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Abstract 
Due to the singularity of the distinct biometric traits, biometric authentication factors have 

become increasingly prevalent in daily life and are predicted to target future authentication 

methods. Previous studies established that the human voice is one of the most natural, non-

intrusive, and convenient behavioral biometric factors compared to other biometric 

authentication methods. Despite the non-intrusive characteristics of voice biometric 

authentication, it has been brought under scrutiny for many reasons, including the accuracy 

of biometric data, a general societal trust and distrust with technology and the risk of theft 

and imitation. Although, when it comes to trusting technology, users’ perceptions change 

with time through continued use of technology, and thus allowing perceptions and opinions 

to change. However, there are fundamental factors that can contribute to how users develop 

trust with technologies over time. This study derived a realistic trust evaluation model that 

incorporates security, privacy, safety, usability, reliability, and availability factors into a trust 

vector for a flexible measurement of trust in the user accessing the technology. Based on the 

derived trust model, we experiment using quantitative method whether the users are willing 

to trust voice biometric authentication method over PIN, fingerprint, and token-based 

authentication and hence would be inclined to adopt and utilize it as a means of user 

authentication to access technology. We applied the Kruskal-Wallis H test and the post-hoc 

test to understand which authentication method the user trusts, based on statistical 

significance and which groups were found to have that statistical difference.   

The result of the study suggests that users have less trust with voice compared to other 

authentication methods especially traditional means of knowledge-based authentication 

such as PIN’s which consistently ranked much higher than voice in pairwise comparisons. 
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Abbreviations Key 
Table 1: Glossary of Meanings 

Abbreviation  Meaning 

PIN Personal Identification Number 

ID Identity Document 

DNA Deoxyribonucleic Acid 
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RFID Radio Frequency Identification 
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FAR False Acceptance Rate 
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FRR False Rejection Rate 

ICC Integrated Circuit Chip 

I/O Input/Output 

SSO Single Sign ON 
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1. Introduction 
 

This chapter presents the background behind the study as well as our primary motivations for 

undertaking the study. The chapter also presents what we intend to answer, the research 

hypothesis and research contributions.   

1.1 Background 

With the growth of smart technologies in many different sectors such as hospitals, financial 

sectors, the military, aviation, etc, there is an even greater need to determine the authenticity 

of a genuine user. Authentication can be defined as the process of verifying an identity claim 

using the users’ knowledge (e.g., secret questions, passwords, PINs), their possessions (e.g., 

ID cards, mobile phones, tokens), their location, or their biometrics (e.g., biometrics, 

fingerprints, iris scans, signatures) all of which can be referred to as different authentication 

factors (Fu 2015). The classification of user authentication factors can be seen in Figure 1, the 

taxonomy we created, which classifies authentication factors into four main categories, 

Knowledge-based, Biometric (or inheritance)-based, Ownership-based, and Location-based 

authentication factors.  
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Figure 1: A Taxonomy of User Authentication Factors 

 

The authentication process sets the tone of technologies, network systems, services, and 

applications. Sophisticated fraudsters and hackers are always on the lookout for vulnerable 

authentication methods in cyberspace or between digital interactions and transactions. 

Attacks and countermeasures on authentication factors are well-documented in the 

literature, thus, this thesis is a compendium of user authentication methods, attacks, and 

techniques; designed in a systematic way, with the hope that it would be valuable to the 
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researchers and engineers in the field of user authentication. We explore the literature to 

point out some open issues, challenges, and suggest future research trends.  

The purpose of authentication is to establish confidence that the user trying to access a 

technology is not an imposter and to only allow the user access to their account/sensitive 

information. Strong authentication systems help to reduce potential fraudsters and other 

hackers from gaining access to sensitive information they should not have access to. There 

are several terms and jargons used to describe authentication systems.  

On the other hand, the human body has many distinctive physiological and behavioural 

features, known as a person’s biometric characteristics, that provide indispensable means for 

a secure authentication process. Biometric-based authentication employs many different 

modalities, factors, and algorithms to extract and process a user’s biometric features for 

authentication purposes. The classification of biometric authentication techniques depends 

on the type of characteristics being evaluated: physiological or behavioural singularities. The 

physiological biometrics are traits that are part of the human body, such as fingerprints, iris, 

faces, retinas, or hand geometry  (Zhang, D. et al. 2009). Behavioural biometrics meanwhile are 

traits that are distinctive behavioural characteristics, that are partially connected with the 

human brain activity, including the keystroke dynamics, voice biometrics speech analysis, and 

eye movement. (Zhang, D. et al. 2009).   

Unlike knowledge-based, ownership-based, or location-based authentication factors, which 

are based on what the user knows, possesses, or where they visited; biometric-based 

authentication is based on the user themselves – scanning the body for measurements or 

characteristics to acquire data from an individual, then extracting that feature set from the 

data, and finally comparing that feature set with the feature set stored within a database. 
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Due to the singularity of the distinct biometric traits, biometric authentication factors have 

become increasingly prevalent in daily life and are predicted to replace other means of 

authentication, hence are considered be the target of future authentication methods  (Ortega-

Garcia et al. 2004). The human voice is one of the most natural, non-intrusive and convenient 

behavioural biometric factors in comparison to other biometric factors. Subsequently, the 

usage of voice biometric authentication is being heavily considered as a promising means of 

authentication for many reasons. These include not requiring the user to remember any pins 

or passwords, users constantly being verified - hence fraudsters are more easily caught, and 

verification being done over standard telephones lines through already implemented 

infrastructure (Tupman 2018).  

Despite all the advantages and non-intrusive characteristics of voice biometrics over other 

biometric features, voice biometric authentication has been brought under scrutiny for many 

reasons including: the risk of theft and imitation, the accuracy of biometric data and a general 

societal feeling of distrust with the technology to handle their privacy-sensitive information 

and biometric data securely, thus preventing full adoption of voice biometric authentication 

systems. Other lingering concerns about the security of voice biometric systems include 

potential breaches of privacy, adversary attacks such as spoofing attacks (Marcel et al. 2019), 

presentation attacks (Korshunov and Marcel 2017) and replay-attacks  (Lavrentyeva et al. 2017) 

all may cause a user to distrust technology.  

Although, when it comes to trusting technology, users’ perceptions are shown to change over 

the course of time through continued use of a technology, allowing for perceptions and 

opinions to change. However, there are fundamental factors that can contribute to how users 

develop trust to use with technologies over time. To understand those factors, a valid trust 
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model would be extremely helpful to arrive at a more realist definition of trust that can be 

applied in the context of user trust with technology. 

1.2 Motivation 

The escalating dynamism of current and emerging technologies, coupled with the wide-

ranging impacts of technology in society, makes it increasingly important to understand the 

different dimensions of trust to technology and the algorithms behind those technologies. 

Since trusting technology beyond their functionality and capacity can present a high risk, a 

high cost, and compromise to a user’s privacy and personal security. It is important to 

understand which trust evaluation model can be employed for flexible measurement of trust 

(in the context of availability, security, usability, privacy, reliability, willingness to use, and 

security) between the user and security-based authentication mechanisms, to access 

technology? 

With voice biometric authentication being such a promising development when it comes to 

secure user authentication, it is of particular interest to consider the user’s current 

perspectives of the authentication, to better understand if users would first be willing to use 

the technology, especially when compared with traditional means of authentication such as 

PINs and Tokens. Hence the study’s motivation is to discern the relationship between users 

and voice biometric authentication and how that compares with traditional means of 

authentication, to understand if perceptions around voice biometric authentication need to 

change for it to be readily adopted.  

1.3 Problem Statement 

As it currently stands, for new technologies such as voice biometric technology to be adopted; 

users must overcome the challenges of trusting said technology. Thus, trust may be a crucial 
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factor for the successful introduction of new technology, products, and services  (Hoffman, 

Lawson-Jenkins and Blum 2006). Other factors such as lack of clarity, confidence and poor user 

experience or expectation with the technology, may raise questions whether adopting the 

new technology will increase or decrease user trust to technology. Therefore, the study seeks 

to discern a trust model that reflects the nature of the flowing relationship between trust and 

technology, to see if the development of trust and voice biometric authentication needs to 

grow before it can be adopted.  

1.4 Research Questions 

1. The first question this thesis attempts to answer is: “Which method of user-based 

authentication mechanism could facilitate trust establishment between user and 

technology from the user’s perspective?” 

1.1 To attempt question one, another question needs to be asked, “which trust 

evaluation model can be employed for flexible measurement of trust (in the 

context of availability, security, usability, privacy, reliability, willingness to use 

and security) between the user and security-based authentication mechanism 

to access technology?”  

2. The second question this thesis seeks to answer is: “Based on the identified trust 

evaluation model from research question 1.1, are users willing to trust voice biometric 

authentication mechanism and hence would be inclined to adopt and utilize it as a 

means of user authentication method to access technology?” 

1.1 If the answer to the above question 2 is yes, at what level of trust could users 

prefer to use biometric authentication over other authentication methods. 
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1.2 If the answer to the above question 2 is no, at what level of trust could users 

prefer to use other authentication methods over the biometric authentication 

method? 

1.5 Hypothesis 

1. Users have varying degree of trust about user-based biometric authentication method 

to access technology based on the chosen trust evaluation model. 

2. Users may be found to be willing to trust technology and voice-based biometrics as a 

method of user authentication. 

1.6 Research Contribution 

Our contribution in the work is three-fold; i. Motivated by the expanded trust model proposed 

by  (Hoffman, Lawson-Jenkins and Blum 2006), we derived a realistic trust evaluation model that 

incorporates security, privacy, safety, usability, reliability, and availability factors into a trust 

vector, for a flexible measurement of trust in the context of user accessing the technology. ii. 

Based on the derived trust model we experiment using a quantitative method whether the 

user is willing to trust voice biometric authentication method over PIN, fingerprint and token-

based authentication and hence would be inclined to adopt and utilize it as a means of user 

authentication to access technology. iii. We applied Kruskal-Wallis H test and the post-Hoc 

test to understand which authentication method the user trusts, based on statistical 

significance and which groups were found to have that statistical difference.  

1.7 Thesis Outline 

The thesis is structured as follows: Chapter one gives the study background as well as the 

primary motivations for undertaking the study. The chapter also presents what questions the 
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study intend to answer, research hypothesis and research contributions.  Chapter two gives 

the discussion of related work around different authentication methods and related studies, 

with the hope to put the study in the context of related works. It also presents the concept of 

trust, both in a social and technological context and how the theory of the trust is applied in 

the context of the study, along with the trust model used in the study and the discussion of 

the trust’s model metrics and elements. Chapter three presents the studies research 

framework – a framework that is adapted from traditional design science models with 

focused upon a researcher’s perspective over an engineering perspective. Chapter four 

presented a collection of the results of the study, after performing the Kruskal-Wallis test. 

Chapter five meanwhile presents the results of the post-hoc test as well as a results analysis 

and discussion while in chapter six, we presented a conclusion and proposition of potential 

future work. At the end, a bibliography and appended material are included. 

1.8 Publications 

Up for possible publication: 

• Wells A. and Usman A. B. “User Authentication Methods: Attacks, and Techniques” 

International Journal of Information Security, Volume 20, Issue 3. 

• Wells A. and Usman A. B. “Voice Biometrics Authentication: Users’ Trust Level” Journal 

of Cybersecurity, Volume 7, Issue 2.  
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2. Literature Review 
This chapter presents a cohesive discussion about authentication methods. The chapter 

begins by discussing the types of authentication methods, then outlines the various types of 

authentication factors from knowledge-based, biometric-based, ownership-based and 

location-based. Within each section on authentication factors, we discuss the factors 

advantages and disadvantages as well as how they are used and attacked. For biometric-

based authentication we thoroughly inspect the difference between physiological biometrics 

and behavioural biometrics – especially voice biometrics, a key interest of this study. We then 

finalise with a discussion around trust in a social and technological context, along with the 

trust model the study uses. 

2.1 Chapter Background 

The authentication process is still a problem in cyberspace when establishing the integrity and 

authenticity of the claimant while accessing technologies, applications, or network systems. 

Authentication is defined as the problem of verifying an identity claim using a person’s 

knowledge, possessions, location, or biometric factors. A secure authentication ensures that 

the claimant is the legitimate user trying to access the system, and the authentication is not 

susceptible to misplacement, forgetfulness, or reproduction. Whilst technology continues to 

evolve regarding the authentication process, most of the authentication systems still have a 

large room for improvement, particularly in their accuracy, tolerance to various security 

attacks, noisy environments, and scalability as the number of individuals increases  (Poh, 

Bengio and Korczak 2002). 

The purpose of authentication is to establish confidence in that the user trying to access 

technology is the user themselves and only allow the user access to the accounts/sensitive 
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information. Strong authentication system helps to reduce potential fraudsters and other 

hackers from gaining access to sensitive information they should not have access to. There 

are several terms and jargons used to describe authentication systems.  

With the growth of smart technologies in different sectors like hospitals, financial sectors, the 

military, aviation, etc, there is a greater need to determine the authenticity of a genuine user. 

Authentication systems in the context of user’s accessing technologies; is the process that 

allows users to identify themselves by sharing a piece of information only they know (e.g., 

secret questions, passwords, PINs), own (e.g., ID cards, mobile phones, tokens) or information 

they inherit (e.g., biometrics, fingerprints, iris scans, signatures) often referred to as an 

authentication factor  (Fu 2015). The classification of user authentication factors can be seen 

in Figure 1 (as seen in chapter 1, page 13), which classifies authentication factors in to four 

main categories, Knowledge-based, Biometric (inheritance) based, Ownership and Location-

based authentication factors.  

As the name suggests, knowledge-based authentication factors seek to prove the identity of 

the claimant accessing the technology or service by the user’s knowledge of a private or secret 

piece of information to prove the claimant’s identity. With ownership-based authentication 

factors, the authentications processes use something the user has such as a security token, 

implanted device, phone, software, or hardware token for authentication. Unlike knowledge 

or ownership factors, that are about what the user knows or has, inherence-based factors are 

based on the user themselves – using the body for measurements and characteristics. 

Meanwhile, location-based authentication factors use the claimant’s identity to detect its 

presence at a distinct location (Trojahn and Marcus 2012). 
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2.2 Authentication Methods  

There are two categories of authentication methods, namely, single-factor authentication 

and multi-factor authentication. Descriptions of the two user authentication methods are 

provided in the following sections.  

2.2.1 Single Factor Authentication Methods  

Single-factor authentication simply involves using only one method or ‘factor’ to verify the 

user’s identity and authenticate themselves. These such factors include the usage of 

knowledge-based factors like passwords, pin numbers and other information the user would 

know, ownership-based factors such as bank cards or cell phones and inherence factors like 

a user’s fingerprints or iris (Turner 2016). 

Many pieces of literature, technology companies and agents consider single-factor 

authentication to be inadequate in preventing fraud, especially for that of high-risk 

transactions related to banking (Council, Federal Financial Institutions Examination 2005) (Tiwari 

et al. 2011). This is simply because if you only have one factor protecting your account, if that 

was to ever leak, then access to the account can be immediately gained by an intruder. Studies 

such as (Velásquez, Caro and Rodríguez 2018) suggest that regarding single-factor authentication 

with knowledge-based factors, users find it hard to remember passwords for a long time, or 

remember different passwords for multiple accounts, hence leakages are much more likely. 

This is especially a concern nowadays considering the amount of data breaches that have 

occurred in recent years where multiple users accounts and passwords have been leaked. 

Even disregarding data breaches, many passwords can be cracked due to users using weak or 

even default passwords allowing hackers easy access to accounts.  When users are 

considering authentication, the main factors they consider are usability and security (Khan and 



Page 23 of 149 
 

Zahid 2010). Although many users consider multi-factor authentication to be safer and more 

secure than single-factor, users do consider single-factor to be more user friendly. As shown 

in the study (Gunson et al. 2011) in which participants considered single factor to be easier, 

more straightforward, and quicker than multi-factor authentication.  

2.2.2 Multifactor Authentication Methods 

Multi-factor authentication utilises a similar process to that of single-factor authentication. 

However, the primary difference between the two is that multi-factor authentication will only 

authenticate the user after they have presented two or more factors to verify their identity 

(Turner 2016). Similar to single-factor authentication, these can be based on any factor, from 

the user’s knowledge, things only they possess and biometrics they inherit. In multi-factor 

authentication, the authentication process can ask for pieces of evidence from the same type 

of factor i.e., two knowledge-based factors like a password and a pin code or from difference 

types of authentication factor such as a password and token.  

While multi-factor authentication is considered much more secure than single-factor 

authentication, it does however have a few drawbacks. Two-factor authentication is not 

immune to being hacked and is just as vulnerable to attacks used on single-factor 

authentication. For example, two-factor authentication is also still susceptible to users having 

their credentials stolen from phishing-based attacks.  An example of a phishing-based attack 

is man-in-the-middle attacks, where attackers will create spoofed versions of websites for 

users to type their credentials into for the attacker to steal and use on the real website. 

Alternatively, two-factor authentication is not immune to is the likes of trojan attacks where 

a hacker can piggyback on a user’s login session to make their own fraudulent transactions 

(Schneier 2005). Another feasibility concern of two-factor is when using mobile authenticators, 
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as a mobile phone is not always available either because there is no signal, the phone’s 

battery is dead, or it has been stolen.  

The main deployment of multi-Factor authentication has been with phone authenticators tied 

to most online accounts. This authentication follows the method of first receiving credentials 

that have one identifier between a first and second principal (such as an email address). The 

user's knowledge of the first identifier is first verified (such as with a password) and an 

authentication credential is then generated (Burch and Carter 2010). This is often seen with 

smartphones via an app to generate codes for the user to receive and then enter when they 

sign in (Drokov, Punskaya and Tahar 2015). This has been one of the most common deployments 

of multi-factor authentication due to how integrated phones are in modern society – always 

being available. 

Other prominent examples of multi-factor authentication are seen in the world of banking 

that utilises both knowledge and possession-based factors. In order to pay via a credit card in 

person, a user must have both the bank card itself to put in the card reader and know the pin 

code in order to complete the transaction. Alternatively, multi-factor authentication is seen 

for a network service by monitoring a session at a firewall applying a profile based on the new 

session and performing an action based on the authentication profile (Murthy et al. 2021). 

