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Abstract

INTRODUCTION: Many online services use data-sharing nudges to solicit personal data from their customers
for personalized services.
OBJECTIVES: This study aims to study people’s privacy preferences in sharing different types of personal
data under different nudging conditions, how digital nudging can change their data sharing willingness, and
if people’s data sharing preferences can be predicted using their responses to a questionnaire.
METHODS: This paper reports a machine learning-based analysis on people’s privacy preference patterns
under four different data-sharing nudging conditions (without nudging, monetary incentives, non-monetary
incentives, and privacy assurance). The analysis is based on data collected from 685 UK residents who
participated in a panel survey. Their self-reported willingness levels towards sharing 23 different types of
personal data were analyzed by using both unsupervised (clustering) and supervised (classification) machine
learning algorithms.
RESULTS: The results led to a better understanding of people’s privacy preference patterns across different
data-sharing nudging conditions, e.g., our participants’ preferences are distributed in a space of 48 possible
profiles more sparsely than we expected, and the unexpected observation that all the three data-sharing
nudging strategies led to an overall negative effect: they led to a reduced level of self-reported willingness for
more participants, comparing with the case of no nudging at all. Our experiments with supervised machine
learning models also showed that people’s privacy (data-sharing) preference profiles can be automatically
predicted with a good accuracy, even when a small questionnaire with just seven questions is used.
CONCLUSION: Our work revealed a more complicated structure of people’s privacy preference profiles,
which have some dependencies on the type of data nudging and the type of personal data shared.
Such complicated privacy preference profiles can be effectively analyzed using machine learning methods,
including automatic prediction based on a small questionnaire. The negative results on the overall effect of
different data-sharing nudges imply that service providers should consider if and how to use such mechanisms
to incentivise their consumers to share personal data. We believe that more consumer-centric and transparent
methods and tools should be used to help improve trust between consumers and service providers.
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1. Introduction
Behavioral nudging refers to “any aspect of the
choice architecture that alters people’s behaviors in
a predictable way without forbidding any options or
significantly changing their economic incentives” [1, 2].
When being implemented in a digital environment,
behavioral nudging is normally done via the use
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of some specific user interface (UI) elements aiming
to guide people’s decision towards a very specific
direction [3–6].

When applied to privacy-related applications, nudg-
ing can influence people’s behaviors to disclose per-
sonal information to online services, e.g., to complete
a transaction with an e-commerce website or to make a
hotel booking via a travel agent [7, 8]. In this context,
there are two different types of behavioral nudging
depending on its purpose: 1) privacy protection nudges
that help people to behave more securely in order to
achieve better privacy protection (e.g., sharing less per-
sonal data to reduce privacy risks), and 2) data-sharing
nudges used by online service providers to encourage
their customers to share more personal data in exchange
for more personalized services and/or benefits. Note
that (over-)sharing personal data with service providers
is the source of many privacy problems, so the second
type of nudges have profound implications on privacy.
Therefore, people’s privacy behaviors have been exten-
sively studied in the context of personal data-sharing
decisions, e.g., research on privacy paradox (people’s
actual data-sharing behaviors deviate from their self-
reported attitude) [9]. Data-sharing nudges are often
implemented as a range of monetary or non-monetary
incentivizing methods, e.g., cash returns, price dis-
count, loyalty points, but can also be implemented in
other ways, e.g., privacy assurance via a trust seal pro-
vided by an independent trusted party. To ensure that
data-sharing nudging messages are effective at the indi-
vidual level, some online service providers have also
considered tailoring the user interfaces of their online
services to present more targeted incentives mapping
the user’s personal preferences [10–12].

Although there is a growing number of studies
focusing on both types of privacy-related nudging, it is
still less understood how different types of data-sharing
nudges can influence people’ willingness to disclose
personal information. Some researchers have argued
that “one-size-fits-all” interventions should be tailored
by leveraging individual differences in decision making
and personality [13], which calls for personalized
nudges – that in turn requires a better understanding
of how people can be segmented into different profiles
according to their privacy attitudes towards different
types of data-sharing nudges.

