living’. Few other studies have followed participants over such a long-time frame. Moreover, the lack of decline between Phase A and D is impressive given previous work. In the STRRIDE Reunion Study (Johnson et al., 2019), VO$_{2\text{peak}}$ declined by ~10% from enrolment to 10 years follow-up, although the vigorous intensity training groups experienced only a ~5% decrease from pre-training to follow-up. This appeared primarily due to the 8 months of vigorous intensity training creating the greatest increase in VO$_{2\text{peak}}$ (~10%, like the increase observed in our 12-week study). The obvious differences between the STRRIDE Reunion Study and this investigation was the difference in follow-up time (10 vs. 4 years, respectively), and the type of intervention (aerobic conditioning vs aerobic conditioning and HIIT). However, despite differences, both Johnson et al (2019), and we surmise that a short-term exercise intervention has significant legacy effects for cardiorespiratory fitness, which may be intensity dependent. The seminal work of Rogers et al. (1990) reported that in the absence of a training regime, sedentary individuals can expect to lose 10% of their aerobic capacity over an 8-year period. The same data would therefore predict a 5% decline in VO$_{2\text{peak}}$ across the 4 years of our follow-up data which was not the case. One criticism of short-term interventions is the tendency to demonstrate large effect sizes over the short term during supervised, laboratory based interventions, which may not be sustained over the longer term, or may be reduced once moved out of a controlled laboratory setting, often termed the ‘voltage drop’ of interventions (Chambers et al., 2013; Kilbourne et al., 2007). The present data supports

<table>
<thead>
<tr>
<th>Phase</th>
<th>Weight (kg)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>62.2 (7.1)</td>
<td>64.0 (8.3)</td>
</tr>
<tr>
<td>D</td>
<td>62.8 (7.9)</td>
<td>62.8 (8.1)</td>
</tr>
</tbody>
</table>

Body fat percentage

<table>
<thead>
<tr>
<th>Phase</th>
<th>Percentage</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18.9 (5.2)</td>
<td>26.4 (7.1)</td>
</tr>
<tr>
<td>B</td>
<td>19.5 (6.1)</td>
<td>25.5 (7.6)</td>
</tr>
<tr>
<td>C</td>
<td>19.9 (6.0)</td>
<td>24.9 (7.6)</td>
</tr>
<tr>
<td>D</td>
<td>20.5 (7.2)</td>
<td>25.8 (7.5)</td>
</tr>
</tbody>
</table>

* = different from phase B at the P<0.05 level.
this view, since the intervention resulted in initial increases in aerobic capacity, which were lost over the 4-years.

Despite the ‘free living’ nature of the follow up period, most previously sedentary participants remained engaged with some form of regular exercise and prevented further declines relative to their original VO_2_{peak}. Considering cardiorespiratory fitness is an independent predictor of all-cause mortality (Kodama, 2009), and that small increases correspond to large reductions in CVD risk (Kaminsky et al., 2013a) these observations have important implications for the role of exercise prescription in managing aerobic capacity and CVD risk in advancing age. Furthermore, although this investigation concerned VO_2_{peak} exclusively, it would be expected that the maintenance of fitness would likely be associated with improved blood pressure, cholesterol, and other CVD risk factors. Future studies should explore whether the extent of this protection extends beyond 4 years. If we assume the rate of decline in the LEX group represents the best possible outcome, it is feasible that the SED group could maintain their level of fitness for a decade or more. In addition, future work should also investigate the influence of variations in HIIT protocols.

There are additional important findings from this study which also warrant further discussion. Aside from the intervention, our original study provided no additional access to supervised exercise or sport participation. However, the lead investigator did offer to provide ongoing advice to any participants who requested it. Considering this, the adherence rate of 9% is substantial given that it was not an aim in the original investigation. The reason for the relatively high adherence is unclear. The lead investigator (PH) is a member of the local community from which participants were recruited, and a local advocate for healthy ageing. It may be that being known in the community, combined with regular advice contributed to the higher adherence than anticipated, and future qualitative work will investigate this hypothesis. Conversely, it may be that the early introduction of HIIT, and the increase in aerobic capacity at Phase C resulted in participants feeling more able to take part moderate to high intensity exercise and removed their fear of participation. Previous work indicated that HIIT in this age group resulted in reductions in pain and increase in general health (Knowles et al., 2015). Others have also reported that sedentary participants find HIIT more enjoyable than moderate intensity exercise (Bartlett et al., 2011; Thum et al., 2017). It is plausible therefore that together, these factors may have contributed to the relatively high exercise adherence over the 4-years.

Our hypothesis that greater aerobic capacity at phase C as a result of HIIT resulted in greater likelihood of exercise participation in the subsequent four years is supported by comparison between ‘continuers’ and ‘discontinuers’. We observed that individuals classified as ‘continuers’ of exercise in the four years of free living had a greater VO_2_{peak} at enrolment (phase A) and throughout the experiment. Although this was not at the P<0.05 level, the large effect size and difference of >1 MET (3.5 ml·kg\(^{-1}\)·min\(^{-1}\)) at all phases suggest this was a clinically meaningful difference. Interestingly, continuers had a greater aerobic capacity than discontinuers, and they were more responsive to the HIIT stimulus (i.e. the difference in VO_2_{peak} between phase A and phase C) was greater in continuers compared to discontinuers (5.3 ml·kg\(^{-1}\)·min\(^{-1}\) vs. 3.3 ml·kg·min\(^{-1}\) respectively), suggesting that absolute fitness, but also adaptation to training, may underpin increased exercise participation.