Overall, despite single-factor authentication being considered inadequate at preventing fraud 

it is still commonly used as it is faster and more convenient for the user, compared to the 

safer yet slightly more cumbersome multi-factor authentication. Several important services, 

such as banking, have multi-factor authentication as a requirement, whereas less important 

services provide it as an option. 
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2.3 Knowledge Based Authentication 

Knowledge-based authentication (KBA) is an indispensable tool in digital Identity proofing 

protocols and solutions. KBA can be offered in many formats, making it a valuable and flexible 

authentication mechanism in many cybersecurity architectures. Knowledge-based factoids 

are based on information only the user should know such as a username and password or 

personal identification number (PIN).   

The two most widely used methods of users’ authentication using KBA are: static (shared 

secrets) and instant (also known as dynamic KBA). Static KBA is based on a pre-defined set of 

questions or shared secret information between the authentication parties involved. Mostly, 

static KBA factoids include questions such as what your mother’s maiden name.  Or what is 

your date of birth, etc, and is commonly used by email providers, banks, financial services or 

companies to authenticate users.  

On the contrary, instant KBA uses methods and algorithms to dynamically develop a set of 

personal questions and answers to authenticate a user, and it does not require the user to 

have provided the questions and answers beforehand (Fu 2015) . These dynamic questions 

provide randomized right and wrong answer choices based on data found for the subject by 

the KBA system. Regardless, in practical usage, both versions of KBA usually require a form of 

initial registration against an existing database to create the credentials. KBA then usually 

requires some online or remote access to the server to verify the factoids/credentials in the 

login mechanism  (Chokhani 2004).  

One of the attributes of KBA is password entropy - a measure of how unpredictable a 

password is. Password entropy estimates how many trials an attacker (either by guessing or 

brute force) would need, on average, to guess the password correctly. In other words, the 
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more difficult to predict or guess the password entropy, the more secure the KBA is. Given a 

password with a character size L, we can compute the password entropy using the following  

equation 1 below (MLB9252 2011).  

 𝐸 = 𝑙𝑜𝑔2(𝑅𝐿)                                          (1)  

Where  𝐸 is the password entropy, 𝑅 is the pool of unique password characters, and 𝐿 is the 

number of characters in a given password. Subsequently, 𝑅𝐿 is the number of possible 

password combination and  𝑙𝑜𝑔2(𝑅𝐿) is the number of bits of entropy.  

2.3.1 Security attacks on Knowledge Based Authentication Factors 

There are three main categories of attacks to knowledge-based authentication: Social 

engineering attacks, guessing attacks, and brute force attacks, as presented in the taxonomy 

of KBA attacks, as shown in Figure 2.  Each of the three types of attacks on KBA can be in 

different forms. We provided, in the following sections, a summary of the attacks. 

The KBA attacks taxonomy we created in Figure 2, presents the classification of KBA attacks.  
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Figure 2: Knowledge-Based Authentication Attack’s Taxonomy 

 

Shoulder surfing attack is a form of social-based attack used to obtain information from the 

target using direct observation techniques, such as looking over victim’s shoulder to obtain 

victims’ passwords, PINs, or secret information. Dumpster diving attack is another form of 

social-based attack to recover information about the habits, activities, and interactions of 

individuals or organisation from discarded phone books, hard drives that have not properly 

been scrubbed or surfing through people's curb side garbage. A dumpster can be a valuable 

source of information for attackers, who may find personal data about employees, manuals, 

memos and even print-outs of sensitive information (Koyun and Al Janabi 2017). 

 

2.3.2 Social Engineering Attacks on Knowledge Based Authentication Factors 

The social engineering (SE) attack is manipulating the target (a person) to obtain information 

by a social engineer – an attacker. So far, SE is the most superior form of KBA attacks as users 
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themselves are the attacks' targets. Successful social engineering attacks can be incredibly 

damaging and highly lucrative. In the SE attack, the attacker took on legitimate personnel's 

disguise to convince the victim to give out their sensitive information. The attacker can 

execute the attack in person by interacting with the target to gather desired information 

about the target(s) or using specialized software. A distinctive feature of social engineering 

attacks to KBA compared with the other attacks on KBA attacks is social engineering attacks 

exploit human weaknesses and hence, may be challenging to address the problem of human 

weaknesses. The attacks’ operators of Social Engineering attacks against KBA can be classified 

into social-based attack or computer-based attacks, physical, technical, and socio-technical. 

The social-based attacks are performed through relationships with the victims to play on their 

psychology and emotion to obtain information from the target. On the contrary, computer-

based attacks are performed using devices such as computers or mobile phones to get 

information or to perform advanced attacks against the KBA.  

 

Table 2 presents four different forms of social engineering attacks including physical (the use 

of physical actions to collect KBA information) (Aldawood and Skinner ), technical SE (the use of 

sophisticated technical tools to obtain KBA information) (Krombholz et al. 2015) or social (using 

psychological skills to collect KBA information) (Granger 2001). Other types of attacks include 

technical approaches – using technical tools and methods to harvest users’ KBA information. 

Mostly, the technical types of attacks to KBA are mainly carried out over the Internet using a 

specialised tool such as Maltego to gather and aggregate target’s information from different 

web resources or social networks. The socio-technical types of attacks to KBA are currently 

one of the most powerful forms of KBA attacks used by of social engineers. Examples of these 
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forms of attacks include “road apples" attacks, an attack using a USB containing a trojan horse 

or baiting attacks (Stasiukonis 2006).  

 

Reverse social engineering (RSE) attack has three stages: sabotage, advertising and assisting. 

Initially, an attacker can sabotage the companies or individual access credentials. The attacker 

can then convince the target that he/she is ready to solve the problem. When the victim asks 

for help, the social engineer will resolve the problem they created earlier while, e.g., asking 

the victim for their password (“so I can fix the problem”) or telling them to install certain 

software, etc (Krombholz et al. 2015). Other forms of SE attacks on KBA include water holing 

attacks (Edwards et al. 2017), spidering attacks (Loukas and Öke 2010), baiting attacks (Fan, 

Lwakatare and Rong 2017),  advanced persistent threat attacks (Mazumdar and Nirmala 2018) and 

phishing attacks. We provided in the following a detailed description about phishing attacks 

on KBA.  

 

Table 2: Social Engineering Attacks’ Operators on KBA 
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Computer -

based 

attack  

 x x x x x x x x x x x x x 

 

As presented in Figure 2 there are different forms of phishing attacks: whaling phishing, spear 

phishing attack, and vishing phishing, etc. Spear phishing attack is usually directed at specific 

individuals or companies to gather and use personal information about the target to increase 

chances of successful attacks (Ho et al. 2017). Whaling phishing (Whaling email) is a highly 

targeted phishing attack mostly against financial institutions and payment services. Through 

social engineering, the attacker can encourage the victim to perform a secondary action, such 

as initiating a wire transfer of funds. Whaling phishing is more sophisticated than generic 

phishing emails as they often target senior executives (Chiew, Yong and Tan 2018). Other forms 

of phishing attacks include catfishing attack (Simmons and Lee 2020), voice phishing (Choi, Lee 

and Chun 2017) and SMS phishing (Mishra and Soni 2019). In the man-in-the-middle (MITM) 

phishing attack, the phisher places himself or herself in the middle of two ways 

communication between the victim and a web-based application to eavesdrop and collect 

sensitive information that the victim is submitting to a web-based application (Chiew, Yong and 

Tan 2018).  

2.3.3 Guessing attacks on Knowledge Based Authentication Factors 

The popular methods of KBA guessing attacks can be classified into three types: Markov-

based, neural networks-based, and entropy estimation. (Narayanan and Shmatikov 2005) 

argued that the distribution of letters in easy to remember KBA factor (e.g, passwords) is likely 
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to be similar to the distribution of letters in the users’ native language. The authors applied 

Markov modelling techniques from natural language processing to reduce the size of the 

password space to be searched and increase the chance of guessing the password. (Dürmuth 

et al. 2015) prosed a Markov model-based password cracker that generates password 

candidates according to their occurrence probabilities. Other Markov model based KBA 

cracking tools include the study (Marechal 2008).  (Weir, M. et al. 2009) applied a probabilistic 

context-free grammar based upon a training set of previously disclosed passwords template 

to generate word-mangling rules for password cracking.  (Hitaj et al. 2019) applied machine 

learning algorithms to proposes password guessing technique based on generative 

adversarial networks (GANs) to learn users’ password distribution information from password 

leaks.  

The use of Bayesian network models in probabilistic reasoning and information theory 

provides a valid metric for entropy estimation of human-selected passwords. The proposed 

BN-KBA model in  (Chen, Y. 2007) is intuitively appealing in that it captures two key metrics of 

KBA as the model parameters, particularly the likelihood memorability (probability that a 

claimant with true identity recalls the factoid correctly) and guessability (the probability that 

an impostor correctly guesses the factoid). In this vein,  (Chen, Y. and Liginlal 2007) proposed a 

methodology for implementing a Bayesian network based KBA system. The findings in the 

study suggested that in the context of KBA, the personal knowledge revealed from a variety 

of online sources can be directly or indirectly be exploited by imposters to attack a KBA system 

using the two metrics (memorability and guessability). The other reason for KBA being 

compromised is due to the of predictability of user choice on the guessability of KBA. For 
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example, given a password, the guessability of the password factoids can be computed using 

the following equation 2 (Chokhani 2004). 

𝑃𝐾𝐵𝐴,𝑗 = 𝜋𝑖𝑝𝑖,𝑗                                  (2)   

Where 𝑃𝐾𝐵𝐴,𝑗 is the probability of compromising KBA by j. The claimant type is j. The ith factoid 

is 𝑖 and the probability to guess 𝑗 by factoid 𝑖  is 𝑝𝑖,𝑗. Subsequently, the convenience of a KBA 

system is valued as important as the obscurity (difficulty of guessing) variable; thus, 

guessability of KBA can be a reason why alternative solutions are being explored, though the 

guessability of KBA is made worse by the fact that many users use common, easy to guess 

passwords, such as ‘123456’ which was used by over 23.2 million breached (National Cyber 

Security Centre 2019a). In addition, with the rich data repository available on resources such as 

online social networks and the cutting-edge machine learning techniques, the guessability an 

attacker would achieve can be substantially improved. Subsequently resources such as online 

social networks, may put imprudent KBA designs at risk.  

2.3.4 Brute Force attacks on Knowledge Based Authentication Factors 

A brute force attack on KBA is the act of trial and error to gain access via trying multiple 

combinations of passwords. There are different forms of brute force attack to KBA including 

offline cracking attack (Blocki, Harsha and Zhou 2018), letter frequency analysis brute force 

attack  (CRYPTO-IT 2020), or targeted brute force attacks which primarily uses input dictionary 

creation programs and password guess generators  (Reusable Security Tools no date). Another 

form of brute force attack on KBA is Rainbow table attack which enables the recovery 

feasibility of long human chosen passwords (Marforio et al. 2016) (Zhang, L., Tan and Yu 2017). 
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A more refined version of the brute force attack is a dictionary attack, a type of attack that 

only utilises the possibilities most likely to succeed rather than cycling through every option 

like a brute force attack (Jablon 1997). Similarly, password spraying also utilises the most 

common passwords, but instead targets multiple accounts at once, to try to gain entry into 

any account regardless of the user (Joseph et al. 2020).  There also exists the danger of 

password cracking, where attackers try recover passwords from data that has already been 

transmitted, usually via a brute-force attack, however since the password has already been 

transmitted the attackers know the cryptographic hash of the password, allowing them to 

brute-force more effectively  (Weir, C. M. 2010). Finally, the last type of attack would be 

rainbow tables, which computes hashes of the large set of available strings, rather than 

specifically calculating a hash function for every string present and comparing them to the 

target (Dutt Parth 2021).  

While there are many different attacks against knowledge-based factors, there are several 

countermeasures that users can do, to try make them as secure as possible. One of the 

simplest and yet best ways to deal with various attacks, is to have strong, uncommon 

passwords that utilise multiple different types of characters, numbers and case (Shay et al. 

2014). By using stronger passwords, simple attacks such as brute-force and dictionary attacks 

are far less likely to succeed. Likewise, having different passwords for every account or 

changing passwords often can help keep accounts secure in the event of a data breach, 

though many would argue that changing password often can inflict needless pain, cost and 

risk to the user (Spitzner Lance 2019) though could still be considered good practice.  

Beyond that, users should simply be careful to avoid any suspicious software/emails and 

always look for good identifiers such as the padlock in the address bar to signify the website 
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is encrypted. Depending on the types of attacks, other forms of attacks’ countermeasures 

include multi-factor authentication, anti-phishing technologies, user training, and antivirus 

software. 

Despite the perceived risk of KBA, it is still widely used and has many merits. KBA is extremely 

easy to use and easy to understand. This is because it has been one of the standard means of 

authentication and KBA, such as passwords, are the most common form of authentication 

(European Union Agency for Cybersecurity no date). Likewise, from an admin and logistical point 

of view, KBA is very attractive. It requires no additional hardware beyond a standard 

keyboard, unlike for instance biometrics, which means it can be easily used by anyone for 

anything and anywhere. Due to this, it is cheaper to implement for business than more costly 

methods, such as biometrics  (Raza et al. 2012), and is also fairly easy to administer for both 

home and business owners. 

2.4 Biometric Based Authentication 

The human body provides indispensable sources of distinctive features suitable to be used 

for the task of authentication systems or recognition. The use of such distinctive features of 

the human body or a person’s biometric characteristics is referred to as biometric-based 

authentication which employs different modalities and factors such as fingerprints, iris, voice 

recognition and face – using the body for measurements and characteristics. Biometric-based 

authentication can be split into two different categories. The first is physical biometrics, that 

uses physiological features of the human body for users’ authentication, this includes 

methods such as using a fingerprint or iris scanning. Alternatively, there are behavioural 

biometrics, which utilise a pattern of behaviour that is specific to the user, this includes 
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methods such as voice recognition or alternatively could be the rhythm they users type on a 

keyboard  (Chrobok Mateusz 2020).  

There are different algorithms and techniques to extract the physical and characteristics for 

biometric or biometric traits such as palmprints, hand geometry, ears, nose, and lips. For 

example, the analysis of the retinal vascular pattern with respect to individuals (pattern of 

blood vessels), appears to be one of the main sources of biometric features in methods like 

the vein matching, and the retinal scan (Rigas, Abdulin and Komogortsev 2016). Other forms of 

biometric-based traits utilise behavioural distinctive characteristics and are partially 

connected with the brain activity include methods such as keystroke dynamics, voice 

recognition speech analysis, and eye movement driven biometrics.  

 

2.4.1 Biometric Sensing Systems 

There are two categories of Biometric sensing system, Unimodal and Multimodal. We created 

Figure 3 to present a taxonomy of Biometric Systems. 
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Figure 3: A Taxonomy of Biometric Sensing Systems 

 

2.4.1.1 Unimodal Biometrics 

Unimodal biometrics is a biometric sensing system where only a single biometric trait of the 

individual is used for identification and verification. When only one type of biometric data is 

being captured, the sensor can be considered more vulnerable to noisy or bad data – 

especially when using only a single-sample of biometric data. For instance, a facial scanner 

being affected by the illumination condition or facial expression. This also means the data is 

more susceptible to spoof attacks, since only one type of biometric is being compared in the 

database. Depending on the data being measured there could also be issues with unique 

https://www.bayometric.com/unimodal-vs-multimodal/
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circumstances such as faded fingerprints or problems with inter-class similarities such as 

identical twins with facial recognition (Thakkar no date). 

 

2.4.1.2 Multimodal Biometric System 

Multimodal biometric system with fusion can be classified according to the source and 

samples used. A biometric source can be defined as a single biometric feature of the user like 

a fingerprint, voice sample, palm geometry etc. A biometric sample is a scanned copy of that 

source. A source can have multiple samples in a biometric system. Biometric systems can be 

Single-Source Single-Sample (SSSS), Single-Source Multiple-Sample (SSMS), Multiple-Source 

Single-Sample (MSSS) and Multiple-Source Multiple-Sample (MSMS) (Jain, Arun and Aggarwal 

2012). 

The multibiometric systems utilize the principle of fusion to combine information from 

multiple sources to improve recognition accuracy. In order to develop a multibiometric 

system, some of the important questions to answer include i. what to fuse, ii. when to fuse, 

and iii. how to fuse (Singh, Singh and Ross 2019)? 

When using multi-sensor systems to combine information captured by multiple sensors to 

obtain the same biometric modality like in the study (Goswami, Vatsa and Singh 2014) which 

uses the depth information along with RGB images to create a more accurate facial 

recognition. Some multi-algorithm systems utilize multiple algorithms for processing an input 

sample. For example, in the study (Ross, Jain and Reisman 2003) a hybrid matching scheme is 

used that takes into account both minutiae and ridge flow information of fingerprints to 

construct a full feature map. A similar system is adopted in (Kumar and Zhang 2005) which uses 

different palmprint representations to extract different textures, lines etc to construct a more 
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detailed palmprint. Alternatively, multi-instance systems instead capture multiple instances 

of the same biometric trait. A typical example of such system includes the use of adaptive 

bloom filter-based transforms to mix binary iris biometric templates at feature level where 

iris-codes are obtained from both eyes of a single subject (Rathgeb and Busch 2014). 

2.4.2 Biometric Fusion  

With the existing abundance and growing discovery of new biometric-based modalities and 

the heterogeneity of the associated features, the need for better security of such systems will 

continue to evolve. One of the techniques that is being employed is the use of Information 

fusion to combine the information coming from different modalities (e.g., fingerprints, face, 

iris etc.) As presented in Figure 4  (Singh, Singh and Ross 2019), following, is the brief description 

of different level of fusions:  

 

Figure 4: Levels Fusion can Take Place  

 

1. Sensor level fusion – where data is fused immediately after being acquired by the 

sensor, for example, combining face images of the frontal, left and right profiles. 

2. Feature level fusion – where data is fused by combining the features analysed; for 

instance, combining textures and lines to construct a more complete palmprint.   

3. Matching score level fusion – can be done at the stage of user authentication when a 

newly generated image of the user matched against a previous image of that user in 
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the database or where fusion occurs where the match scores have been produced 

such as to create a mean score fusion or a max/min score of the fusion. 

4. Rank level fusion – fusion can be performed after comparing the input probe with the 

templates in the gallery/database with a ranked list of matching identities being 

produced. 

5. Decision level fusion – when the final decision is generated after a matcher module 

matches a fresh image in database and generates a matching score or when the fusion 

is done by comparing/combining the algorithms performed.  

Compared to unimodal systems, multibiometric systems have many advantages in usage. 