In this work, we use both unsupervised (DBSCAN, k-
means, and hierarchical agglomerative clustering) and
supervised (decision tree, random forest, and naïve
Bayes) machine learning algorithms to investigate the
affect of three typical types of data-sharing nudges,
monetary, non-monetary incentives and privacy assur-
ances, on people’s willingness to disclose personal data
to service providers. The analysis is based on data
collected from 685 UK residents who participated in a
panel survey measuring their privacy attitudes towards

personal data sharing. The data is analyzed follow-
ing a three-step procedure, while the user segmen-
tation and profiling is performed by examining how
individual privacy preferences change across different
data-sharing nudging conditions. The machine learning
algorithms were chosen among widely used ones that
tend to perform well in tasks with relatively small
datasets. Multiple algorithms were considered to allow
us to identify the best method for each step of the
analysis procedure. The results led to a more com-
plete understanding of people’s privacy (data-sharing)
preference patterns, e.g., their preferences concentrate
more on a small number of profiles out of 48 possible
ones, and the unexpected result that all the three data-
sharing nudging strategies actually led more partici-
pants to report a reduced willingness level comparing
with the no-nudging condition. Our work also showed
that people’s privacy (data-sharing) preference profiles
could be automatically predicted with good accuracy,
even if just seven features are used, which suggests
that a small questionnaire with just seven questions
can be used to profile users. This can help simplify the
development of private data management tools while
configuring the initial preference for each individual
user.

The rest of the paper is organized as follows. In
Section 2, we briefly review some closely related
work. Section 3 explains the data used in detail
and the proposed three-step procedure for automatic
segmentation and profiling of individual users. The
results of applying the three-step procedure to the
collected data are discussed in Section 4. We cover
further discussions and some limitations of our work
in Section 5. Finally, Section 6 concludes the paper.

2. Related work
In this section we discuss some closely related work in
two areas: how data-sharing nudges are used by service
providers and how they influence people’ behaviors,
while also how people can be segmented based on their
privacy attitudes (i.e., research on privacy typologies).
We would like to highlight that, while many researchers
have studied privacy attitudes and behaviors under
different data-sharing nudging conditions and privacy
typologies, we have not seen any work on applying
machine learning to study privacy typologies in the
context of different data-sharing nudging strategies,
which is the focus of this paper.

2.1. Data-Sharing Nudges
Service providers have been offering different types
of incentives such as monetary rewards, price dis-
counts, loyal points, free products and services to
encourage their consumers to share more personal
data for more personalized services, with different
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effects achieved [14]. It has been found that monetary
incentives can exert positive influences in certain con-
texts. For instance, Hui et al. (2007) found that mon-
etary incentives worked for a Singaporean company
to boost personal data disclosure [15]. Mukherjee et
al. (2013) reported that monetary incentives positively
influenced not only privacy-disclosure preferences but
also actual self-disclosure [16]. Similarly, Shibchurn and
Yan (2014) showed that offering a monetary reward
could increase the willingness levels of online social
network (OSN) users to share personal data [17]. How-
ever, some other studies showed different results and
below we give two examples. While requiring sensi-
tive information, Lee et al. (2015) found that offering
customers monetary benefits resulted in an increase
in their privacy concerns, therefore it did not seem
an effective way to encourage data sharing. Instead,
they found that building trust with their customers
can be a more effective mechanism for organizations to
encourage their customers to share personal data [14].
In another study, Lu et al. (2018) found that monetary
incentives were not better than simple email reminders
for encouraging self-disclosure of personal data, in the
context of an online car-sharing platform [18].

In addition to monetary incentives, engagement
in online activities and self-disclosure of personal
information are affected by non-monetary incentives
and other factors. For instance, it was found that
the use of Facebook is strongly associated with the
benefits of social capital, such as self presence,
accumulating friends, joining virtual groups etc. [19].
There are negative results in the literature as well,
for instance, Ward et al. (2005) pointed out that
neither price discounts nor personalized services had
any effect in incentivizing customers to share personal
information [20], and that, in addition, participants
were found to be more sensitive when sharing financial
information (e.g., online transaction records), while
being relatively willing to share personal information.