A final unanticipated finding of the present study was that the attrition rate in the LEX group was higher than anticipated at 12% across the 4 years. Given that this group where originally included to act as a positive control, they represent a cohort of individuals who have a strong and persistent drive to exercise and maintain physical fitness and are likely therefore, to represent the greatest degree of adherence possible in this age group. While admittedly in a relatively small cohort, the present data suggests the best adherence realistically achievable in
free-living studies. Thus, the 59% adherence of the SED group in this study, and adherence in
general in other studies of the same age-range, should be viewed against this best feasible 88%
(LEX group) outcome, rather than the best theoretical adherence of 100%.

There are some strengths and limitations of the current study that should be noted. A
specific strength is the number of participants included in the follow up. Thirty-four (87%) of
the original cohort agreed to be re-measured, which is comparable to the Johnson et al (2019)
return success rate for STRRIDE (Studies of Targeted Risk Reduction Interventions through
Defined Exercise) reunion study. Moreover, we have follow-up data regarding the reason for
not being able to assess the remaining 10 participants, five of whom dropped out before phase
B of the original study. However, an important limitation is the use of self-reported exercise at
phase D rather than an objective assessment. However, given the duration of follow up,
objective methods were unfeasible. Moreover, attempts to use objective measures at phase D
would likely have suffered from a Hawthorn effect as others have noted (DÖSSEGGER et al.,
2014). Likewise, self-reported activity of continuation or discontinuation of exercise were only
recorded on one occasion which may not be reflective of the entire follow-up period. Although,
repeated measurement could have violated a true ‘free-living’ period by altering said
behaviours. Consequently, we accepted these as limitation as an unavoidable consequence of
the duration and nature of follow-up. In addition, the assessed aerobic capacity of participants
was broadly commensurate with their reported levels of physical activity. Secondly, non-
exercise control groups from phase A to phase D would have strengthened the conclusions of
this study. However, recruiting a SED and LEX group who did not undertake the HIIT
intervention was not the aim of our initial work (Knowles et al., 2015). Although non-exercise
control groups would have provided additional credence to the legacy effects we propose here
in, and also to ascertain whether there was a true prevention in a reduction of VO2peak, the work
of Rogers et al. (1990) and Johnson et al. (2019) both detail expected decreases in aerobic
capacity, so the lack of VO2peak loss reported here is noteworthy. While the exercise training in
Phases A and B were of an aerobic nature, exercise modalities performed during the free-living
period may have varied within and between participants. Accordingly, we are unable to
ascertain the isolated influence from a dichotomous classification of endurance or resistance
exercise types. Although, our intention was to assess cardiorespiratory fitness mediated
through self-directed exercise during the free-living phase. Nonetheless, the contributions from
exercise modality warrants future consideration. Furthermore, while we assessed a single,
direct marker of cardiovascular risk through cardiorespiratory fitness, we were unable to
report on other clinical markers related to cardiometabolic health. Future work should consider
these considering that the longer term implications of cardiorespiratory fitness and
cardiometabolic parameters may be intensity dependant Johnson et al. (2019). Thus, extension
of our work pertaining to low frequency, short term HIIT would be beneficial.

In conclusion, the addition of six weeks of HIIT following six weeks of moderate
intensity exercise training increased VO2peak to the extent that it was unchanged four years later
in a cohort of LEX and SED older men. Thus, this combination of exercise appears a potent
stimulus to increase (in the short-term) or maintain (in the long-term) VO2peak in older males.
The implication of these data is that exercise training concluding with 6 weeks HIIT can be
utilised by practitioners and healthcare professionals to increase VO2peak over a short period of
time, which appears to be a catalyst for maintained cardiorespiratory fitness for years to come.
There is an emergent body of evidence that endorses HIIT as an effective alternative to
traditional endurance training that can yield enhancements in both cardiorespiratory fitness and
a variety of health outcomes (Buchheit and Laursen, 2013; Gibala et al., 2012; Sylta et al.,
2017, 2016; Yasar et al., 2019) and consequently, improvements in cardiorespiratory fitness
have a significant impact on health and survival (Kaminsky et al., 2013b; Kodama et al., 2009).
Authors contributions statement

Peter Herbert: Conceptualization, methodology, validation, investigation, resources, project administration, writing – review & editing. Lawrence Hayes: Formal analysis, writing – original draft, review & editing, visualization. Alexander Beaumont: Formal analysis, writing – original draft, review & editing, visualization. Fergal Grace: Conceptualization, methodology, validation, investigation, project administration, supervision. Nicholas Sculthorpe: Conceptualization, methodology, validation, investigation, project administration, writing – review & editing, supervision.

Conflict of interest statement
The authors have no conflict of interest to declare.

Funding sources
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References
Heart Association. Circulation 127, 652–662. https://doi.org/10.1161/CIR.0b013e31827ee100

Pammenter, N.F., Herbert, P., Grace, F., 2017. One session of high-intensity interval training (HIIT) every 5 days, improves muscle power but not static balance in lifelong

18