Mainly in that it is much harder to spoof multiple biometric sensors and it is a lot more 

accurate at verifying the correct user again due to multiple metrics, helping to reduce data 

distortion (Shah et al. 2014). Multimodal systems have demonstrated higher accuracy since 

they use multiple biometric modalities and combine independent evidence to make a more 

informed decision (Krawczyk and Jain 2005). 

 

2.4.3 Biometric authentications Factors  

As mentioned previously, biometrics or biometrics-based authentication can be subdivided 

into physiological and behavioural factors. The physiological factors include fingerprints; iris 

retina, face, and ear geometry, etc. whereas, behavioural factors include signature 

recognition, voice recognition, keystroke dynamics, and gait analysis (Weaver 2006). 

2.4.3.1 Fingerprint Recognition. 

Fingerprints are one of the most widely known forms of biometric-based authentication. 

Research in fingerprints can be traced back to the 1600s and law enforcement have used 
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fingerprint identification for decades. Though this is also because fingerprints are one of the 

first instances of biometric authentication being widely used by the public as optional 

authentication in a commercial product such as smartphones, computers, etc. 

Fingerprints are quite unique in how many minute details each one can have, there are six 

main classifications of fingerprint; arch, tented arch, right loop, left loop, whorl and twinloop 

(Jain, Anil K. et al. 1997). In order to discern if fingerprints match, fingerprint readers are used 

of which there are 3 main types. The first way of reading fingerprints is optical scanners, 

optical scanners capture an optical image and utilise algorithms to detect unique patterns and 

discern if it is a matching fingerprint. Capacitive scanners, meanwhile, use arrays of tiny 

capacitors to collect highly detailed images of the ridges and valleys of a fingerprint. The third 

one is ultrasonic scanners which capture the details of a fingerprint via an ultrasonic pulse 

transmitted against the finger to discern different ridges, pores etc. Optical scanners are the 

simplest form of scanning, simply being an image and are the easiest to fool but are cheaper 

and can still work even when the user has wet fingers. Capacitive scanners are much more 

secure and less easily fooled, but have trouble identifying the user with wet fingers. Whereas 

ultrasonic scanners are not only very secure and difficult to fool but have almost no trouble 

when the user’s fingers are wet (General Post Blog 2019). 

2.4.3.2 Iris Recognition 

 Iris recognition is another form of physical biometrics like fingerprint recognition, except it 

uses the user’s eyes to verify their identity rather than their fingers. Similar to fingerprints, 

the structure of the iris is determined during embryonic development, thus, no two 

individuals, have the same iris patterns. Iris recognition involves taking a picture of the user's 

eyes and identifying a unique pattern of a user's iris to authenticate the user, this involves 
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looking at the eye’s blood vessels and pigmentation to create a unique profile for the user 

(Daugman 2009).  

There are two different types of iris recognition available: visible imaging (VL) and near 

infrared imaging (NIR). Primarily NIR technology is used, due to dark pigmentation in human 

eyes being predominant where VL struggles to reveal visible texture, however, NIR technology 

eliminates most of the rich melanin information as the chromophore of the human iris is only 

visible under the VL (is near always the best) (Abdullah et al. 2015). 

In regard to commercial use, iris recognition as an authentication method has had more 

sparing use compared to fingerprint recognition however, iris recognition has been used by 

government agencies such as the FBI, in prisons and has been used for ATM identity 

verification. Iris recognition is also being deployed in newer smartphones and other handheld 

devices as an alternative security option. Smart phones often employ NIR sensors as studies 

often show that NIR systems are most cost effective and are able to easily identify fake images 

(Alonso-Fernandez and Bigun 2014) (Thavalengal, Bigioi and Corcoran 2015). 

2.4.3.3 Retina Recognition 

Retinal scan should not be confused with iris recognition. Retina scan involves the use of a 

low-intensity light source projected onto the retina, to illuminate the blood vessels when an 

individual looks through the scanner’s eyepiece, for a minimum of ten to fifteen seconds. This 

allows the eye’s blood vessel patterns to be photographed and analysed - whereas an iris scan 

can be conducted from a short distance away. As the blood vessels at the back of the eye have 

a unique pattern, from eye to eye and person to person, a retina scan cannot be faked as it is 

currently impossible to forge a human retina or blood vessels of a human eyes  (Bhattacharyya 
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et al. 2009). In terms of security and resistance to attack, retinal scan is by far the most secure 

biometric-based authentication system. Since the retina is located from within the structure 

of the eye itself, it is not prone to the harshness of the external environment like hand 

geometry or fingerprint recognition. However, the measurement of retina scan accuracy can 

be affected by illness such as cataracts, and astigmatism. Another disadvantage of retina scan 

is the scanning procedure is perceived by some as invasive and violation of users’ privacy since 

diseases like AIDS and malaria can be detected from the user’s retina scan image.  

 

2.4.3.4 Facial Recognition 

Facial recognition authentication is one of the most widely evolving means of biometric 

authentication system which involves the use of computer and algorithms to analysis facial 

landmarks (nodal points) such as the nose, cheekbones, shape, shape, and position of the 

eyes, to verify a person from a digital image or a video frame from a video source. By applying 

a face recognition application any photo or digital image can be converted to a mathematical 

code that describes an individual’s face.  

Improvement in technology continues to evolve more advanced methods of facial recognition 

including facial metric technology, Eigen faces and three-dimensional face recognition. The 

3D facial recognition methods use 3D sensors to capture information about the shape of a 

face such as facial expressions, head orientation during imaging, or distinctive features on the 

surface of a face, such as the contour of the eye sockets, nose, and chin.  

2.4.3.5 Hand/Palmprint Recognition 

Palmprint recognition like fingerprint recognition consists of a five-step process involving a 

scanner, prepossessing, feature extraction, matching and database illustration. Palmprints 



Page 43 of 149 
 

consist of a few main features that are extracted – flexion creases (principal lines), secondary 

creases (wrinkles) and ridges with the 3 major flexion curses being genetically dependent, 

whereas secondary creases are not so, giving everyone unique palmprint patterns  (Kong, 

Zhang and Kamel 2009) 

Four main different types of sensors are used to capture palmprint scans, CCD-based 

palmprint scanners, digital cameras, digital scanners, and video cameras. CCD-based 

palmprint scanners require suitable conditions of light, lens and camera but can capture very 

high-quality images. Digital and video cameras can capture images without palmprint contact, 

but this can cause recognition problems or low-quality scans. Digital scanners meanwhile 

capture high quality images but require a long scanning time making them more impractical 

for real-time applications. 

2.4.3.6 Voice Biometric Authentication 

Voice biometrics (also referred to as speaker recognition by many) is the primary interest 

within this paper. Voice biometric is a form of inherence-based authentication factor in that 

it, like fingerprint, iris etc. is supposed to be unique to the user. Similar to other inherence-

based authentication factors, the user uses their own voice to authenticate themselves. To 

do this, users will often use some form of microphone to record their voice, which is often 

verified in real time against their voice print that is on file (Uniphone 2018). While the 

technology for voice biometric authentication has been around for years now, only in recent 

years has it seen huge developments, primarily by companies such as Nuance, regarding it 

being applied commercially and being considered a secure way for users to authenticate 

themselves.  

Voice biometric authentication requires the user to give a sample of their speech via talking 

into a microphone. This speech is then converted into a voiceprint that is stored in a database 
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of voiceprints, so it can be referred to and compared when required, sometimes as a 

waveform (Krawczyk and Jain 2005). One possible reason why voice biometrics can be 

considered an effective tool for authentication is because each human has their own unique 

voice and speech patterns, where they have unique tones, rhythms, frequency, pitch and 

speech patterns in how they utter phrases (Krom 1994). 

 

2.4.4 Voice Biometric Variations 

There are two main variations of voice biometric authentication, being text-dependent and 

text-independent. Text-dependent systems require the same specific phrase to by said by the 

user they used to set up the voice print, often called a passphrase. The more common, text-

independent systems in contrast do not require the use of passphrases and instead the 

identification is often done without the user’s knowledge (Microsoft 2006). To correctly 

authenticate users, a form of pattern recognition is utilised which involves many technologies 

and processes to store the voice prints and then compare them. The main 

technologies/processes used are the likes of frequency estimation (to correctly identify the 

frequencies of the voice recordings) and several models such as hidden Markov and Guassian 

mixture models to systematically model the process and its subpopulations, though these 

models can change depending on if the voice recognition is text-dependent, or independent. 

 

In the case of hidden Markov models, after hearing the voice, the signal is converted into a 

digital signal, then each utterance is concerted to a Cepstrum domain. Afterwards the feature 

parameters of the user are compared with the voice simple which in turn produces a 

likelihood ration to discern is the user is an imposter or can be successfully authenticated 

(Shrawankar and Thakare 2013). In the Guassian mixture model approach, the system 
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recognizes the keyword and utilizes a modelled statistical distribution of the speaker’s 

characteristics and isolated speech from utterance, the model of the user is both calculated 

and stored in a database during the in-training phase (Janicki and Biały 2006). Though many 

other ways to authenticate voice by recognition exist, these include pitch tracking, vector 

quantization, dynamic time warping, fusion classifiers system and several others.  

 

Voice recognition software has also seen wide popular usage in voice activated assistants 

found in smartphones as well as smart speakers such as Amazon Alexa and Google Home. 

Smartphones are huge in modern day society with 2.9 billion people owning a smart phone 

in 2018 and projected to be 3.8 billion by 2021 (Statista 2019). Likewise, many households have 

already adopted smart speakers into their homes, though the industry is constantly growing, 

indicating that smart speakers will become an even greater asset to modern day society. 

While not identical to the voice biometric authentication utilised by banks etc. Voice activated 

assistants like Alexa, do utilise voice recognition software to recognise its users and fulfil their 

voice commands. Commands offered by smart speakers include playing music, purchasing 

products, acting as a calendar and many more. Similar voice recognition software is also 

seeing deployment into automobiles allowing drivers to issue voice commands to their car 

without removing attention from the road or taking their hands away from the wheel. 

 

Voice assistants such as Alexa not only have many current features, but also have many 

developments over the course of the next few years. One such development is the speaker 

being able to perform person-to-person payments via voice commands (Crosman 2018). 

Currently, the devices are able to distinguish between users though soon enough speakers 

such as Alexa will have the ability to also perform verification on your identity to perform 
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bank payments. Speakers such as Alexa also have many developments into the medical field 

as well, such as assisting the NHS. The Alexa speaker intends on using the NHS website 

information in order to answer a user’s health queries, as well as many other applications 

such as managing health-improvement goals, blood-sugar readings and booking 

appointments (Fleming 2019). 

 

2.4.5 Benefits of Voice Biometric Authentication Factors  

Voice biometric authentication (VBA) has many benefits regarding security. For instance, 

unlike other biometrics, no pictures or recordings are transferred during authentication as it 

is not done via specialist equipment, instead it can use things such as already existing 

telephones lines, smartphones, or web applications. Each of these are already widespread 

and affordable solutions; compared to other authentication methods which require specialist 

equipment such as sensors or expensive cameras (Vittori 2019). Likewise, authentication is also 

done in real-time, making the authentication much harder for fraudsters to attack, as there is 

no data stored on the system or the data can be swiftly deleted after authentication (Vittori 

2019). 

  

With the introduction of ‘passive’ voice-based authentication systems – systems that do not 

require a specific passphrase to be uttered like ‘active’ VBA; passive VBA is a lot more secure 

against potential spoofing from playback or text-to-speech attacks from fraudsters using 

voice recordings of the user. This ‘passive’ form of authentication is very advantageous as it 

does not require any personal or confidential data from the user to be verified and due to 

advances in A.I systems, can also identify callers under distress should they be in a situation 

forced to authenticate themself. This is especially useful now with Europe's recent GDPR 
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(General Data Protection Regulation) bill since no personal data beyond their voiceprint is 

required.  Likewise, VBA can be very fluid in its authentication solutions, switching from 

passive to active authentication methods should it be required (Vittori 2019). 

 

Another benefit of VBA over other forms of biometric authentication is being able to detect 

fraudsters in real-time automatically since voice is usually verified over a call. This has helped 

in reducing fraud, with one of the top three US financial institutions using voice biometrics to 

uncover fraud groups and patterns, including for example an Israeli bank having a ten-fold 

reduction in fraud (Beranek 2013). An additional benefit of VBA is in the event an attacker does 

somehow gain access through using a spoofed recording, providing that attempt is identified 

as being fraudulent, the organisation can then use that recorded audio to create a ‘voice print’ 

which they can blacklist as a fraudster, preventing further breaches occurring using that same 

‘voice print’ (Vittori 2019).  

 

Voice biometrics show many benefits to being used. The study (Wayman et al. 2005) suggests 

the ideal biometric has five qualities:  

1. Robustness - unchanging on an individual over time. 

2. Distinctiveness - great variation across all the population. 

3. Availability - everyone has access to the measure. 

4. Accessibility - easy to detect via a sensor. 

5. Acceptability - population are willing to use the measure. 

Voice biometrics seem like an excellent candidate, being able to be used by everyone and 

without any specialist equipment. Voice prints are also quite difficult to spoof due to the 
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intelligence of the sensor and are relatively unchanging over time. The main factor to voice 

biometrics being the ideal solution is the population having a willingness to utilise them. 

 

2.4 6 Security attacks of Biometric-based authentication 

While biometric systems enhance the user authentication process, they are also susceptible 

to various types of threats. Some of the threats to biometric systems are directed at the 

biometric template, which can affect the integrity of the biometric template including: (i) 

accidental template corruption due to a system malfunction such as a hardware failure, (ii) 

deliberate alteration of an enrolled template by an attacker, and (iii) substitution of a valid 

template with a bogus template for the purpose of deterring system functionality (Jain, Anil 

K., Ross and Uludag 2005).  

In addition, with developments of extremely sensitive sensors, biometrics seem more secure 

than traditional means of authentication such as KBA. Though users can have issue with 

biometrics due alignment, as generally there is a difference in results between position users 

use for enrolment and recognition, hence biometric algorithms need good recognition 

algorithms, to strike a balance between being sensitive or not sensitive enough. Though 

biometric-based authentication has several other concerns and potential attacks hackers can 

use. One of the main issues with biometrics, unlike other forms of authentication, is they are 

not always private. For instance, while a password might only be known to the user, a user’s 

face is constantly on display (unless covered) to any person or camera around (Karimovich and 

Turakulovich 2016). This is especially true due to the online social age we live in, where people 

share their lives online through social media, always having their faces on display. Factors 

such as fingerprints are not immune to this either and while are less on display than perhaps 
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facial features, fingerprints leave marks on surfaces they touch. While a user having their 

biometrics compromised, in the short term, is a concern, the greater more long-term issue is 

that unlike knowledge or ownership-based factors, biometrics are almost impossible to 

change and once hacked, could be hacked for life.  Figure 5 presents the point of attacks to 

biometric authentication. The figure shows eight possible points hackers can attempt to 

attack biometric systems (Uludag and Jain 2004). 

 

Figure 5: Point of Attacks on Biometric Fusion 

  

At point 1, a presentation attack is used, where an imposter attempts to spoof a user's 

biometrics with some form of fake image. For instance, in a facial recognition system an 

attacker may try to spoof the system with a photograph of the user's face, alternatively in a 

fingerprint system they may use a mould of the user’s fingerprint. At points 2, 3, 4 & 5, hackers 

may try a sensor output interception, which involves them intercepting or perhaps modifying 
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the data from the sensor with either a previously captured sample they substitute with a 

different individual's biometrics at the points of feature extraction or obtaining an artificially 

high matching score at the fifth point. Alternatively, attackers may even target the IT system 

the sensor is tied to. Perhaps stealing biometric data to use at point 1, or adding/modifying 

existing templates in the database, by attacking point 6 or altering the transmission at point 

7. Alternatively, the attacker might just override the matcher result at point 8 (Uludag and Jain 

2004) (National Cyber Security Centre 2019b). 

2.4.7 Security attacks on Voice Biometric Authentication Factors 

Voice biometrics do however have some concerns regarding the feasibility of the technology 

as well as the possible security risks of the technology. One of the primary security concerns 

of the technology is the ability ‘spoof’ a user by imitating a user’s voice  (Farmanbar and Toygar 

2017). There are many ways for a hacker to attempt to spoof a user’s voice, one such way is 

simply via impersonating the user voice, using a technology to create a synthetic 

impersonation of that user’s voice (Pindrop no date) or even using a recording of that person’s 

voice. Though each of these hacking methods is not without its limitations, given the 

sensitivity of many voice sensors.  

 

Voice biometric authentication potentially has many other issues as well regarding potential 

feasibility and security breaches. One such issue that is true for most forms of authentication, 

is that after the user has been authenticated, the potential concern that afterwards, someone 

else takes control. This highlights a potential problem with voice biometrics in that once a 

user has been authenticated, another user may then take over the ‘call’. This means that voice 

biometrics need to continually authenticate users even after the initial authentication entry 
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point has expired (Artzi 2018). This could however be treated as a strength over other means 

of authentication too, as unlike means such as passwords or other biometrics, voice can be 

continually authenticated as it acts as both the authenticator and the input method, allowing 

the input to continually be authenticated. However, continually authenticating users could 

possibly have certain issues. For instance, with the required precision needed to prevent 

fraudsters hacking into voice biometrics with synthesisers, could potentially backfire. In the 

event a user has a cold or develops a sore throat etc. their voice could sound different to the 

one on file, especially over a long authentication period caused by continuous authentication.  

This potentially could cause a user to be unable to access their own accounts due to their 

voice sounding different, given the high precision required of the voice recognition software 

as anything less than 100% probability of a match could be considered unacceptable for 

authentication (Pandya 2019). Another concern could potentially be the quality of the voice 

over a phone call, in areas with bad reception or slow internet connection could make the 

users voice sound distorted and unclear, making them unable to authenticate themselves, 

hence the algorithms need to be sophisticated enough to work around problems such as 

background noise or crosstalk (Beranek 2013). This is important as biometric data can often be 

noisy due to the environmental noise, or occlusion of the user’s accessories that makes the 

biometric system less reliable  (Krawczyk and Jain 2005). Likewise, many users are concerned 

with some VBA having users use overt passphrases as they are concerned attackers may hear 

them utter their passphrases (Beranek 2013). Another such issue is the breaching of the 

biometric data when it is being collected or stored. Tampering with the collection could mean 

that future authentication is invalid, or perhaps when the data is transferred and stored that 

data can be hacked and biometrics unlike other forms of authentication cannot be changed 

so easily (Bowman 2019). 
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Further, the technology behind voice biometric authentication is extremely precise in its 

ability to recognise and authenticate users correctly. Hence, attempting to simply 

impersonate the user would prove to be extremely difficult, as algorithms such as playback 

detection are used to see if a caller’s speech is unnaturally similar to a past utterance (Beranek 

2013). Likewise, to create a synthetic impersonation of a user, it in theory would require 

equally sophisticated technology to create an indistinguishable synthetic voice.  