Among all non-monetary factors studied, many
researchers have studied if enhancing trust between
customers and service providers via mechanisms such
as self-stated privacy statements (e.g., privacy policies)
and third-party trust seals can play an important role
in influencing people’ decisions on data disclosure.
Gerlach et al. (2015) reported that the effect of a privacy
policy’s permissiveness on users’ willingness to disclose
personal information on OSNs is mediated by users’
privacy risk perceptions [21]. In another study, Kobsa
and Teltzrow (2004) found that people were more
willing to share personal data when purchasing from
online shops that attach certain descriptions of privacy
practices [22]. Comparing with monetary rewards,
Gabisch and Milne (2013) found that “safety cues”,
such as a statement reassuring users about the existence
of a privacy policy and a privacy seal on a website,

could be more effective in encouraging self-disclosure
online [23]. Similarly, in the context of location-based
social network services, Zhao et al. (2012) also reported
that privacy policies (in addition to privacy controls)
could help in reducing privacy concerns when sharing
location-based information [24]. Hui et al. (2007)
reported that by using proper privacy statements a local
firm in Singapore could collect more personal data than
using privacy seals [15]. In [25], it is demonstrated that
neither advanced privacy conditions (i.e., Confidential,
Anonymized-Envelope and Anonymous-Postcard) nor
monetary incentives could result in higher disclosure
rates of sensitive information. A similar result was
reported in [26], which suggests that none of many
types of privacy assurances had a direct or a moderating
effect on personal information disclosure by online
users in Saudi Arabia.

2.2. Privacy Typology

Research on privacy typology has shown that people
could be segmented into different segments or pro-
files based on their privacy attitudes. For example,
Harris and Westin’s classic work on this topic lead
to the so-called Westin’s Privacy Segmentation Index,
i.e., citizens can be grouped into three segments –
Fundamentalists, Unconcerned and Pragmatists, due to
different trust levels in existing laws and organizations’
processes and collection of their personal data [27].
Examining Internet users’ privacy concerns regarding
the collection and usage of personal information [28],
the original Pragmatist group could be further split into
two subgroups, resulting in four user segments: Uncon-
cerned Internet, Circumspect Internet, Wary Internet and
Alarmed Internet users. To examine whether Westin’s
Privacy Segmentation Index could represent users’
actual behaviors, Woodruff et al. (2014) conducted an
online survey of 884 Amazon Mechanical Turk partici-
pants with detailed statements about privacy scenarios
and privacy-sensitive consequences, leading to the find-
ing that Westin’s segments are not well correlated with
behavioral intents or consequences [29]. Such conflict-
ing results called for more research into this topic.

An immediate consequence of the existence of mul-
tiple user segments is that a “one-size-fits-all” solu-
tion will not be ideal for privacy protection. There-
fore, prediction of the user’s privacy attitude pat-
terns (privacy profiling) is helpful in many applica-
tions. Due to the reported context-dependence attitude-
consequence gap, it was also suggested to combine the
contextual and cost-benefit analyses when aiming to
predict privacy choices. For instance, in the context
of mobile applications, in [30], user groups including
Conservatives, Unconcerned, Fence-Sitters and Advanced
users could be identified based on their comfort levels
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towards requested app permissions with certain pur-
poses. Towards web-based services such as the location-
based service (LBS), Poikela et al. (2014) reported that
users could be segmented based on the frequency and
the level of accuracy of real-time shared location [31].
By inviting participants to rank privacy behaviors while
using a technology service, Morton and Sasse (2014)
suggested a five-group segmentation to describe users’
information-seeking preferences and inform the con-
struction of default privacy settings [32].

Privacy typology has also been studied by many
researchers in the context of Internet of Things (IoT)
and OSNs. For instance, for 14 IoT scenarios varying
across eight factors, Naeini et al. (2017) found that over
86% of privacy (data-sharing) preferences of users can
be modeled accurately [33]. Wisniewski et al. (2014)
studied user privacy typology based on self-reported
behaviors on privacy settings on user interfaces of Face-
book, and reported six groups of user privacy behav-
ioral profiles – Privacy Maximizers, Selective Sharers,
Privacy Balancers, Self-Censors, Time Savers and Privacy
Minidists [34]. In 2017 [35], they studied further pro-
filing of Facebook users’ privacy attitudes according
to their awareness on privacy features, ranging from
Experts to Novices. In [36], Lankton et al. (2017) exam-
ined privacy segmentation of Facebook users using two
datasets on self-reported privacy strategies from under-
graduate students in information systems and general
users, respectively. They argued that their results could
better interpret cluster differences through demograph-
ics, trust, privacy, and technology-usage perceptions.
Considering that users tend to apply default privacy
settings, some researchers investigated how well default
privacy settings could meet users’ expectations. For
instance, in [37], Watson et al. (2015) concluded that
using personal characterizations from relevant com-
munity data to create default privacy settings could
better match users’ expectations on OSNs. Based on a
survey of 337 Internet users in Germany, Schomakers
and Lidynia (2019) identified three user clusters with
different privacy attitudes: Privacy Guardians, Privacy
Cynics and Privacy Pragmatists [38].