In regard to preventing a hacker from gaining access via a voice recording of the user, many 

companies that utilise VBA also employ real time authenticators, to ensure that the speaker 

on the other line is a real person rather than a recorded message of the user or a synthetic 

copy of that user. Some other potential attacks have been demonstrated by attacking 

speakers such as Alexa by sending ultrasonic messages that cannot be perceived by humans 

(Zhang, G. et al. 2017). However, this very much could be considered an arms race between 

hackers and security specialists in order to keep voice biometrics and real time 

authentications ahead of synthetic copies (PYMENTS 2018).  

There are many different security attacks on biometric systems as presented in the taxonomy 

we created in Figure 6. We provide brief descriptions of those attacks below.  
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Figure 6: A Taxonomy of Attacks on Biometric Authentication Factors                           

Spoofing Attacks – Attacking a biometric system by either stealing, copying, or replicating a 

synthetic biometric trait in order to gain access to a system  (Biggio et al. 2012). 

Brute Force Attack – Attacking a biometric system by submitting a large number of attempts 

attempting to spoof the system, usually because the system has not got enough reliable 

information to discern between similar samples  (Mihailescu 2007). 

Blended Substitution Attack – An attacker changes the contents in the fuzzy vault, that is 

stored in the database. This either prevents the user from authentication, combines the user 

and attacker templates together to spoof the system, or inject their own data during a user’s 

enrolment (Karimovich and Turakulovich 2016) (National Cyber Security Centre 2019)  (Sarala, Karki 

and Yadav 2016). 
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Attack via Record Multiplicity – An attacker knows the secret access to the record database, 

collecting multiple enrolment templates to combine the data and at the minimum link records 

to access the user's biometric template (Karimovich and Turakulovich 2016) (Scheirer and Boult 

2007).  

Masquerade Attack – A type of spoofing attack, where an attacker attempts to spoof the 

channel between the sensor and feature extractor module by using false data that is 

commonly available such as digital facial images or digitised laten fingerprints (Karimovich and 

Turakulovich 2016) (Roberts 2007).  

Attacks on Error Correcting Code – An attack against the fuzzy commitment and fuzzy extract, 

which abuses the sensors correction algorithm by inputting biometric data close to the user’s 

which is then corrected by the system to false authenticate the attacker (Karimovich and 

Turakulovich 2016)   (Stoianov, Kevenaar and Van der Veen 2009). 

Chaff Elimination – The attacker removes chaff points from the user’s biometric template to 

make the biometric sensor easier to spoof, by using similar biometric prints (Karimovich and 

Turakulovich 2016). 

False Acceptance Attack – A form of bypass attack where the system accepts the user even 

though it is not the user by overriding the processing and decision data due to the biometrics 

being extremely similar (Karimovich and Turakulovich 2016) (Roberts 2007). 

2.4.8 Comparison of Biometric Authentication Factors   

In the context of biometric authentication, security can be defined as the strength of the 

biometric system in terms of covered risk and its efficiency to resist potential attacks; its 
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sophistication (Jain, Ross and Uludag 2005). We compare the presented authentication factors 

in Figure 6 in terms of security and accuracy. The comparison was presented in Table 3. 

Accuracy 

In terms of accuracy, there are two key performance metrics of evaluating biometric systems, 

namely false acceptance rate (FAR) and false rejection rate (FRR). FAR is the probability that 

the system incorrectly authorizes a non-authorized person, due to incorrectly matching the 

biometric input with a template. FRR is the probability that the system incorrectly rejects 

access to an authorized person, due to failing to match the biometric input with a template 

(Arulkumar and Vivekanandan 2018).  

 

Table 3: Comparison of Biometric authentication Factors 

Biometric factors  Security  Accuracy  

Fingerprint  Medium High 

Iris Recognition  High High 

Retina Scans High High 

Face Recognition Medium Medium 

Voice Recognition Medium Medium 
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Hand/Palmprint 

Patterns 

High Medium 

Signature Medium Medium 

Keystroke Dynamics Low Low 

There are two generic approaches for securing biometric templates: biometric feature 

transformation and biometric cryptosystems. 

One of the main countermeasures to biometric fraud from fake or dead fingerprints, is to 

develop precise sensors that cannot easily be spoofed by copies imitating a user’s features 

(Finextra 2017). Likewise, it is also important that users use multiple-factor authentication to 

prevent just a single breach causing lots of problems either by combining inherence factors 

with other types of factors or more forms of biometric authentication, for instance the use of 

a fingerprint scanner and other forms of biometrics such as facial or iris. 

2.5 Ownership Based Authentication 

Ownership-based authentication factors are based on something the user has, such as cards, 

smartphones, or other tokens. For instance, one of the most prevalent examples of 

ownership-based factors are payment cards, utilised by banks that each possess a unique 

combination of numbers and security information from one another. Another example of 

ownership-based factors are tokens that are issued to the user to sign in. As we have moved 

into a more digital age, one of the most common forms of ownership-based factors is within 

mobile phones to deliver a single use code, either through receiving the code through text 
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messages or via an authentication-based app that would provide a code when you attempt 

to login. 

 

Payment cards are an extremely common form of ownership-based factors and are usually 

issued by banks. A bank card has a unique string of numbers and data, such as an expiry date 

and security code that is tied to a user’s bank account. Bank cards can come in many different 

forms, with the most common being credit and debit cards. Similarly, many banks also use 

tokens/one-time use passwords to authenticate users and the server. Authentication apps 

and messages are being used for a variety of online accounts to be used in conjunction with 

passwords as a form of two-factor authentication, some examples include the google 

authenticator and windows authenticator apps. Alternatively, mobile phones themselves can 

be used as a token, via Bluetooth wireless communication, using the phone token as a 

challenge-response protocol (Kunyu, Jiande and Jing 2009). 

Another form of ownership-based factor is a smart card or integrated circuit card (ICC card) - 

an electronic authorization device, used to control access to a resource. The ICC card is 

typically a plastic credit card-sized card with an embedded integrated circuit (IC) chip (ISO/IEC 

2007).  A smart card can be in a form of card with a metal contacts to electrically connect to 

the internal chip, contactless, or in a both forms (Kuo and Lo 1999). Smart cards contain users’ 

authentication, small data storage, and application processing components to perform 

Input/output (I/O) functions. In terms of applications, most organisations used smart cards 

for single sign-on (SSO) for pass-through authentication system. Other forms of ownership-

based factors include NFC (Chen, W. et al. 2010), RFID (Lim and Kwon 2006), hardware-token  

(Shablygin et al. 2013), and cell-phones.  
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2.5.1 Categories of Hardware-token 

There are two categories of Hardware-token, synchronous and asynchronous tokens. For 

synchronous tokens, time synchronization between the token and authentication server is 

used as part of the authentication process whereas in asynchronous they are not. The two 

types are shown in the taxonomy we creature below as Figure 7. 

 

Figure 7: Categories of Authentication Tokens 

2.5.1.1 Synchronous tokens 

With synchronous tokens, a server keeps the records of a serial number of each authorized 

token, the user associated with that token, and the time. Using these three pieces of 

information, a server can predict the dynamic code generated by the token.  

As illustrated in the taxonomy we created for Figure 7, synchronous tokens have two 

subcategories of which can be either clock-based or counter-based. The clock-based OTP 

tokens are dependent on the time-sensitive codes which must be used within a certain 

timeframe, often expiring if not used within the correct amount of time. Many authentication 

apps are time-based and will have to be used quickly before being replaced by another key. 
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This means usually only the user will have enough time to access the correct code within the 

necessary time window (Jøsang 2018). Example of the second type of synchronised token is 

counter-based OTP tokens. Counter-based OTP tokens (sometimes referred to as event-based 

OTP) generate a form of ‘password’ from two pieces of internal information. The two pieces 

of information are the secret key (or seed) which is only known by the token and the second 

piece of information is the moving factor, aka the counter. To give out a token, the OTP feeds 

the counter number into an algorithm with the token seed as the key; this produces a 160-bit 

value that is reduced usually to 6-8 digits for the user to use as an OTP. When the button for 

the token is pressed, the counter is incremented when an OTP is successfully validated. The 

key difference between counter and clock-based OTP is that counter-based uses purely 

internal data rather than external data  (Smith 2018). 

2.5.1.2 Challenge-Response tokens. 

Alternative to synchronised tokens are challenge-response tokens. Challenge-response 

tokens will propose a challenge or question to the user. The user can then perform the 

challenge or task by using information only available to the user. Challenge questions can be 

static or dynamic. Static questions are predefined that the user has previously selected for 

instance “name of first pet” etc. Dynamic questions are created from extracting public data 

about the user such as a “previous street address”  (Jøsang 2018)  (Rouse 2018). Asynchronous 

tokens are not synchronized with a central server" and that, thus, the most common type is 

challenge-response tokens.  

2.1.2 Security issues of Ownership-based factors 

Ownership-based factors, however, are not immune to being hacked and too have 

disadvantages that can inconvenience the user. The simplest problem with ownership-based 

factors is in the event that the user loses possession of their factor, or worse it is stolen, they 
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therefore cannot access their account and the user would both require a replacement and for 

the old card/token to be made invalid.  

Regarding banking cards such as debit/credit, the individual details on them are at risk of 

phishing-based attacks due to the rise of online commerce and banking. In 2016, of 1.09 

million banking trojan attacks were detected and 47.78% of them were from the usage of a 

phony banking website/page to steal credentials from users  (Moramarco Stephen 2019). Most 

phishing attacks are due the naivety of many users at identifying signs of phishing and being 

unable to distinguish real sites from fake sites. Many studies such as (Marforio et al. 2016) have 

investigated protocols that leverage communication between the service to provide security 

alert indications when in the presence of malicious applications for mobile devices, though 

even these require the user to be careful and alert for potential phishing. 

 

There are studies that have found that utilising text message-based authentication can also 

be insecure, when researchers were able to get into a Gmail account to hack Gmail, all they 

required was a name and a phone number. The hackers were able to exploit a SS7 weakness 

to intercept SMS text messages from only knowing the number itself, allowing them access 

into Gmail accounts through password resetting and then proceed to do another reset  

(Brewster Thomas 2017). This shows the dangers of having multi-factor authentication can also 

add more vulnerabilities to security, as hackers could be intercepting the codes, despite the 

user having possession of the device. 

 

The most common issue with ownership-based factors is the user either losing it, or having it 

stolen. In the event of having a card/token stolen, a user could be compromised, which is why 

ownership-based factors are usually used in conjunction with knowledge-based factors as 
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multi-factor authentication. However, credit cards are also vulnerable to SQL injection attacks 

as well as unpatched systems, or storage of unnecessary data  (Braintree 2007). Tokens have 

many vulnerabilities, though given there are many different types of tokens, these are not 

mutually exclusive. For instance, any physical form of tokens, that is not part of the client 

computer, has the potential to be lost or stolen. Likewise, any system that utilises a network 

for authentication is vulnerable to man-in-the-middle attacks, where the attacker spoofs the 

“go-between” to solicit the token output from the user. Alternatively, a compromised token 

may be used for an SQL injection attack to tamper with the database containing user’s data 

by exploiting input validation flaws. 

 

2.6 Location Based Authentication  

Location-based authentication (LBA) factors are quite uncommon compared to the likes of 

knowledge or ownership-based factors. LBA is based on the user (or an object) being located 

within a certain vicinity in order to correctly authenticate them. This usually involves the user 

using a location-based client (LBC) to verify with a server containing their location-based ID 

to authenticate themselves  (Zhang, F., Kondoro and Muftic 2012), or a consumer, or a portable 

consumer device that is used to conduct a transaction at a merchant. Mostly, LBA is being 

used by financial industries to increase profitability of credit card companies by reducing the 

accumulated losses due to fraud. 

 

Technology companies and network administrators are using building services that use 

geolocation security checks to verify the location of a user before granting access to an 

application, or network or systems. For example, network administrators are using IP 

addresses to access the origin of network traffic and to know ascertain the users’ location 
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before granting service to the user. Even though, this can be bypassed using IP tunnelling, 

VPN, or anonymous routing protocols. In addition, MAC addresses, which are unique to 

individual computing devices, can be implemented as a location-based authentication factor 

to ensure that a system is only accessed from a limited number of authorized devices  (Turnbull 

and Gedge 2012). 

 

Location-based authentication can also be used as an indicator that a user has been hacked, 

for instance it would seem odd a user that usually logs in within a certain postcode would be 

logging in from a different machine perhaps located on the other side of the world. Location-

based authentication with mobile devices transitions is mostly used in electronic transaction 

on a financial institution's online website. The process of authentication may involve verifying 

whether a mobile device (such as a cellular telephone) is proximate to a computer from which 

the transaction is being performed (Ashfield, Shroyer and Brown 2012). If the mobile device is 

not sufficiently proximate, then the transaction may be rejected. If the mobile device is 

sufficiently proximate, then the transaction may be approved. 

 

To enable location-based authentication, a special combination of objects is required. First, 

the claimant must present a sign of identity. Secondly, the individual who is to be 

authenticated must carry at least one human authentication factor that may be recognized on 

the distinct location and thirdly, the distinct location must be equipped with a means capable 

to determine the coincidence of individual at this distinct location (Hammad and Faith 2017). 

 

(Lehtonen, Michahelles and Fleisch 2007) investigated different forms of location-based 

authentication in a product supply chain based on machine-learning techniques (pattern 
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recognition problem). The results suggest that machine-learning techniques could be used to 

automatically identify suspicious products from the incomplete location information.  (Eden 

and Avigad 2012) meanwhile presented a LBA system for detecting fraudulent transactions 

committed by means of misuse of payment cards. The proposed system performs a series of 

transaction analysis and generates a fraud-score which provides an indication as whether to 

authorize an attempted transaction or not. 

 

2.6.1 Challenges of Location based authentication. 

Location-based authentication is not without its issues however, for instance one large 

consideration about LBA is that the location used by a user is more publicly available 

knowledge than that of a password. Attackers could learn of a user’s location through various 

tracking means and then appear at that same location. The accuracy of GPS signals is also 

crucial to the success of location-based authentication (Sharma 2005). Alternatively, more 

sophisticated hackers might be able to spoof their location through various means such as 

through a VPN, meaning that the location-based authentication would have to be more 

sophisticated to prevent this. Location-based authentication also relies on generating 

cryptographic keys based on the user’s location which in turn could be brute-forced by an 

attacker, especially if that attacker knew the rough location of a user which would reduce the 

number of attempts for a brute-force attack dramatically. 

 

Location-based authentication does however have many advantages. Primarily adding an 

extra layer to authentication as it will only allow sign in from specific locations. This could be 

useful for a company that would only want employees on site being able to login, or for 

regular users with home desktops, only specific locations such as their house or on mobile the 
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town/city they live in. Unlike ownership-based factors, location-based factors cannot be 

stolen. Also, if location-based factors were being used for a certain building or home, then 

unlike most other authentication factors there could be several physical layers of protection, 

primarily locks etc. to keep unwanted hackers from getting in. It also is not necessary to set 

up specialized infrastructure for location-based authentication as it can be built into existing 

devices and mobile networks  (Zhang, Kondoro and Muftic 2012). 

2.7 Trust in Social Context 

While trust in a social context and trust with technology could be viewed as being one in the 

same, many would argue the two concepts have subtle differences, though the two concepts 

do have many overlaps. For the vast majority of literature, trust is viewed as an attribute to 

relationships and is a social construct between a person and attributes, it is extremely 

dynamic as well as subjective, it can evolve with time, a person’s experiences and the 

environment that surrounds it. Likewise, trust is often seen as a unidirectional relation 

between social agents and is how social agents assess one another to perform actions or tasks 

with a certain level of probability (Usman and Gutierrez 2019). The study (Uslaner 2002) describes 

trust as “the chicken soup of social life” – it works mysteriously, and we often choose to 

develop trust only with agents that we have been exposed to for a long amount of time or are 

given credible reasons to form bonds of trust. However, many times agents are not provided 

this luxury and instead must choose to place their trust in agents they have not been exposed 

to much, to receive the benefits that come from trusting those agents. Distrust however, from 

a sociologist’s point of view is often thought to stem from social aspects, such as an agent’s 

background in social groups, education, income/work satisfaction and general happiness. 

These aspects are often thought to create more distrusting agents (Newton, Stolle and Zmerli 

2018). In the study ‘Trust as a Moral Value’  (Uslaner 2008) states that another form of trust 
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exists, known as moralistic trust, which is defined as having faith in strangers regardless of 

your own life experiences, and goes as far as to say that Countries with more ‘trusters’ have 

better functioning governments, more open markets, and less corruption, as trusting people 

are more likely to volunteer themselves for charitable endeavours. 

As previously stated, in order to obtain the many benefits of a service or agent, an agent must 

first place their trust in that service/agent, even if that service or agent is a stranger. Many 

would consider that to be taking a risk.  The study Trust Building via Risk Taking: A Cross-

Societal Experiment (Cook et al. 2005), delves into the idea that a series of risk-taking 

behaviours is indispensable to building trust, the study discovered that providing an 

opportunity to choose the level of risk involved in trust, increased the amount of mutual 

cooperation in participants. These results can infer the importance of the level of risk 

involved, when building trust. Similarly, in the study a survey of trust in social networks 

(Sherchan, Nepal and Paris 2013), where in building social networks, social trust is derived from 

social capital – the collective value associated with a social network, which can be harnessed 

to cultivate a user having trust with a social network. 

Many pieces of literature define trust as an interpersonal concept (Rousseau et al. 1998). As 

such, some studies theorise that trust can be built in a slightly different way for instance, 

studies such as  (Six 2007) specifically develop theories on interpersonal trust-building within 

organisations and state they rely on conditions to first be met in order to build trust. These 

include actors first having to remove thoughts of distrust and instead exchange positive 

relational signals with the organisation, while in turn avoiding negative signals and stimulating 

frame resonance (Six 2007). Similar studies such as (Van de Bunt, Gerhard G, Wittek and de Klepper 

2005) suggest that the formation of interpersonal trust relationships in organisations generate 
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specific constraints on how trust can be formed due to the formality of the workplace and as 

such can be modelled around power and interdependence. Though both these studies only 

theorise about interpersonal trust specifically within organisations or the workplace. (Soboroff 

2012) chooses to investigate the effect that group size has on participant reports. The study 

suggests that larger groups are less committed than that of smaller groups of 6 or lower. 

Hence, it could be inferred within large organisations it could be more difficult to develop a 

tight knit unit. Likewise, participants were more influenced by partners they could see, then 

those over distance or time zone. Once again it could be inferred that large companies will 

struggle to develop more trusting groups. 

Some studies such as (Asan, Perchonok and Montague 2012) instead choose to look at the 

measurement of trust in websites, either those of commerce, health or news. The studies 

show that trust levels change over time regardless of a user’s initial trust and having low trust 

in websites is extremely detrimental to the company itself, with users either not choosing to 

purchase from companies with untrustworthy sites or choosing not to return to news 

websites. Other studies such as (Jakubowski, Venkatesan and Yacobi 2010) attempt to quantify a 

trust model by first separating trust into local trust and then computing it as transitive trust. 

Local-trust is dependent on the information-gap between the behaviour and the expected 

behaviour of an agent in the same role. To build their trust model they then feed in the 

computation of transitive trust to get an average opinion from peers. 

2.8 Trust in Technology Context 

Trust in technology shares many similar principles with trust in a social context, however, the 

two perceptions of trust are not identical. For instance, whereas with trust in a social context, 

a trustee relies on an individual to behave in a reliable manner, though an individual can act 
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on their own since they have free will and hence can be unpredictable. Meanwhile a 

technology should consistently perform tasks in a predictable manner, however, 

unpredictability instead comes from issues such as reliability suffering failures (McKnight 

2005). In addition, a user can often expect a technology to fulfil certain functionalities and 

produce correct results, whereas in a social context when a user depends on another human, 

they can often only expect that task to be done to the best of that person’s capability (Barber 

1983). Furthermore, when trusting in a social context with people, a user must consider that 

person’s desire to help and availability to help, unlike with a technology in which that 

technology is always available (Rempel, Holmes and Zanna 1985). 

Many studies such as (Mcknight et al. 2011) have proposed how measures are distinguished 

between trust with technology and trust within other scenarios, such as in social context or 

with people, by providing a framework pinpointing key measures specifically for trust with a 

technology, one such factor being trust developing over time. Akin to trust in a social context, 

to receive the benefits and features provided by a technology, a user will likely have to trust 

a piece of technology they are not familiar with. 

When it comes to trust with technology many would note that perceptions change over the 

course of time through continued use and that users are unlikely to experiment with 

technologies they regard as having a significance level of risk associated with it (Agarwal and 

Prasad 1997). Often for new technologies to be adopted users must overcome the initial level 

of trust in order to receive the benefits of trusting a new technology (Gefen 2004). Hence many 

studies such as (Grabner-Kräuter and Kaluscha 2003), have observed how initial trust with 

technologies often has a positive correlation with overall trust, which indicates that social 

influences have some of the strongest effects on how initial trust is formed with technologies. 
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However, more recent research such as (Asan, Perchonok and Montague 2012) suggests that 

there is only at best a weak correlation between the initial trust a user has and the final trust 

a user has, as with continued interaction with a website, users were found that their opinion 

on the site changed as they were influenced by continued familiarity with the website. 

Similarly, when a user wishes to use a service or product provided by a company, they must 

first provide their data with said company before they can receive the benefits of said service, 

the same is true for users trusting technology. When looking at human-robot interaction in 

the military for example, users must trust that their robotic teammates will perform as 

intended and in turn users must trust that the information provided by robotic teammates 

will be accurate and useful as well as follow their suggestions. Only by a user trusting a robotic 

teammate in that regard can they benefit from having them as part of their team. More often 

than not, the most important aspect for the level of trust with automation such as robots, is 

based on the reliability of the automation over a course of time by the user experiencing the 

technology and it is performing its function the same each time. Several studies have 

observed the relationship of trust and robotic/autonomous machines. Studies such as (Freedy 

et al. 2007) adopt a performance model to observe the psychology behind team performance, 

unnamed systems, mixed initiative systems and war fighting behaviour when looking at the 

relationship of users' trust with robots.  

Alternatively, many studies have observed trust between automated self-driving cars and 

users. Some studies that observe this relationship, consider trust to be defined as a 

willingness to place themselves in a vulnerable position, with a confident assumption that the 

technology will perform as expected with a positive outcome (Mayer, Davis and Schoorman 

1995).  One such study investigated if the perception of trust with automated vehicles changes 
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after being exposed to experiences with vehicle automation in both the youth and elderly. 

The findings of this study equally support that more experience with the technology increased 

the level of trust users had with the technology, in this example it was also found that elderly 

participants were more trusting of the automated vehicles than younger participants. In a 

related study, that also investigated the effects of autonomous vehicles, it observed that each 

of the factors of performance, reliability, security, privacy, and trust all influenced the 

adoption of driverless cars again showing the factors involved when developing relationships 

with technology (Kaur and Rampersad 2018) 

2.9 A Generic Trust Model Definition and Metrics 

The escalating dynamism of current and immerging technologies coupled with wide-ranging 

impacts of technology in the society make it increasingly important to understand the 

individual different dimensions to trust on technology and the algorithms behind those 

technologies. Trust is commonly defined as a confident expectation about a situation leading 

to willingness to accept vulnerabilities that arise from risk and situational uncertainty  (Dietz 

2011).  Trusting technology beyond their functionality and capacity can present high risk, cost 

as well as compromise the user’s privacy and personal security.    

 

In the first place, trust has to do with the belief, uncertainty, intention, and willingness to 

trust or not to trust (Usman and Gutierrez 2019). These attributes are behavioural 

characteristics which cannot be accurately measured and predicted with a high degree of 

accuracy. Measuring trust level of a user in a social setting or an agent in a distributed system 

can be a complex process because of the dynamic and unpredictable nature of trust.  Metrics 

quantitative metrics  (Cruz, Mishra and Bhunia 2019), qualitative metrics  (Patent and Searle 2019), 
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fuzzy metrics, or a combination of these are used to measure trust levels with trust model 

and metrics has its own specific characteristics and requirements; nonetheless, their pattern 

and abstract scheme can be generalized.  

 

Much of the prior research in a distributed system and the autonomous systems has focused 

primarily on the psychological aspect of trust in coming up with the definition of trust  (Usman 

and Gutierrez 2018). This sometimes requires the linkage between psychological aspects of 

trust and the characteristics of the autonomous systems. For example, many attempts have 

been made to map psychological aspects of trust such as reliability, dependability, and 

integrity between social actors in a close relationship  (Rempel, Holmes and Zanna 1985) with 

engineering trust issues such as reliability, dependability, and security  (Usman, Gutierrez and 

Bichi 2019) in a network of distributed system. This gives researchers a flexible and realistic 

way of defining and interpreting such as a social construct and multidimensional 

phenomenon like trust.  

 

Modifying the definition of trust proposed by  (Hoffman, Lawson-Jenkins and Blum 2006), we 

define trust as the expectation and experience that a technology will provide the user with 

the sense of security, reliability, and confidence. With this definition, to derive users’ trust, 

we identified five main key components of the trust definition. The five keywords are: 

usability, availability, security, privacy, and reliability. For a realistic adoption of the (Hoffman, 

Lawson-Jenkins and Blum 2006) trust model, we identified four other internal metrics that can 

contribute to the derivation of our trust model. The metrics are user experience, 

recommendation (trust propagation), knowledge and verification.  Hence, based on our 

research behind what defines trust, we used the trust model proposed by (Hoffman, Lawson-
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Jenkins and Blum 2006) over other similar models given it is a reasonably well cited article and 

expands on many metrics laid out by older trust models as shown in Figure 8.  

 

 

Figure 8: An Expanded Trust Model 

 

 

2.10 Trust Metrics and Elements  

We described the presented trust metrics and elements in Figure 8.  

Availability – how widespread and utilised the technology is. From a user’s point of view, 

availability means that they can access it whenever they require, regardless of specialist 

equipment being available to authenticate the user when needed, being widespread and 

being a common example of other authentication techniques.  

Security - how secure the technology is from potential attacks. From a user’s point of view, 

security is important in trusting that the authentication system will perform the users’ 

intended functions with relative security, that the authentication method is not easily hacked, 

tampered with and that the method is able to differentiate the user with a degree of accuracy.  
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Usability – how easy a user can utilise the features of the authentication. From a user’s point 

of view usability means they can use it without confusion meaning it is easy to use, easy to 

learn and is accessible to different needs such as a disability.  

Privacy – how the method keeps user’s sensitive information secure and protects the 

anonymity of a users’ identity. From a user’s perspective this means protecting their privacy 

from others, preventing others from seeing the contents of their data and allows the user to 

remain anonymous. 

Reliability – the reliability of the technology in the eyes of the user as how the technology can 

consistently perform and function as expected by the user, performed the same each time it 

was used and will continue to perform as expected in further uses.  

As can be seen, the trust model presented in Figure 8, incorporates aspects of security, 

usability, reliability, availability, safety, and verification mechanisms, as well as user privacy 

concerns, user experience, and user knowledge about the technology. The model also 

identified four key elements that contributed to formulation of trust.  

The experience users have had with the method, such as have they used it many times before, 

do they use similar methods that are based on the same factors, or do they use different 

authentication methods often.  

 

The verification the method provides the user with, the method provides by feedback to 

show it has been processed the authentication request correctly, an error had occurred or 

that it had been set-up correctly. 

The knowledge of the method a user has, such as the understanding they have of the 

authentication method itself, how the overall authentication process works and why it is 

used.  
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The propagation of the method, or what experiences about the method they have shared, or 

been shared, such as good experiences, bad experiences or just their general perception of 

the methods reputation.  

An example of how these factors interact could be from the user continuing to use the 

technology and the technology proving to be reliable by producing the same consistent 

results each time. This can give the user a good experience of the technology and build a more 

trusting relationship. Alternatively, a user might hear from a colleague about how easy a 

technology is to use, and that trust propagation helps to build a foundation level of trust with 

the user and that technology.  

 

2.11 Chapter Summary 

In this chapter we provided the foundations and concepts that this study draws upon which 

is already known on the research topic. Specifically, we provided a detailed look at various 

authentication methods and factors that we will be investigating in this study as well as how 

each of them are targeted by a variety of attacks and advantages the method provides. We 

also discussed trust in both a social and technological context and presented the trust model 

that will be used in the study to identify and understand the different levels of trust users 

have with different authentication methods. 
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3. Research Method  

In this section the research method applied in this study is discussed. To conduct this study, 

a variation of the design science was adapted to try answer the research questions and prove 

or disprove the hypothesis’s as follows. The philosophy behind this altered design science 

method, is to first identify the question proposed and the reason for why it is needed to be 

answered. The method then discusses how the data will be acquired via the experiment, 

followed by a discussion about the possible answer to the questions and a conclusion.  

3.1 Research Framework  

The studies research framework is adapted from traditional design science models to be more 

focused upon a researcher’s perspective over an engineering perspective. The model is shown 

in Figure 9 and is broken into 5 stages. 

 

Figure 9: Design Science Model 

 

The first stage is to identify the initial research question(s) that the study is seeking to answer. 

The questions need to be clearly defined. 
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The second aspect is to discuss the significance the study will have upon either the sphere of 

research or to companies and the mass public. This can include justification as to why the 

study is important to the field of research and how it can benefit people. 

The third step is to design the parameters and constraints of whatever experiment is being 

run and then begin collecting said data, so that it can be analysed and discussed in the context 

of the study, to attempt to answer the research questions. 

The fourth phase involves observing the results found in the data collection and to analyse 

and present them in a way that will hopefully answer the previously outlined research 

questions. 

The fifth and final stage of the model is the communication aspect, which encompasses the 

discussion about the results and responding conclusions found from the data collection and 

analysis. Often this step results in possible future studies that could be iterated from the 

findings of the research. Despite this the study only utilised a few iterations, namely 

redefining research questions and debate around using Amazon MTurk when lockdown was 

first introduced, these were the only iterations the study had due to the limited time given to 

complete the entire thesis. 

3.2 Experiment 

3.2.1 Experiment Design 

The experiment utilises a between-groups testing method. This means that each participant 

will only utilise one method of authentication (password, token, fingerprint, voice). Hence, 

each method of authentication will be assigned one group of participants that utilise it, 

though participants will be tested one at a time on their own. The opposite of this would be 

a repeated measures method, where each participant would utilise all authentication 
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methods and would give feedback on them all. The reason a between-groups method was 

chosen over a repeated measures method is that during a repeated measure, participants 

could have been influenced by their answers to previous authentication methods, which 

could cause them judge methods in a different light. Likewise, in the interest of running a 

more concise and credible experiment, a between-groups method will not only reduce 

experiment fatigue of participants, from having to utilise lots of authentication methods, but 

also forces the need for a greater number of participants which will hopefully improve the 

credibility of the results found. The dependent variable of the study is the measurement of 

trust. To gauge the measurement of users of trust, a questionnaire is utilised with questions 

based on the ‘Generic Trust Model’ as proposed in the study (Hoffman, Lawson-Jenkins and Blum 

2006) found under Figure 8 in the previous chapter. The independent variables of the study 

are the various means of authentication that are utilised by participants, these include PIN, 

fingerprint, token and voice biometrics.  

3.2.2 Materials 

To test all methods of authentication covered by this study (PIN, fingerprint, token and voice 

biometrics) an android Samsung Galaxy S9 phone will be used alongside a standard university 

computer running windows 10 operating system. Each participant/control group will use the 

same model of phone. To test PIN & fingerprint, users will use the built-in settings to set up 

their authentication then unlock the phone. Control groups testing voice biometric 

authentication, they will use google assistant to unlock the phone via voice commands after 

setting up their voice profile. Meanwhile participants utilising tokens, will be provided a token 

through a windows application that they set up that will unlock the phone. 
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3.2.3 Measures 

To try answer both research question 1 & 2 participants will need to be measured for the 

amount of trust they have with each authentication method. In order to do this, a proxy 

measure of trust will be utilised via a questionnaire. The questionnaire’s questions will be 

based on the ‘Generic Trust Model’ which identifies the core aspects of availability, security, 

usability, privacy and reliability which each contribute to the acquisition of trust. The model 

also identifies from these 5 aspects of trust, there are connections which also affect the level 

of trust a user would have. There connections are the experience of the technology, the 

verification/feedback provided by the technology, the knowledge/understanding of how the 

technology functions and the propagation of good or bad experiences with the technology. 

Each of these core aspects and connections will have participants ranking them on a scale of 

1-5 via a questionnaire which in turn can be analysed to see if the levels of trust are in any 

way significant between the technologies from a user standpoint. The model along with the 

measurement of trust is covered in more detail in the previous chapter. 

3.2.4 Participants  

In total, 60 participants took part in the experiment. Participants were aged between 18-60 

of which, 46 were male and 14 were female. The participants were selected from around the 

university campus and colleagues with no bias as to who was selected, though all participants 

were English speakers and had varying previous amounts of exposure to the chosen 

authentication methods. Participants were allocated one of the four methods, with the next 

three participants doing the other three methods, before the next participant used the first 

method again. The study was conducted over the period of a month from the end of 

September 2020 to the end of October 2020. 
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3.2.5 Procedure 

Participants first had to agree to participate in the study after being verbally briefed by the 

researcher that they would set up an authentication method, utilise it and then fill out a 

questionnaire, in total each participant took between 10-15 minutes to participate in the 

study. To confirm this, they filled out a written consent form opting into the study. Afterwards 

they would be required to utilise one of the 4 authentication methods (PIN, token, fingerprint, 

& voice) based on the control group they were placed in. Participants would first set up their 

authentication method, for fingerprint and PIN this involved using the in-built Samsung 

Galaxy settings, for voice they set up a voice print with google assistant and for token they 

provided their email address to a simple webpage that was on a university computer that 

would provide them with a token to unlock the phone. Participants then unlocked the phone 

using the authentication method they had set up prior. Afterwards they would fill out a 

questionnaire based on the expanded model of trust aspects (availability, security, usability, 

privacy and reliability) as well as the connections of trust the (experience of the technology, 

the verification/feedback provided by the technology, the knowledge/understanding of how 

the technology functions and the propagation of any good or bad experiences with the 

technology). This is shown in the appendix from figures 20-28. After the study, participants 

were debriefed about any concerns they may have had about the study being intentional and 

that their data was deleted, with only the questionnaire results being used in the study. 

3.3 Chapter Summary 

This chapter discussed the adapted version of design science that was used throughout the 

study. The approach focussed more so on a researcher’s perspective rather than that of an 

engineering perspective as of traditional design science. The model devised by the thesis is 

included above. Rather than traditional design science, the model instead proposes a 
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question and possible hypotheses along with the approach taken to try answer and discuss 

them. This is instead of a traditional design science method of an engineer’s approach, which 

is to analyse a problem and propose a solution rather than a question. Design science was 

adopted, despite its usual inclination towards engineers and problem solving, because the 

principal structure still applies and is able to offer a clear methodological framework to base 

the thesis process on. Finally, the chapter discussed the approach taken to find the possible 

answers to the research questions. In this case, an experiment was chosen, and the chapter 

goes on to discuss the various parts of the experiment including what was used, what was 

measured and the general procedure in its entirety, along with justification.  
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4. Results and Discussion Part 1: Kruskal-Wallis H Statistical Analysis 

This chapter presents the results of the study after performing the Kruskal-Wallis H test. We 

present these findings, before then going on to discuss the overall findings about each 

question.  

We analysed the results using the Kruskal-Wallis H test, to find which results were deemed 

statistically significant and test the hypothesis: 

Users have varying degree of trust about user-based biometric authentication method 

to access technology based on the chosen trust evaluation model. 

Users may be found to be willing to trust technology and voice-based biometrics as a 

method of user authentication. 

Or the null hypothesis: 

Users have the same degree of trust about user-based biometric authentication 

method to access technology based on the chosen trust evaluation model. 

Users may be found to not be willing to trust technology and voice-based biometrics 

as a method of user authentication. 