In addition to the contextual dependency of user
segmentation of privacy attitude and actual behaviors,
some researchers also studied how the user segmen-
tation differs across different types of data items. For
instance, Knijnenburg et al. (2013) found that such data
item dependency did exist in their analysis of three
datasets of online information disclosure intentions and
behaviors [39]. They also argued that more accurate
user profiling algorithms should consider this effect to
be able to help tailor the needs of different users.

Finally, we would like to mention that as a pre-
liminary study of the present research, we conducted
a clustering-based analysis of 685 UK travelers based
on their self-reported willingness to share personal

data, which led to two different user segments: Privacy
Pessimists and Privacy Rationalists [40]. The present
research reports our efforts of applying more advanced
machine learning algorithms to the user segmentation
problem, covering more complicated aspects such as
how users’ privacy attitudes change depending on the
type of data-sharing nudging condition, and if and how
we can automatically classify a given user into a specific
user profile.

3. Data Used and Methodology
In this section, we first explain the data we used
in detail, and then describe the proposed three-step
procedure for segmenting and profiling individual
participants based on the data.

3.1. Data Used
Our study aims to segment people according to their
self-reported willingness to personal data disclosure
to online travel service providers. To gather data
needed for the study, we conducted an online survey
with a panel of UK residents recruited through a
professional survey company in May 2019, as part of
the PriVELT project1. Participants were requested to
state their level of willingness to share 23 types of
personal information online. In this study, four data-
sharing nudging strategies were tested: (1) no incentive;
(2) monetary incentives (e.g., cash), (3) non-monetary
incentives (e.g., discounts), and (4) privacy assurances
(e.g., third-party trust seals). Each data item is scored
on a five-point Likert scale: 1 = “strongly disagree”, 2 =
“disagree”, 3 = “neither disagree nor agree”, 4 = “agree”,
and 5 = “strongly agree”. The questions we asked
for the four different conditions are illustrated in the
Appendix (Table C.1). For each of the four conditions,
the participants reported how willing they would be to
share the 23 different types of personal data shown in
Table 1, so in total each participant reported 23 × 4 = 92
levels of data-sharing willingness. Note that we also
include acronyms of the 23 data types in Table 1, which
are used in Figures 2 and 3 to keep those figures more
compact.

After cleaning the data, responses from 685 par-
ticipants were considered valid. The 23-D willing-
ness responses collected from the 685 participants
were divided into four datasets, DatasetNI, DatasetMI,
DatasetPA and DatasetNMI, as the input of our data
analysis process explained later, where the subscrip-
tions in the datasets’ names refer to the four data-
sharing nudging conditions: NI = No Incentive; MI =
Monetary Incentives; NMI = Non-Monetary Incentives;

1PRIvacy-aware personal data management and Value Enhancement
for Leisure Travelers (https://privelt.ac.uk/)
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Table 1. 23 types of personal data covered in our survey and the four datasets.

Personal Data Meaning/Format
Name (N) First name(s) & last name

Date of Birth (DoB) MM-DD-YYYY
Home Address (HA) Street & number, city & postcode
Email Address (EA) e.g., xxx.yyy@org

Phone Number (PhN) 11 digits XXXX-XXX-XXXX
Profession (P) Organization & job title
Education (E) Highest level of degree

Credit Card Information (CCI) Card number, expiration date, card holder, etc.
Bank Account Information (BAI) Account number, account holder, bank name, etc.
Contacts in Address Book (CAB) Name, phone number, email address, etc.