We used Kruskal-Wallis test instead of one-way ANOVA as there is no assumption that our 

data would have a normal distribution, hence we ran the non-parametric Kruskal-Wallis H 

test. To determine which specific groups had a statistical significance to one another, we then 

ran a post-Hoc test on the groups that had a statistical significance. We applied the mean rank 

as the average of the ranks for all observations within each sample of the collected data. Since 

we are using the Kruskal-Wallis H test (McKight and Najab 2010), we used SPSS to rank the 

combined samples by assigning the smallest observation a rank of 1, the second smallest 



Page 81 of 149 
 

observation a rank of 2, and so on. In the event where the two or more observations are tied, 

SPSS assigns the average rank to each tied observation to calculate the mean rank for each 

sample. After ranking all values, the Kruskal-Wallis H statistic is calculated via: 

𝐻 =  [
12

𝑛(𝑛 + 1)
∑

𝑇𝑗
2

𝑛𝑗

𝑐

𝑗=1

] − 3(𝑛 + 1)                                 (3) 

Where: n = sum of sample sizes for all samples, c = number of samples, 𝑇𝑗 = sum of ranks in 

the jth sample, 𝑛𝑗= size of the jth sample. 

The results for each test are shown in table 4 below, with how each question performed, their 

mean rank which has a maximum value of 60 given our number of participants (the mean of 

the ranks assigned to the data since it is more appropriate to use ranks over values to prevent 

testing being affected by the presence of outliers), median for each group, standard deviation, 

Kruskal-Wallis H statistic, and the number of participants that used the method is shown in 

the final column. If the question has an assumed significance figure (p-value) that is less than 

the alpha value (significance level of) 0.05, it can be considered statistically significant, as 

indicated by an asterisk in the p-value column, else it is not statistically significant. 
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4.1 Kruskal-Wallis Result Table 

Question Sample 

Size (n) 

Method Mean 

Rank 

Med 

-ian 

Std. 

Dev. 

H p-value 

A
va

ila
b

ili
ty

 

Method is 

available when 

needed? 

15 Voice 28.60 5 0.497 2.248 0.523 

15 PIN 33.10 5 

15 Fingerprint 27.20 5 

15 Token 33.10 5 

The 

authentication 

method is 

widespread? 

15 Voice 29.67 4 0.841 3.060 0.383 

15 PIN 36.50 5 

15 Fingerprint 26.77 4 

15 Token 29.07 4 

A common 

example of 

authentication 

techniques? 

15 Voice 25.40 4 0.848 3.704 0.295 

15 PIN 36.07 5 

15 Fingerprint 29.40 5 

15 Token 31.13 5 

Se
cu

ri
ty

 

I believe the 

authentication 

method is not 

easily hacked? 

15 Voice 18.07 3 1.136 15.199 0.002* 

15 PIN 30.10 3 

15 Fingerprint 41.63 4 

15 Token 32.20 4 

Method is not 

easily tampered 

with? 

15 Voice 21.63 3 1.031 6.547 0.088 

15 PIN 30.33 4 

15 Fingerprint 35.87 4 

15 Token 34.17 4 

15 Voice 28.33 4 1.331 19.586 p < 

0.001* 15 PIN 23.97 4 
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Method is able 

to differentiate 

me?  

15 Fingerprint 46.67 5 

15 Token 23.03 3 

U
sa

b
ili

ty
 

Learning to use 

the 

authentication 

method easy? 

15 Voice 27.63 5 0.431 4.336 0.227 

15 PIN 33.53 5 

15 Fingerprint 27.30 5 

15 Token 33.53 5 

I found the 

authentication 

method easy to 

use? 

15 Voice 27.90 5 0.628 6.553 0.088 

15 PIN 36.00 5 

15 Fingerprint 25.97 5 

15 Token 32.13 5 

Accessible to 

different 

needs? 

 

 

15 Voice 33.40 4 1.017 1.392 0.707 

15 PIN 30.63 4 

15 Fingerprint 31.47 4 

15 Token 26.50 4 

P
ri

va
cy

 

Protects my 

privacy from 

others? 

15 Voice 15.50 3 1.030 22.332 p < 

0.001* 15 PIN 37.13 5 

15 Fingerprint 42.07 5 

15 Token 27.30 4 

Prevents others 

from seeing my 

data? 

15 Voice 19.50 3 1.039 9.503 0.023* 

15 PIN 35.77 4 

15 Fingerprint 35.60 4 

15 Token 31.13 4 

15 Voice 22.80 3 1.307 8.198 0.042* 
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Method allows 

me to remain 

anonymous? 

15 PIN 38.23 4 

15 Fingerprint 34.87 4 

15 Token 26.10 3 

R
el

ia
b

ili
ty

 

Authentication 

functioned as I 

expected it to? 

15 Voice 29.10 5 0.504 3.469 0.325 

15 PIN 35.00 5 

15 Fingerprint 29.10 5 

15 Token 29.10 5 

Method 

performed the 

same each 

time? 

15 Voice 24.83 4 0.813 11.205 0.011* 

15 PIN 40.50 5 

15 Fingerprint 25.43 5 

15 Token 31.23 5 

Will continue to 

perform as 

expected in 

further uses? 

15 Voice 25.60 4 0.701 16.310 0.001* 

15 PIN 41.50 5 

15 Fingerprint 21.20 4 

15 Token 33.70 5 

Ex
p

e
ri

en
ce

 

I used the 

authentication 

method many 

times before? 

15 Voice 15.27 2 1.570 20.773 p < 

0.001* 15 PIN 39.53 5 

15 Fingerprint 32.57 5 

15 Token 34.63 5 

I use similar 

authentication 

methods often? 

15 Voice 19.43 2 1.448 12.370 0.006* 

15 PIN 39.53 5 

15 Fingerprint 19.43 4 

15 Token 33.57 5 

15 Voice 34.80 5 1.247 5.056 0.168 

15 PIN 35.27 5 
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I use different 

authentication 

methods often? 

15 Fingerprint 28.10 4 

15 Token 23.83 4 

V
er

if
ic

at
io

n
 

Feedback that 

authentication 

has processed 

correctly? 

15 Voice 21.17 4 0.616 8.376 0.039* 

15 PIN 37.17 5 

15 Fingerprint 32.37 5 

15 Token 31.30 5 

Feedback when 

a type of error 

has occurred? 

15 Voice 20.70 3 1.145 18.475 p < 

0.001* 15 PIN 40.40 4 

15 Fingerprint 39.27 4 

15 Token 21.63 3 

Good feedback 

that it has been 

set up 

correctly? 

 

15 Voice 33.30 5 0.930 8.064 0.045* 

15 PIN 33.07 5 

15 Fingerprint 35.03 5 

15 Token 20.60 4 

K
n

o
w

le
d

ge
 

I understand 

how the 

method works? 

15 Voice 26.50 4 0.780 3.982 0.263 

15 PIN 36.80 5 

15 Fingerprint 27.40 4 

15 Token 31.30 5 

I have a good 

understanding 

of the 

authentication 

process works? 

15 Voice 23.27 4 0.914 9.184 0.027* 

15 PIN 37.87 5 

15 Fingerprint 25.43 4 

15 Token 35.43 5 
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Understanding 

of why 

authentication 

method is 

used? 

15 Voice 23.30 4 0.623 6.022 0.111 

15 PIN 36.10 5 

15 Fingerprint 29.43 5 

15 Token 33.17 5 

R
ec

o
m

m
en

d
at

io
n

 

I have heard 

others have 

good 

experiences 

with the 

authentication 

15 Voice 19.07 3 1.152 12.951 0.005* 

15 PIN 37.77 5 

15 Fingerprint 37.53 5 

15 Token 27.63 4 

I have heard 

others have 

bad 

experiences 

with the 

authentication  

15 Voice 30.37 2 1.239 1.572 0.666 

15 PIN 29.77 3 

15 Fingerprint 34.77 3 

15 Token 27.10 2 

The 

authentication 

method has a 

good 

reputation? 

15 Voice 20.10 3 0.933 9.053 0.029* 

15 PIN 34.40 4 

15 Fingerprint 37.00 4 

15 Token 30.50 4 

Table 4: Kruskal Wallis Test Results 
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4.1.1 Availability 

The results show that when asked if “The authentication method is available when needed?” 

there was no statistical significance between the authentication methods, X2 (2) = 2.248, p = 

0.523. Though in terms of mean ranking score, PIN & token tied as the highest with 33.10, 

voice came second with 28.60 and fingerprint came last with 27.20. 

 

The results show that when asked if “The authentication method is widespread?” there was 

no statistical significance between the authentication methods, X2 (2) = 3.060, p = 0.383. 

Though in terms of mean ranking score, PIN scored the highest with 36.50, voice came second 

with 29.67, token came third with 29.07 and fingerprint came last with 26.77.  

The results show that when asked if “The authentication method is a common example of 

authentication techniques” there was no statistical significance between the authentication 

methods, X2 (2) = 3.704, p = 0.295. Though in terms of mean ranking score, PIN scored the 

highest with 36.07, token came second with 31.13, fingerprint came third with 29.40 and 

voice came last with 25.40.  
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Figure 11: Availability Mean Rank Figure 10: Security Mean Rank 
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4.1.2 Security  

The results show that when asked if “I believe the authentication method is not easily 

hacked?” there was a statistical significance between the authentication methods, X2 (2) = 

15.199, p = 0.002. Though in terms of mean ranking score, fingerprint scored the highest with 

41.63, token came second with 32.20, PIN came third with 30.10 and voice came last with 

18.07.  

 

The results show that when asked if “I believe the authentication method is not easily 

tampered with?” there was no statistical significance between the authentication methods, 

X2 (2) = 6.547, p = 0.088. Though in terms of mean ranking score, fingerprint scored the 

highest with 35.87, token came second with 34.17, PIN came third with 30.33 and voice came 

last with 21.63.  

 

The results show that when asked if “I believe the authentication method is able to 

differentiate me from others?” there was a statistical significance between the authentication 

methods, X2 (2) = 19.586, p < 0.001. Though in terms of mean ranking score, fingerprint scored 

the highest with 46.67, voice came second with 28.33, PIN came third with 23.97 and token 

came last with 23.03.  

 

4.1.3 Usability 

The results show that when asked if “I found learning to use the authentication method 

easy?” there was a statistical significance between the authentication methods, X2 (2) = 4.336, 

p = 0.227. Though in terms of mean ranking score, PIN & Token tied as the highest with 33.53, 

voice came second with 27.63 and fingerprint came last with 27.30. 
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The results show that when asked if “I found the authentication method easy to use?” there 

was no statistical significance between the authentication methods, X2 (2) = 6.553, p = 0.088. 

Though in terms of mean ranking score, PIN scored the highest with 36.00, token came second 

with 32.13, voice came third with 27.90 and token came last with 25.97.  

 

The results show that when asked if “I found the authentication method accessible to 

different needs?” there was no statistical significance between the authentication methods, 

X2 (2) = 1.392, p = 0.707. Though in terms of mean ranking score, voice scored the highest 

with 33.40, fingerprint came second with 31.47, PIN came third with 30.63 and token came 

last with 26.50.  

 

 

 

4.1.4 Privacy 

The results show that when asked if “I believe the authentication method protects my privacy 

from others?” there was a statistical significance between the authentication methods, X2 (2) 

= 22.332, p < 0.001. Though in terms of mean ranking score, fingerprint scored the highest 
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Figure 12: Usability Mean Rank Figure 13: Privacy Mean Rank 
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with 42.07, PIN came second with 37.13, token came third with 27.30 and voice came last 

with 15.50.  

 

The results show that when asked if “I believe the authentication method prevents others 

from seeing the contents of my data?” there was a statistical significance between the 

authentication methods, X2 (2) = 9.503, p = 0.023. Though in terms of mean ranking score, 

PIN scored the highest with 35.77, fingerprint came second with 35.60, token came third with 

31.13 and voice came last with 19.50.  

 

The results show that when asked if “I believe the authentication method allows me to remain 

anonymous?” there was a statistical significance between the authentication methods, X2 (2) 

= 8.198, p = 0.042. Though in terms of mean ranking score, PIN scored the highest with 38.23, 

fingerprint came second with 34.87, token came third with 26.10 and voice came last with 

22.80. 

 

4.1.5 Reliability 

The results show that when asked if “The authentication functioned as I expected it to?” there 

was no statistical significance between the authentication methods, X2 (2) = 3.469, p = 0.325. 

Though in terms of mean ranking score, PIN scored the highest with 35.00, with fingerprint, 

tokens and voice all scoring 29.10. 

 

The results show that when asked if “The authentication method performed the same each 

time?” there was a statistical significance between the authentication methods, X2 (2) = 

11.205, p = 0.011. Though in terms of mean ranking score, PIN scored the highest with 40.50, 
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token came second with 31.23, fingerprint came third with 25.43 and voice came last with 

24.83.  

 

The results show that when asked if “The authentication method will continue to perform as 

expected in further uses?” there was a statistical significance between the authentication 

methods, X2 (2) = 16.310, p = 0.001. Though in terms of mean ranking score, PIN scored the 

highest with 41.50, token came second with 33.70, voice came third with 25.60 and 

fingerprint came last with 21.20.  

 

 

4.1.6 Experience 

The results show that when asked if “I have used the authentication method many times 

before?” there was a statistical significance between the authentication methods, X2 (2) = 

20.773, p < 0.001. Though in terms of mean ranking score, PIN scored the highest with 39.53, 

token came second with 34.63, fingerprint came third with 32.57 and voice came last with 

15.27.  

 

The results show that when asked if “I use similar authentication methods often?” there was 

a statistical significance between the authentication methods, X2 (2) = 12.370, p = 0.006. 

26.51

39.00

25.24
31.34

0.00

10.00

20.00

30.00

40.00

50.00

Voice Pin Finger Token

Reliability

Reliability Average Mean Rank

23.17

38.11
26.70 30.68

0.00

20.00

40.00

60.00

Voice Pin Finger Token

Experience

Experience Average Mean 
Rank

Figure 14: Reliability Mean Rank Figure 15: Experience Mean Rank 
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Though in terms of mean ranking score, PIN scored the highest with 39.53, token came second 

with 33.57, fingerprint and voice tied for last with 19.43.  

 

The results show that when asked if “I use different authentication methods often?” there 

was no statistical significance between the authentication methods, X2 (2) = 5.056, p = 0.168. 

Though in terms of mean ranking score, PIN scored the highest with 35.27, voice came second 

with 34.80, fingerprint came third with 28.10 and token came last with 23.83.  

4.1.7 Verification 

The results show that when asked if “I believe the authentication method offers good 

feedback that my authentication has processed correctly?” there was a statistical significance 

between the authentication methods, X2 (2) = 8.376, p = 0.039. Though in terms of mean 

ranking score, PIN scored the highest with 37.17, fingerprint came second with 32.37, token 

came third with 31.30 and voice came last with 21.17.  

 

The results show that when asked if “I believe the authentication method offers good 

feedback when some type of error has occurred?” there was a statistical significance between 

the authentication methods, X2 (2) = 18.475, p < 0.001. Though in terms of mean ranking 

score, PIN scored the highest with 40.40, fingerprint came second with 39.27, token came 

third with 21.63 and voice came last with 20.70.  

 

The results show that when asked if “I believe the authentication method offers good 

feedback that it has been set up correctly?” there was a statistical significance between the 

authentication methods, X2 (2) = 8.064, p = 0.045. Though in terms of mean ranking score, 
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fingerprint scored the highest with 35.03, voice came second with 33.30, PIN came third with 

33.07 and token came last with 20.60.  

 

4.1.8 Knowledge 

The results show that when asked if “I have a good understanding of how the authentication 

method works?” there was no statistical significance between the authentication methods, 

X2 (2) = 3.982, p = 0.263. Though in terms of mean ranking score, PIN scored the highest with 

36.80, token came second with 31.30, fingerprint came third with 27.40 and voice came last 

with 26.50.  

 

The results show that when asked if “I have a good understanding of how the authentication 

process works?” there was a statistical significance between the authentication methods, X2 

(2) = 9.184, p = 0.027. Though in terms of mean ranking score, PIN scored the highest with 

37.87, token came second with 35.43, fingerprint came third with 25.43 and voice came last 

with 23.27.  

 

The results show that when asked if “I have a good understanding of why the authentication 

method is used?” there was no statistical significance between the authentication methods, 
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Figure 17: Verification Mean Rank Figure 16: Knowledge Mean Rank 
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X2 (2) = 6.022, p = 0.111. Though in terms of mean ranking score, PIN scored the highest with 

36.10, token came second with 33.17, fingerprint came third with 29.43 and voice came last 

with 23.30.  

 

4.1.9 Recommendation  

The results show that when asked if “I have heard others have good experiences with the 

authentication method?” there was a statistical significance between the authentication 

methods, X2 (2) = 12.951, p = 0.005. Though in terms of mean ranking score, PIN scored the 

highest with 37.77, fingerprint came second with 37.53, token came third with 27.63 and 

voice came last with 19.07.  

 

The results show that when asked if “I have heard others have bad experiences with the 

authentication method?” there was no statistical significance between the authentication 

methods, X2 (2) = 1.572, p = 0.666. Though in terms of mean ranking score, fingerprint scored 

the highest with 34.77, voice came second with 30.37, PIN came third with 29.77 and token 

came last with 27.10.  

 

The results show that when asked if “The authentication method has a good reputation?” 

there was a statistical significance between the authentication methods, X2 (2) = 9.053, p = 

0.029. Though in terms of mean ranking score, fingerprint scored the highest with 37.00, PIN 

came second with 34.40, token came third with 30.50 and voice came last with 20.10.  
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Figure 18: Recommendation Mean Rank 

 

4.2 Chapter Summary 
 

In this chapter we provided the results for our first test using the Kruskal-Wallis H Test. We 

presented those results in a table format and then reported our findings for each question. 

The Kruskal-Wallis H test tells us which methods had a statistical significance, of which we 

then proceed to perform the post-Hoc test as detailed in the next chapter.  
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5. Results and Discussion Part 2: Post Hoc Analysis  
 

In this chapter we perform the post-Hoc test on the statistically significant questions, of which 

we provide reports for each question. We then go onto to discusses both the statistically 

significant and non-statistically significant questions to infer what the results tell us.  

After conducting the experiment, the Kruskal-Wallis test tells us that 15 of the 27 questions 

were found to have a statistical significance between them. The remaining questions were 

not considered statistically significant; however, some conclusions may apprehensively be 

drawn from them. We then ran the post-Hoc test using Dunn’s (1964) procedure with a 

Bonferroni correction for multiple comparisons on the statistically significant questions to 

determine which authentication methods specifically were significant to one another seeing 

if there were any pairwise comparisons between the methods. The reason we chose this test 

was because we have a small subset of all possible pairs. As shown in the tables below are the 

pairwise comparisons of the test. Std. Test Statistic being after the data has been 

standardised, so it can be compared to a ‘normal’ population. 