Passport Number (PaN) 9 digits on UK passport
Driver License Number (DLN) 18 characters

Fingerprint (F) Biometric data
Voice Sample (VS)

Face Scan/Image (FS/I)
Iris/Retina Pattern (I/RP)

Social Media Profile Data (SMPD) Username, communities, city of living etc.
Hobbies/Personal Interests (H/PI)

Personal Preferences (PP) E.g., hotel booking with requirements on room types
Real-time Position (RP) GPS coordinates

Smartphone Search History (SSH) Cookies
Activity Sensor Data (ASD) Smartphone data such as time stamped movements

Specific Expenses (SE) E.g. credit card, Paypal transaction records

PA = Privacy Assurances. These acronyms will be used
in the remaining of the paper for the sake of brevity.
The demographic profiles of the 685 participants can
be found in the Appendix (Table C.2).

3.2. Methodology
To analyze the above-described data for user segmen-
tation and profiling purposes, we extended our pre-
liminary work reported in [41] by applying a more
advanced three-step procedure described below and
detailed in the following three sub-subsections.

• Step 1: Clustering – Unsupervised clustering
algorithms are applied to the four datasets to
identify the best performing algorithm.

• Step 2: Cluster Analysis – Based on the clustering
results, we look at three aspects of cluster analysis:
participant distributions to clusters and user
profiles, effectiveness of nudging strategies, and
behavioral variances across different personal
data types.

• Step 3: Automatic Profiling – Supervised
machine learning algorithms are used to evaluate
if cluster labels and user profiles across all
four nudging conditions can be automatically
predicted.

Step 1: Clustering. As stated earlier, each dataset
includes participants’ willingness responses towards 23
data types under one specific data-sharing condition,
which can be represented as a 23-D vector, w⃗ = (wi)

23
i=1,

where ∀i, wi ∈ {1, 2, 3, 4, 5}. Since the dimensionality is
relatively high, before conducting the cluster analysis,
we firstly apply a Principal Component Analysis (PCA)
for the purpose of dimensionality reduction. According
to one of the commonly used criteria for selecting
significant factors (principal components) – retaining
factors with an eigenvalue greater than 1.0 [42], six
factors are kept for actual clustering.

For the actual clustering part, a number of candidate
clustering algorithms that may perform well should
be selected and tested in order to identify the best
method for further analysis. A number of clustering-
evaluation metrics are needed here to compare the
candidate clustering algorithms.

For non-deterministic clustering methods (such as k-
means, which we actually used), the clustering result
depends on the random initial condition. Therefore, it
is necessary to examine the stability of the produced
clusters under different random initial conditions,
where the stability refers to the level of consistency
of the clustering results, i.e., the same points stay in
the same cluster. The procedure used to perform this
stability evaluation is explained below.
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For each dataset X and each number of clusters
(k), the non-deterministic clustering method is run
for n times varying the random initial conditions
used to initialize the non-deterministic algorithm. To
measure how stable the clustering results are across
the n rounds, we need a quantitative metric to allow
comparison and selection of the best parameters.
Considering that the actual cluster labels of different
runs for each (x, k) do not align and there are no ground
truth labels, we define a pair-based stability metric
SMX,k,n as follows:

SMX,k,n =
Ns(n)
Nx,k

, (1)

where NX,k is the total number of unique data-point
pairs for the database X and a specific number of
clusters k, and Ns(n) is the number of pairs of data
points that fall into the same cluster consistently for
all n runs of k-means. This metric has a natural range
between 0 and 1, and could be interpreted as the
probability of a randomly sampled data-point pair in
the dataset x never being split into two separate clusters
across all n runs of clustering, when k clusters are pre-
defined. A higher value of SMX,k,n indicates a higher
level of stability of the clustering results. With the
above-defined stability metric, for each x we can find
the best value of k giving the highest value of SMX,k,n.

By clustering a user’s responses under four different
data-sharing nudging conditions, a more complete
picture of the user’s privacy preferences to data-
sharing nudging can be inferred by identifying user
segments over four datasets, corresponding to their
data-sharing willingness in four different conditions:
“sharing for no additional benefit”, “sharing for
additional monetary returns”, “sharing for additional
non-monetary returns” and “sharing due to third-party
privacy assurances”. In this way, there are maximally
kNI × kMI × kNMI × kPA possible user profiles.

Step 2: Cluster Analysis. Step 1 gives a set of clusters
for each of the four data-sharing nudging conditions. In
Step 2 we conduct a detailed analysis of the clustering
results, focusing on the following three different but
related aspects.

For the first aspect, we examine how all participants
distribute to different clusters under each nudging con-
dition and also to the kNI × kMI × kNMI × kPA different
user profiles considering their overall behaviors across
all four nudging conditions. The latter allows us to
examine how some participants may “migrate” from
one cluster with a lower level of data-sharing willing-
ness to a higher one under a specific nudging condition,
or vice versa, therefore providing some useful evidence
about effectiveness of different nudging strategies. To
capture the “cluster-migration rate”, i.e., the portion of
participants in one cluster Xi (the i-th cluster under the

nudging condition X) who “come from” another cluster
Yj (the j-th cluster under the nudging condition Y , X),
we define a similarity metric as follows:

SXi ,Yj =
#(Xi ∩ Yj )

#(Yj )
, (2)

where #(X) denotes the cardinality of a set X.
This similarity has a natural range of [0, 1], and a
higher value indicates a higher level of membership
overlap between these two clusters. Note that this
similarity metric is asymmetric, i.e., SXi ,Yj = SYj ,Xi

does not hold in general, since the cluster-migration
rates for both directions can be different. We focus
on the cluster migration rates from clusters under
the no-nudging condition NI to other three nudging
conditions because this migration direction can give
more useful information about how data-sharing
nudges can influence participants’ behaviors.

The second aspect will extend analysis on the
effectiveness of the three nudging conditions by looking
at to what extent they are able to successfully
nudge participants towards a higher willingness level
to share personal data. Different from the first
aspect, which focuses more on collective behaviors
inferred from the average data-sharing level per
cluster, here we examine how data sharing nudging
strategies influence individual participants’ data-
sharing willingness (increase, decrease or no change).

The third aspect is about how participants’ data-
sharing willingness levels vary across all 23 types
of personal data. We expect participants will have
different privacy (data-sharing) preferences on different
data types, and it is interesting to know how such
type-specific behaviors may affect our overall analysis
results.

Step 3: Profile Prediction. In this step, we look at how
to build four separate classifiers, each automatically
predicting the cluster label of a given 23-D data
point w⃗ (i.e., an individual participant’s response)
under a specific nudging condition. The four classifiers
jointly can predict the participant’s overall user
profile. Having such classifiers also allows us to
have a different set of evaluation criteria for the
clustering performance in Step 1 because we would
like to choose the clustering method and relevant
parameters to optimize the prediction accuracy, too.
In our experiments, we decided to choose decision
tree (DT), random forest (RF) and naïve Bayes (NB)
as the candidate classification algorithms because
they can be trained based on a smaller dataset to
achieve a reasonably good performance. The first two
algorithms can also return indicators of importance
of different features for selecting a smaller number
of important features for classification, which will
allow using a small questionnaire to profile users
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and therefore improve usability of such user profiling
/ personalization systems. Once the most important
features for classification are determined, we re-train
the classification models using only those features, and
measure their predictive accuracy.

4. Results
4.1. Step 1: Clustering
We decided to choose three well-established clustering
algorithms of different types as candidates: DBSCAN
(Density-Based Spatial Clustering of Applications with
Noise) [43], k-means [44] and hierarchical agglomera-
tive clustering (HAC) [45]. We used implementations
of these algorithms in the widely used library scikit-
learn2 (0.21.3) running with Python 3.7. We set the
parameters kmax (the maximum number of clusters) and
tmax (the number of runs for each (x, k)) both to 10.
For cluster-evaluation metrics, we decided to use four
widely adopted indices: silhouette index (S), Calinski-
Harabasz index (CH), Davies-Bouldin (DB) and S-Dbw
(SD) index [46–51]. In order to determine the value
of kmax, we ran one of the three clustering algorithm
DBSCAN with kmax = 10 and it failed to produce any
clustering results for k = 9 and k = 10 under two nudg-
ing conditions MI and NMI (see Tables C.4 and C.5).
We considered that these results indicate that mean-
ingful clusters cannot be identified for k > 10, so we
decided to set kmax = 10 for our clustering experiments.
Tables C.3–C.6 show the comparison results of the
3 clustering algorithms for each of these indices and
each value of k in {2, 3, . . . , 10}. We identified the best
clustering algorithm for each of the four datasets by
choosing the algorithm with the most “wins” among all
the performance metrics. For instance, Table C.5 shows
that for Dataset_NMI, k-means is the best when k = 4
given that it achieved more best scores than others, and
it is the best across all k values for the same reason.