Out of all methods, across all questions, voice consistently either tied as, or was ranked the 

lowest 17 times of which 13 of the questions were statistically significant. Vice versa, across 

all questions, the authentication method that ranked the highest most consistently was PIN, 

for a total of 19 questions, 10 of which were statistically significant.  

5.1 Statistically Significant Questions 

5.1.1 Security 

“I believe the authentication method is not easily hacked?” 
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Table 5: Post Hoc ‘Is not Easily Hacked’ 

 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF (authentication factor) scores 

between the voice (3.00) and finger (4.00) (p = 0.001) but not with PIN (3.00), token (4.00) or 

any other group combination. 

In regard to mean ranking fingerprint ranked the highest, followed by token, PIN and finally 

voice. Users perhaps considered fingerprint the hardest to hack due to it relying on 

inheritance-based authentication that only the user possess. Despite this however, voice 

another inheritance-based authentication ranked last, hence users felt as though voice was 

easily hacked, this might be because users believe the sensors can be easily spoofed due to 

issues with background noise or voice changing. Meanwhile both token and PIN ranked in 

between. This is likely because users are used to both these methods. There was a statistical 

significance found between the methods voice and fingerprint, hence it can be concluded that 

users consider fingerprint harder to hack than voice.   

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-PIN 12.033 6.087 1.977 .048 .288 

Voice-Token -14.133 6.087 -2.322 .020 .121 

Voice-Finger 23.567 6.087 3.871 .000 .001* 

PIN-Token -2.100 6.087 -.345 .730 1.000 

PIN-Finger 11.533 6.087 1.895 .058 .349 

Token-Finger 9.433 6.087 1.550 .121 .727 
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“I believe the authentication method is able to differentiate me from others?” 

Table 6: Post Hoc ‘Differentiate me from Others’ 

 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the finger (5) and 

voice (3) (p = 0. 016), finger and PIN (4) (p = 0.001) and finger and token (4) (p = 0. 001) but 

not with any other group combination. 

 

In regard to mean ranking fingerprint again ranked the highest, followed by voice, PIN and 

finally token. Both the inheritance-based authentication methods ranked the highest, likely 

because users consider biometrics exclusive to just the user, whereas knowledge/owner-

based methods ranked lower, likely because if another user used those methods the system 

would not be able to tell the difference. There was a statistical significance between 

fingerprint and voice, fingerprint and PIN and fingerprint and token, meaning that it can be 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj.  p value 

Voice-PIN -4.367 6.101 -0.716 .474 1.000 

Voice-Token 5.300 6.101 0.869 .385 1.000 

Voice-Finger 18.333 6.101 3.005 .003 0.016* 

PIN-Token 0.933 6.101 0.153 .878 1.000 

PIN-Finger 22.700 6.101 3.721 .000 0.001* 

Token-Finger 23.633 6.101 3.874 .000 0.001* 
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concluded that fingerprint was considered the best at being able to differentiate users from 

others.  

5.1.2 Privacy  

“I believe the authentication method protects my privacy from others?” 

Table 7: Post Hoc ‘Protects my Privacy from Others’ 

 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (3) and 

PIN (5) (p = 0.002) and voice and finger (5) (p < 0.001) but not with token (4) or any other 

group combination. 

 

For mean ranking fingerprint ranked the highest, followed by PIN, then token and finally voice. 

Users found fingerprint to be the most likely to protect their privacy from others perhaps 

because people believe biometrics are extremely hard to spoof. However, voice ranked the 

lowest, meaning users do not believe that voice will protect their privacy because they 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj.  p value 

Voice-Token -11.800 6.082 -1.940 .052 .314 

Voice-PIN 21.633 6.082 3.557 .000 .002* 

Voice-Finger 26.567 6.082 4.368 .000 .000* 

PIN-Token 9.833 6.082 1.617 .106 .636 

Token-Finger 14.767 6.082 2.428 .015 .091 

PIN-Finger 4.933 6.082 .811 .417 1.000 
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presumably believe that voice could be more easily spoofed compared to fingerprints. Both 

PIN and tokens ranked in the middle, less than fingerprint but more than voice, likely because 

they are used to those authentication methods. There was a statistical significance between 

voice with PIN and voice with fingerprint. Hence, it can be assumed that users believe PIN and 

fingerprint to be more likely to protect their user’s privacy compared to voice.  

“I believe the authentication method prevents others from seeing the contents of my 

data?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Token -11.633 6.071 -1.916 .055 .332 

Voice-Finger 16.100 6.071 2.652 .008 .048* 

Voice-PIN 16.267 6.071 2.679 .007 .044* 

PIN-Token 4.633 6.071 .763 .445 1.000 

Token-Finger 4.467 6.071 .736 .462 1.000 

PIN-Finger -.167 6.071 -.027 .978 1.000 

Table 8: Post Hoc ‘Prevents Others from Seeing my Data’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (3) and 

PIN (4) (p = 0.044) and voice and finger (4) (p = 0.048) but not with token (4) or any other 

group combination. 

 

For mean ranking PIN ranked the highest, followed by fingerprint, token and finally voice. 

Voice ranked the lowest again likely because users believe that it can be easily spoofed and 
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hence does not protect the contents of their data. However, PIN ranked slightly higher than 

fingerprint. This is likely because users are most used to PIN and hence had more faith it would 

prevent others from seeing their data. There was a statistical significance between voice with 

PIN and voice with fingerprint. Hence, it can be assumed that users believe PIN and fingerprint 

to be more likely to prevent others from seeing their data compared to voice. 

“I believe the authentication method allows me to remain anonymous?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Token -3.300 6.199 -.532 .594 1.000 

Voice-Finger 12.067 6.199 1.947 .052 .310 

Voice-PIN 15.433 6.199 2.490 .013 .077 

Token-Finger 8.767 6.199 1.414 .157 .944 

PIN-Token 12.133 6.199 1.957 .050 .302 

PIN-Finger -3.367 6.199 -.543 .587 1.000 

Table 9: Post Hoc ‘Allows me to Remain Anonymous’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed no statistically significant differences in median AF scores between any pairwise 

comparisons. The median scores were voice (3), PIN (4), finger (4) and token (3). 

 

When concerned with mean ranking, PIN ranked the highest, followed by fingerprint, token 

and finally voice. Users ranked PIN the highest likely because users do not have to give any 

personal info or other accounts to utilise a PIN, whereas other methods like token usually 

require you to link some other device or account, hence users felt they remained less 
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anonymous. Both biometrics also ranked lower than PIN likely because users must use their 

personal inheritance features.  The results were found to be statistically significant however 

there were no specific groups that were statistically significant to one another. 

5.1.3 Reliability 

“The authentication method performed the same each time?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Finger 0.600 5.316 .113 .910 1.000 

Voice-Token -6.400 5.316 -1.204 .229 1.000 

Voice-PIN 15.667 5.316 2.947 .003 .019* 

PIN-Finger -15.067 5.316 -2.834 .005 .028* 

Token-Finger -5.800 5.316 -1.091 .275 1.000 

PIN-Token 9.367 5.316 1.743 .081 .488 

Table 10: Post Hoc ‘Performed the Same Each Time’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (4) and 

PIN (5) (p = 0.019) and PIN and finger (5) (p = 0.028) but not with token (5) or any other group 

combination. 

 

PIN ranked the highest followed by token, fingerprint and finally voice. Both authentication 

methods that use a keyboard to input ranked higher than the inheritance methods. This is 

likely because users have the most control over the input by inputting it themselves, whereas 

with inheritance-based methods it relies entirely on the sensor being able to recognise the 



Page 103 of 149 
 

users’ input. There was a statistical significance between voice and PIN as well as between 

PIN and fingerprint. Hence, we can conclude that users found PIN to perform more 

consistently than voice and fingerprint authentication methods.  

“The authentication method will continue to perform as expected in further uses?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Finger -4.400 5.445 -.808 .419 1.000 

Token-Finger -12.500 5.445 -2.296 .022 .130 

PIN-Finger -20.300 5.445 -3.728 .000 .001* 

Voice-Token -8.100 5.445 -1.488 .137 .821 

Voice-PIN 15.900 5.445 2.920 .003 .021* 

PIN-Token 7.800 5.445 1.433 .152 .912 

Table 11: Post Hoc ‘Perform as Expected in Further Uses’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (4) and 

PIN (5) (p = 0.021) and PIN and finger (4) (p = 0.001) but not with token (5) or any other group 

combination 

For mean ranking, PIN ranked the highest, followed by token, fingerprint and finally voice. 

Likewise, much like the above concerns about the methods performing the same each time, 

the two methods that rely on the users to input the authentication themselves, users 

considered to be more reliable for further uses. Whereas the inheritance-based methods 

ranked lower, perhaps due to them relying on the sensor having to recognising the user. There 

was found to be a statistical significance again between PIN and voice as well as PIN and 
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fingerprint. Therefore, it can be concluded that users expect PIN to perform more consistently 

than both fingerprint and voice.  

5.1.4 Experience 

“I have used the authentication method many times before?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Finger 17.300 5.679 3.046 .002 .014* 

Voice-Token -19.367 5.679 -3.410 .001 .004* 

Voice-PIN 24.267 5.679 4.273 .000 .000* 

Token-Finger -2.067 5.679 -.364 .716 1.000 

PIN-Finger -6.967 5.679 -1.227 .220 1.000 

PIN-Token 4.900 5.679 .863 .388 1.000 

Table 12: Post Hoc ‘Used the Method Many Times Before’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (2) and 

finger (5) (p = 0.014), voice and token (5) (p = 0.004) and voice and PIN (5) (p < 0.001) but not 

with any other group combination. 

 

PIN ranked the highest for mean ranking, followed by token, fingerprint and finally voice. 

Unsurprisingly traditional means of authentication such as PIN and token ranked the highest 

since they are the most common means of authentication. Voice ranked the last considering 

the authentication method is reasonably new. There was found to be a statistical difference 

between voice and PIN, voice and fingerprint and voice and token. Therefore, it can be 
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concluded that users have all used PIN’’s, fingerprints, and tokens more than voice 

authentication.  

“I use similar authentication methods often?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Finger 10.033 5.890 1.704 .088 .531 

Voice-Token -14.133 5.890 -2.400 .016 .098 

Voice-PIN 20.100 5.890 3.413 .001 .004* 

Token-Finger -4.100 5.890 -.696 .486 1.000 

PIN-Finger -10.067 5.890 -1.709 .087 .525 

PIN-Token 5.967 5.890 1.013 .311 1.000 

Table 13: Post Hoc ‘Used Similar Methods Often’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (2) and 

PIN (5) (p = 0.004) but not with finger (4), token (5) or any other group combination. 

 

Once again PIN ranked the highest for mean ranking, followed by token and fingerprint and 

voice ranked last. PIN and token ranking high is likely because knowledge-based 

authentication and ownership-based authentication are more common whereas the 

biometric methods ranked much lower, likely because they are less common. There was 

found to be a statistical difference between voice and PIN. Therefore, it can be concluded that 

users use methods similar to PIN’s far more often than they use methods similar to voice 

authentication.  
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5.1.5 Verification 

“I believe the authentication method offers good feedback that my authentication has 

processed correctly?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Token -10.133 5.692 -1.780 .075 .450 

Voice-Finger 11.200 5.692 1.968 .049 .295 

Voice-PIN 16.000 5.692 2.811 .005 .030* 

Token-Finger 1.067 5.692 .187 .851 1.000 

PIN-Token 5.867 5.692 1.031 .303 1.000 

PIN-Finger -4.800 5.692 -.843 .399 1.000 

Table 14: Post Hoc ‘Authentication Processed Correctly’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (4) and 

PIN (5) (p = 0.030) but not with finger (5), token (5) or any other group combination. 

 

For mean ranking, PIN ranked the highest, followed by fingerprint, token and finally voice. For 

mean ranking PIN ranked the highest, given users input the numbers themselves and are 

immediately singed-in providing they gave the correct PIN. Meanwhile, an authentication 

method such as fingerprint or voice can be inputted, yet it does not always sign the user in as 

what the sensor saw/heard did not exactly match. There was found to be a statistical 

difference between voice and PIN. Therefore, it can be concluded that users consider PIN to 

offer better feedback than voice that their authentication has processed correctly. 
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“I believe the authentication method offers good feedback when some type of error has 

occurred?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Token -.933 6.151 -.152 .879 1.000 

Voice-Finger 18.567 6.151 3.018 .003 .015* 

Voice-PIN 19.700 6.151 3.203 .001 .008* 

Token-Finger 17.633 6.151 2.867 .004 .025* 

PIN-Token 18.767 6.151 3.051 .002 .014* 

PIN-Finger -1.133 6.151 -.184 .854 1.000 

Table 15: Post Hoc ‘Feedback When Error has Occurred’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (3) and 

finger (4) (p = 0.015), voice and PIN (4) (p = 0.008), PIN and token (3) (p = 0.014) and token 

and finger (p = 0.025) but not with any other group combination. 

 

In regard to mean ranking PIN ranked the highest, followed by fingerprint, token and finally 

voice. PIN again ranked the highest likely because when a user inputs the PIN, they are 

immediately either signed in or told the pin code was incorrect and a user knows a digit was 

wrong. Whereas a method such as voice will not sign in but there are a lot more factors as to 

why the voice print did not match, such as the voice itself or background noise. Token likewise 

ranked low as again there can be multiple reasons why the token was wrong i.e., had it been 

inputted wrong or had it expired. There was found to be a statistical difference between voice 
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and PIN, voice and fingerprint, PIN and token and fingerprint and token. Therefore, it can be 

concluded that users consider PIN and fingerprint to offer much better feedback when a type 

of error has occurred compared to voice and tokens. 

“I believe the authentication method offers good feedback that it has been set up 

correctly?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

PIN-Token 12.467 5.743 2.171 .030 .180 

Voice-Token 12.700 5.743 2.211 .027 .162 

Token-Finger 14.433 5.743 2.513 .012 .072 

Voice-PIN -.233 5.743 -.041 .968 1.000 

PIN-Finger 1.967 5.743 .342 .732 1.000 

Voice-Finger 1.733 5.743 .302 .763 1.000 

Table 16: Post Hoc ‘Feedback When Set Up Correctly’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed no statistically significant differences in median AF scores between any pairwise 

comparisons. The median scores were voice (5), PIN (5), finger (5) and token (4). 

 

Fingerprint ranked the highest for mean ranking, followed by voice, PIN and finally token. 

Fingerprint ranked the highest as in the setup of the method, it usually guides the user 

through building up their print slowly, likewise voice similarly builds up the print over a few 

recordings. Token meanwhile offers less feedback during setup and usually requires a test to 
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see that it has been set up correctly. The results were found to be statistically significant 

however there were no specific groups that were statistically significant to one another. 

5.1.6 Knowledge 

“I have a good understanding of how the authentication process works?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Finger 2.167 5.840 .371 .711 1.000 

Voice-Token -12.167 5.840 -2.083 .037 .223 

Voice-PIN 14.600 5.840 2.500 .012 .074 

Token-Finger -10.000 5.840 -1.712 .087 .521 

PIN-Finger -12.433 5.840 -2.129 .033 .199 

PIN-Token 2.433 5.840 .417 .677 1.000 

Table 17: Post Hoc ‘Understanding of How Process Works’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed no statistically significant differences in median AF scores between any pairwise 

comparisons. The median scores were voice (4), PIN (5), finger (5) and token (5). 

 

For meaning ranking, PIN ranked the highest, followed by token, then fingerprint and finally 

voice. PIN and token ranked the highest likely due to them being more commonly used, hence 

users are much more likely to have an understanding of how the authentication process 

works. Whereas the less commonly used methods such as voice and fingerprint ranked lower, 

likely because users were less used to those methods. The results were found to be 
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statistically significant however there were no specific groups that were statistically 

significant to one another. 

5.1.7 Recommendation  

“I have heard others have good experiences with the authentication method?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Token -8.567 6.103 -1.404 .160 .963 

Voice-Finger 18.467 6.103 3.026 .002 .015* 

Voice-PIN 18.700 6.103 3.064 .002 .013* 

Token-Finger 9.900 6.103 1.622 .105 .629 

PIN-Token 10.133 6.103 1.660 .097 .581 

PIN-Finger -.233 6.103 -.038 .970 1.000 

Table 18: Post Hoc ‘Heard Good Experience’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (3) and 

finger (5) (p = 0.015) and voice and PIN (5) (p = 0.013) but not with token (4) or any other 

group combination. 

 

For mean ranking PIN ranked the highest, followed by fingerprint, token and finally voice. 

Notably voice ranked the lowest here, having also been the method with the least prior usage 

by users. Users not hearing others have good experiences with the method could be why 

many users have not used voice. Meanwhile PIN and fingerprint both ranked much higher, 

surprisingly fingerprint ranked high despite only ranking third for users having used the 
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method before. There was found to be a statistical difference between voice and PIN, voice, 

and fingerprint. Therefore, it can be concluded that users find they have heard others have a 

better experience with PIN and fingerprint compared to voice.   

“The authentication method has a good reputation?” 

Sample 1-

Sample 2 

Test Statistic Std. Error Std. Test 

Statistic  

p value Adj. p value 

Voice-Token -10.400 6.049 -1.719 .086 .513 

Voice-PIN 14.300 6.049 2.364 .018 .108 

Voice-Finger 16.900 6.049 2.794 .005 .031* 

PIN-Token 3.900 6.049 .645 .519 1.000 

Token-Finger 6.500 6.049 1.075 .283 1.000 

PIN-Finger 2.600 6.049 .430 .667 1.000 

Table 19: Post Hoc ‘Method has Good Reputation’ 

Pairwise comparisons were performed using Dunn’s (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in median AF scores between the voice (3) and 

finger (4) (p = 0.031) but not with finger (4), token (4) or any other group combination. 

 

Fingerprint ranked the highest for mean ranking, followed by PIN, token and finally voice. 

Voice again ranked lower than other methods, indicating that many users would not want to 

use the authentication method as they feel as though they do not have a good reputation. 

Comparably the other biometric method fingerprint, ranked the highest in terms of 

reputation indicating many users believe fingerprint to have an excellent reputation.  There 

was found to be a statistical difference between voice and fingerprint. Therefore, it can be 
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concluded that users consider fingerprint authentication to have a much better reputation 

compared to voice.  

5.2 Non-Statistically Significant Questions 
 

5.2.1 Availability 

“The authentication method is available when needed?” 

Both PIN and Token ranked the highest when asked if they were available, with voice coming 

second and fingerprint ranking last. This is likely due to fingerprints requiring a specific sensor 

to use, compared to the other methods which usually only require a keyboard or microphone. 

However, despite this, since there was no statistically significant difference between the 

groups, it is hard to suggest that any specific method was deemed more available than others.  

“The authentication method is widespread?” 

PIN again ranked the highest with voice coming second, token coming third and fingerprint 

coming last. Unsurprisingly the traditional knowledge-based authentication ranked the 

highest considering they are the most rooted in society, with banks, mobile phones etc all 

offering these methods. Surprisingly, fingerprint ranked the lowest despite it also being 

available for most smart phones, though this could be due to not many other venues 

accepting fingerprints. However, due to there being no statistical significance it is hard to 

suggest any method was deemed considerably more widespread than others.  

“The authentication method is a common example of authentication techniques?” 

PIN again ranked the highest most likely due to it being a traditional type of authentication 

due to it being the most rooted in society. Token ranked second, fingerprint ranked third and 

voice ranked last. Voice’s low ranking is likely due to it functioning quite different to other 
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forms of authentication with it constantly verifying the user. However, due to there being no 

statistical significance it is hard to suggest any method was deemed a common example of 

authentication more than the others. 

5.2.2 Security 

“I believe the authentication method is not easily tampered with?” 

Fingerprint had the highest mean ranking, followed by token, PIN and finally voice. 

Fingerprints high ranking might be because users perceive fingerprints to be the hardest 

sensor to spoof through tampering. Users perhaps consider voice authentication more easily 

tampered with, due to several considerations about the quality of the audio recording, large 

amounts of background noise, or vocal variations, therefore they consider it more easily 

spoofed. However, no method was considered statistically significant over another hence, it 

is hard to suggest any method is deemed easier to tamper with than the other.  

5.2.3 Usability  

“I found learning to use the authentication method easy?” 

Both PIN and Tokens ranked the highest with voice coming second and fingerprint coming 

last. PIN and Token ranked the highest, most likely because in both methods users had to 

enter the codes themselves to utilise them, which users would likely be most familiar with. 

Comparably, users found voice easy to learn, likely due to the naturalistic usage of speech. 

Fingerprint ranked last likely due to it using the most unfamiliar sensor. However, since the 

results were not statistically significant, no particular group was considered easier to learn 

how to use them, than the other.  

“I found the authentication method easy to use?” 
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For mean ranking, PIN ranked the highest, token was second, voice was third and finally 

fingerprint was last. Once again both PIN and token ranked slightly higher than the other 

groups likely due to users being more familiar with key-based input devices. Fingerprint ranked 

last perhaps due to it having the most different input device whereas voice ranked third due 

to its naturalistic input method, but not quite as much as key-based input devices. Though 

again, no method was deemed considerably easier to use than the other as there was no 

statistical significance between any of the groups.  

“I found the authentication method accessible to different needs?” 

In terms mean ranking, this was the only question in which voice ranked the highest. Out of 

all the methods, voice authentication is quite user friendly to most disabilities, with 

exceptions being those with vocal or hearing issues. Fingerprint ranked second as it too is 

considered quite user friendly to those with disabilities, with PIN ranking third and token 

ranking last. This might be due to people considering them less accessible to those with eye 

issues, at least without specialist equipment. However, since there was no statistically 

significant difference between the groups it is hard to suggest that voice is significantly more 

accessible to those with disabilities than the other methods.  

5.2.4 Reliability 

“The authentication functioned as I expected it to?” 

In terms of mean rank PIN came first and all other methods voice, fingerprint and token tied 

for second. PIN functioning as expected was likely due to users being most used to the method 

and hence knew what to expect from the method. As for the other methods they were all 

ranked second, meaning most users expected the authentication methods to perform as they 
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suspected. However, since there was no statistical significance, this means that the difference 

between PIN and the other methods was minimal.  

5.2.5 Experience 

“I use different authentication methods often?” 

PIN ranked the highest, followed by voice, then fingerprint and finally token. PIN ranking 

highest might be because many users not only use PIN (or knowledge-based factors) by 

themselves and are encouraged to also use two-factor authentication with other methods 

along with PIN. Similarly, voice also ranked high, most likely due to not a lot of users using 

voice authentication or users also utilising two-factor authentication alongside voice. 

Fingerprint ranked third perhaps because people are inclined to just use just fingerprints 

when unlocking their phones. Lastly token came last due to people using mainly tokens to 

sign into their devices. However, since there was no statistical significance, it is hard to 

suggest any method found that they used different authentication methods more so than 

others.   

5.2.6 Knowledge 

“I have a good understanding of how the authentication method works?” 

For mean ranking, PIN ranked the highest, followed by token, fingerprint and finally voice. 

Once again, both methods that employ the usage of key-based entry ranked the highest, most 

likely since users use them more often. Fingerprint ranking third is likely because it has slightly 

more exposure than voice, which came last likely because it is the least common of the four 

authentication methods. Though since there is no statistical significance, it is hard to 

conclusively say if there was any method which users had a better understanding of how they 

work.  
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“I have a good understanding of why the authentication method is used?” 

PIN ranked the highest in terms of mean ranking, followed by token, then fingerprint and 

finally voice. The two methods that ranked highest are arguably the most common and 

simplest in function both using key-based inputs. Whereas the two more uncommon methods 

ranked lower. However, since there was no statistical significance there was no method 

where users had a better understanding of why the authentication was used.  

5.2.7 Recommendation  

“I have heard others have bad experiences with the authentication method?” 

For mean ranking the method that ranked highest was fingerprint, followed by voice, then 

PIN and finally token. The two methods that are based around inheritance-based factors; both 

ranked higher than the knowledge and ownership factors. This is perhaps because users are 

more familiar and used to the other methods, hence they were less likely to have complaints 

about them, compared to the less common methods. However, since there was no statistical 

significance, it is hard to say any method users had more bad experiences with compared to 

any other.  

5.3 Analysis  

5.3.1 Voice 

As discussed in the preface and across all questions, voice consistently ranked on the lower 

end of the 4 authentication methods, indicating that of all the methods, users considered 

voice to be the one of the methods they were least likely to trust. This was especially true 

when looking at the statistically significant results for users experience with the method, the 

reliability of the method and privacy of the method, with voice ranking lowest consistently 

across most questions in those categories. Meaning users have less exposure to the method 
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than the others, which means they consider it less reliable and harder to trust that it will keep 

their data safe.  

5.3.2 Fingerprint 

Fingerprint’s rank fluctuated throughout the categories; sometimes scoring high and other 

times quite low. Fingerprint ranked the highest of all methods regarding security such as it is 

differentiating the user and keeping their data secure. Fingerprint also ranked quite high for 

the verification as they consider it to provide good feedback when setting up or attempting 

to login. However, fingerprint ranked much lower for aspects such as experience, reliability, 

and the user’s knowledge about the verification. This is likely because the method is much 

newer, hence users have had less experience with the technology and therefore consider it 

less reliable and have less understanding about how it works.  

5.3.3 PIN 

PIN meanwhile consistently ranked the highest of the methods especially across the 

statistically significant categories, including privacy, reliability, experience, verification, 

knowledge, and recommendation. This indicates that of all methods, PIN was the method that 

users considered to be the one they would most likely trust. This is likely because users have 

the most experience and knowledge with the method, meaning they would be likely to 

recommend it to other users as they consider it to be the most reliable and likely to keep their 

data private.  

5.3.4 Token 

Token often ranked very middling for the statistically significant questions. Often being 

ranked as the second or third out of the methods leaving it to one of the least polarising 

methods. For questions around factors such as users experience with the technology, their 
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knowledge about the technology and how reliable they consider the technology to be – token 

ranked second likely because it is a more common authentication method and hence, they 

are more trusting of the method in these regards. However, for categories such as keeping 

their data private, recommending to others, and the verification feedback it provides, it 

ranked the second lowest, likely because although they have a good understanding of the 

method, they consider other methods stronger.  

5.4 Chapter Summary 

Within this chapter we presented our findings of the post-Hoc test following the Kruskal-

Wallis test, we then presented discussion for each of the questions for both statistically 

significant and non-statistically significant questions before finally giving a summary about 

how each authentication method performed.  
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6. Conclusion 

In this study, the expanded trust model (Hoffman, Lawson-Jenkins and Blum 2006) is used to find 

a proxy measure of trust between four different authentication methods: PIN, Tokens, 

Fingerprints and Voice. The purpose was to discern if users would be willing to utilise voice 

biometric authentication compared to traditional means of authentication, by comparing the 

levels of trust they have with each method. A Kruskal-Wallis H test was used to examine the 

collected data to find any statistical significance, those with a statistical significance were then 

further tested with a post-Hoc test to determine which groups specifically had a statistical 

significance.  

15 of 27 questions were found to be statistically significant compared to one another, with 

the main trends suggesting that users were more likely to trust PIN out of the four methods, 

given it ranked the highest across categories such as privacy, reliability, experience, 

verification, knowledge, and recommendation. Voice, meanwhile, was the method that 

ranked the lowest most often, indicating that users would be unlikely to trust and therefore 

utilise voice biometric authentication over methods they had more trust with. Voice, 

therefore, would have to score much higher than the other three methods before users 

considered it a method they would trust over others. This implicates that voice still requires 

more before it is accepted by users as being a trustworthy piece of technology, considering 

users are still more likely to trust traditional methods over voice biometrics. 

For our first research question of “Which method of user-based authentication mechanism 

could facilitate trust establishment between user and technology from the user’s 

perspective?” we discovered that each authentication method shows some establishment of 

trust however, it is at varying degrees based on the model we identified, when we asked 



Page 120 of 149 
 

“which trust evaluation model can be employed for flexible measurement of trust (in the 

context of availability, security, usability, privacy, reliability, willingness to use and security) 

between the user and security-based authentication mechanism to access technology?”. 

For our second research question of “Based on the identified trust evaluation model from 

research question 1.1, are users willing to trust voice biometric authentication mechanism 

and hence would be inclined to adopt and utilize it as a means of user authentication method 

to access technology?” we discovered that compared to other authentication methods users 

would be inclined to trust traditional means of authentication such as PINs over voice 

biometric authentication. Hence, the answer to our other research question is that users 

would have to trust voice more than knowledge-based factors such as PINs and passwords 

for them to utilise voice biometrics and be their premier choice for safe authentication.  

 

6.1 Open Issues 

The study we conduced did have a few limitations, for example, we only compared four 

methods of authentication, the reason for this was to cover each of the main methods of 

authentication that are used: Knowledge, Ownership and Biometrics both physical and 

theoretical, though a more in-depth study could investigate more methods of authentication 

such as Palmprint or Facial recognition, though these maybe redundant as the purpose of this 

study was to primarily investigate how voice-biometric authentication compares to 

traditional means of authentication, with alternative methods such as Location-based 

authentication not being as commonly used as Knowledge-based, or if ever used as single-

factor authentication. 
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Other limitations within the study could be the number of participants the study had, with 

60, although this was deemed sufficient, the study could have a stronger statistical backing 

with more participants, though due to restrictions with COVID-19, more participants would 

have been difficult to obtain.  

As discussed within the paper, there are some concerns specifically with voice biometric 

authentication. There are concerns about potential spoofing, even though it is extremely 

difficult to spoof a voice sensor, it is still a concern (Zhang, Y., Jiang and Duan 2021) . Likewise, 

there is the concern that once a biometric is compromised, that it will be compromised for a 

long time as biometrics cannot be changed like knowledge or ownership factors. Voice 

biometrics can also suffer from poor audio quality or background noise which can affect the 

sensor sensitivity.  

Regarding the relationship with trust, there are a few issues that users can have with the 

technology, notably because VBA is a relatively new technology.  This means not many users 

will have much, if any, experience utilising the technology and even less likely for users to be 

knowledgeable of the inner workings of the technology. This also means it is unlikely for much 

propagation of VBA to have occurred. Despite this however, VBA is quite secure, especially 

compared to traditional means of authentication and the fact it is quickly growing because its 

usage via already built infrastructure means it will soon be quite available, hence the potential 

for trust to develop is there (Vittori 2019). Although, compared to traditional means of 

authentication, which has had a lot more time for users to have experiences with and develop 

trust with, VBA requires some time before users are to accept and trust it. 
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6.2 Future Research 

Possible future research directions from this study, for example could be a study that 

observes the change in trust over a longer period, observing how users trust changes with 

voice biometric authentication after using the technology for a longer period. It would be 

especially interesting to observe how long it takes for a method such as voice to be considered 

more trustworthy than methods such as PIN from the perspective of the user and how we 

can better change user’s opinion of the authentication method to help build user’s trust with 

the authentication method.  

Likewise, within the study, participants only used one method each, a between-groups testing 

method. This was to prevent users being influenced by their answers to previous methods, 

however, different results might be received by using a repeated measures method and 

would be an interesting comparison from a different study.  

Alternatively, given how single-factor authentication is mostly seen as outdated, it is 

important to study voice biometric authentication as a means of multi-factor authentication 

as well. Hence another possible study could be one that observes which authentication factor 

voice pairs best with, both from a logistical standpoint and from the users’ standpoint; given 

users may feel more confident using voice biometric authentication if it were alongside 

another method of authentication.  
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Appendix 

Consent Form 

 

Figure 19: Consent Form 
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Questionnaire  

 

Figure 20: Questionnaire Availability 
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Figure 21: Questionnaire Security 
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 Figure 22: Questionnaire Usability 
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    Figure 23: Questionnaire Privacy     
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Figure 24: Questionnaire Reliability 
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     Figure 25: Questionnaire Experience        
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Figure 26: Questionnaire Verification 
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 Figure 27: Questionnaire Knowledge        
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Figure 28: Questionnaire Recommendation 
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Participant Information Sheet 

Name of school: School of Science, Technology & Health, York St John University 

Title of study: Voice Biometrics Authentication: A User Perspective 

 

Introduction 

You have been invited to take part in a research project titled: Voice Biometrics Authentication: A User 

Perspective. The study intents to compare the different levels of trust users have with several different 

authentication methods. The study focusses on the user perspective of these methods and does so 

via a short study and questionnaire. Before you decide whether to take part or not, it is important that 

you understand why this research is being done and what it will involve. Please take time to read this 

information carefully and discuss it with the researcher if required.  

If there is anything that is unclear or if you would like more information, please contact myself, Alec 

Wells, postgraduate student in the School of Science, Technology & Health, York St John University 

or my supervisor; Aminu Usman, School of Science, Technology & Health, York St John University using 

the contact details found the following page. 

What is the purpose of this investigation? 

The aim of the investigation is to identify and discuss the different levels of trust users have with 

different methods of authentication. This will be done via a short study in which participants will use 

authentication method, and then fill out a questionnaire asking their opinions.  In conducting this 

investigation, I am trying to find how voice biometric authentication compares to other authentication 

methods such as passwords or fingerprints from a user’s perspective.   
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What will you do in the project? 

After reading this form and if you provide consent, as a participant you will be asked to set up one 

type of authentication method (such as a password or fingerprint etc.) on the phone or computer 

provided, then try using that authentication method to sign in. Following this will be a short 

questionnaire about your opinions of the authentication method such as how secure you think it is, 

how easy it is to use, how reliable it is etc. This is done so as a participant, you can get a feel for the 

authentication method and then give your opinions via the questionnaire so I can discuss the 

difference between them from a user perspective. The investigation will take place in either an office 

or computer science lab with the researcher and will take around 10 minutes. 

Do you have to take part? 

No. It is up to you to decide whether you would like to take part in this study or not, but your 

contribution would be greatly appreciated. You will not be treated any differently, whether you 

choose to take part, or decide not to do so. If you do decide to take part, you may withdraw from the 

study without giving a reason and without penalty throughout the experiment. The responses to the 

questionnaire are anonymous so you will be unidentifiable, so please note that due to this, once you 

have submitted your responses to the questionnaire you may be unable to retract them as they will 

likely be indistinguishable from one another. 

Why have you been invited to take part?  

This research requires a sizable number of participants in order for it to have validity. As such, you 

have been invited to take part in this project because you are of adult age and able to give your own 

consent, as the study does not intent on asking vulnerable groups unable to give their own consent 

through any screening processes. The study intents to portray an accurate sample so participants 

will be asked regardless of their familiarity with the various authentication methods. 
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What are the potential risks to you in taking part? 

During the experiment, you may have to set-up biometric data to sign into a mobile device. The study 

will only be using your questionnaire replies and will delete any biometric data once you a finished 

giving your questionnaire replies. You do have the right to withdraw from this project at any point, 

without giving a reason. You can withdraw from the project by informing me; Alec Wells via my email 

alec.wells@yorksj.ac.uk that you wish to do so or my supervisor Aminu Usman via email 

a.usman@yorksj.ac.uk . If you withdraw from the research, any words used by you will be removed 

from the data that has been collected. You may request that the information you have provided is 

removed from the study at any point until the questionnaire is submitted due to the anonymity of the 

replies.  

What happens to the information in the project?  

All questionnaire replies will remain confidential as they do not require any of your personal details. 

All data collected whilst conducting this investigation will be stored securely via the university, 

password protected email, linked with google drive and one drive storage systems. These are used for 

the storage of research data at York St John University, in line with the requirements of the General 

Data Protection Regulation. The information collected whilst conducting this project will be stored for 

a minimum of 6 months. 

Thank you for reading this information – please ask any questions if you are unsure about what is 

written in this form. 

What happens next? 

If you are happy to take part in this project, you will be asked to sign a consent form in order to 

confirm this. 

It is possible that the results of this research project will subsequently be published. If this is the 

case, appropriate steps will be taken to ensure that all participants remain anonymous. 

mailto:alec.wells@yorksj.ac.uk
mailto:a.usman@yorksj.ac.uk
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If you do not want to be involved in the project, I would like to take this opportunity to thank you for 

reading the information above. 

This investigation was granted ethical approval by the School of Science, Technology, and Health 

Research Ethics Committee. 
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Kruskal Wallis Output  

(Credit SPSS) 

 

Figure 29: Kruskal Wallis SPSS Output 
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Post Hoc Output 

 

Figure 30: Post Hoc SPSS Output 1 
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Figure 31: Post Hoc SPSS Output 2 

 