Here we focus only on a summary of these results, as
reported in Table 2. In this table, Columns 1 and 2 show
the number of clusters (k) and the clustering algorithm,
respectively. In Columns 3–6, each cell in this table
shows, for each combination of k and algorithm, the
number of clustering quality indices (out of 4) for which
the algorithm was ranked the best, for a given dataset
(as identified in the heading of Columns 2–6). The
rightmost column shows the total number of times the
algorithm was ranked the best across the 4 datasets, out
of 16 times (4 datasets times 4 index values per dataset),
for each value of k.

The results clearly show that the k-means algorithm
achieved the best overall performance, which is stable
across all values of k. More precisely, considering all

2Also known as sklearn: https://scikit-learn.org/

k values shown in Table 2, k-means is ranked the best
in 107 cases, whilst HAC and DBSCAN are ranked the
best in only 20 and 17 cases, respectively. In addition, k-
means outperformed the other two clustering methods
for all 9 values of k. Hence, k-means was selected for
further analysis.

The next step of the result analysis consists of
selecting the best value of k for k-means. This is defined
in Eq. (1) for computing the value of SMx,k of each
dataset x and each value of k in {2, 3, . . . , 10}. The results
are shown in Table 3, where the number of clusters
corresponding to the largest possible value of SMx,k
(meaning the most stable cluster results – no change at
all across all 10 runs) for each dataset is highlighted in
light gray. In general the most stable clustering results
were obtained with smaller k values, between 2 and 5.

In addition to training classifiers to do automatic
profiling of participants in our survey, we are also
interested in how good the clustering results are for
supporting the automatic profiling in the Step 3.
Therefore, to further validate the results in Table 3, we
built some classifiers (based on decision tree, random
forest and naïve Bayes, as mentioned in the previous
section) and compared their predictive performance
indicators. One classifier was built for each best
clustering clustering result produced by the k-means
algorithm (i.e., those gray cells shown in Table 3). The
predictive accuracy of these classifiers was evaluated
through a five-fold cross validation. Each classifier
was trained using a training set, which includes 80%
of all data points in one of the four datasets and
the corresponding cluster IDs as the class labels. The
remaining 20% data points in each dataset was used as
the test set to calculate the performance indicators of
the trained classifier.

In Table 3, there is a single best number of clusters
(k) for the datasets NI and PA – k = 2. However, there
is a tie between the two best values of k for datasets MI
and NMI. Therefore, by using the classifiers to further
validate the clustering results, we can also determine
the best k value for the MI and NMI datasets between
the two values with a tie.

Table 4 shows the results of three widely used
predictive accuracy measures – the accuracy (i.e., the
average percentage of correct predictions across all
classes), the weighted-average F1-score and the Area
Under the ROC Curve (AUC) after binarizing class
labels – for all three classifiers we built. As observed
in Table 4, for all three performance metrics and all
three classifiers, the better value of k is 3 for the MI
dataset and 4 for the NMI dataset. Hence, these k values
are selected for further analysis for these two datasets.
Besides, all the three classifiers trained with the selected
k values obtained a high predictive performance, but
random forest and naïve Bayes models performed better
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Table 2. Comparison of clustering performances.

k Algorithm DatasetNI DatasetMI DatasetPA DatasetNMI Sum
2 DBSCAN 0 1 0 0 1

k-means 1 3 4 2 10
HAC 3 0 0 2 5

3 DBSCAN 1 0 0 0 1
k-means 3 3 4 2 12

HAC 0 1 0 2 3
4 DBSCAN 1 0 0 1 2

k-means 3 2 3 2 10
HAC 0 2 1 1 4

5 DBSCAN 2 0 1 1 4
k-means 2 2 3 3 10

HAC 0 2 0 0 2
6 DBSCAN 0 0 1 1 2

k-means 4 4 3 3 14
HAC 0 0 0 0 0

7 DBSCAN 1 0 1 0 2
k-means 3 4 2 4 13

HAC 0 0 1 0 1
8 DBSCAN 0 0 1 0 1

k-means 3 4 3 3 13
HAC 1 0 0 1 2

9 DBSCAN 1 0 1 0 2
k-means 3 4 3 4 14

HAC 0 0 0 0 0
10 DBSCAN 1 0 1 0 2

k-means 2 3 2 4 11
HAC 1 1 1 0 3

Table 3. Stability metrics of clustering results of k-means.

k NI MI NMI PA
2 1.00000 0.99766 0.97244 1.00000
3 0.98932 1.00000 1.00000 0.98298
4 0.99791 0.97932 1.00000 0.99456
5 0.99809 1.00000 0.97436 0.97653
6 0.97797 0.98920 0.96131 0.99602
7 0.96659 0.98788 0.97084 0.98713
8 0.92148 0.94397 0.96886 0.95987
9 0.94470 0.95525 0.95978 0.94978

10 0.93811 0.95281 0.94728 0.93280

than decision trees with a significant margin for all
settings.

4.2. Step 2: Cluster Analysis

In this subsection, we report results of our cluster
analysis on all the three aspects described in Section 3.2.

Participants vs. Clusters and User Profiles. How partic-
ipants distribute to the different clusters under each

nudging condition (produced by the k-means cluster-
ing algorithm in Step 1) is shown in Table 5, from
which we can see that under each nudging condition
different clusters have significantly different values of
w (the average data-sharing willingness level across all
participants belonging to a cluster). We also conducted
a one-way (between-subject) ANOVA to check if the
differences are statistically significant, and the results
are positive for all with p < 0.001: NI – F(1, 683) = 401;
MI – F(2, 682) = 1295; NMI – F(3, 681) = 854; PA –
F(1, 683) = 1233. For MI and NMI, since there are more
than two groups a Tukey’s post-hoc test was run and
the results showed significant differences between all
group pairs. Based on the statistical results, we name
the clusters according to the values of w: L (low) or
H (high) for the nudging conditions NI and PA (k =
2); L (low), M (medium) or H (high) for MI (k = 3);
L (low), ML (medium low), MH (medium high) or
H (high) for NMI (k = 4). Accordingly, we use these
names to differentiate the clusters under the same con-
ditions, e.g., NMIML refers to the ML cluster under the
nudging condition NMI. We also conducted a separate
one-way ANOVA to compare differences between all
11 clusters across different nudging conditions, which
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Table 4. Performance indicators of all classifiers we built for predicting and further validating the user clustering results of k-means.
For MI and NMI datasets, we highlight the higher accuracy in bold face for the two possible values of k.

Classifier Metric NI MI NMI PA
k = 2 k = 3 k = 5 k = 3 k = 4 k = 2

DT
Accuracy 0.892 0.880 0.799 0.876 0.880 0.879
F1-score 0.890 0.880 0.799 0.876 0.880 0.879

AUC 0.885 0.925 0.895 0.922 0.940 0.900

RF
Accuracy 0.955 0.924 0.877 0.899 0.921 0.921
F1-score 0.954 0.924 0.876 0.899 0.922 0.921

AUC 0.995 0.990 0.989 0.985 0.993 0.983

NB
Accuracy 0.942 0.927 0.893 0.909 0.928 0.949
F1-score 0.942 0.927 0.895 0.910 0.929 0.949

AUC 0.984 0.987 0.983 0.979 0.987 0.990

gave F(10, 2729) = 540 with p < 0.001. A Tukey’s post-
hoc test revealed that a significant difference exists
between all cluster pairs except for the following ones:
(NIH,PAH), (MIH,NMIH), (NMIH,PAH), (MIL,NMIL),
and (NMIML,PAL). Based on the results, in the following
analysis we do not consider there are significant differ-
ences between these cluster pairs.

If we consider participants’ overall behaviors across
all four nudging conditions, we can observe some
more interesting behavioral patterns as shown in Fig-
ure 1. Surprisingly, the distribution is much sparser
than we expected: only 9 profiles stand out with
a significant portion of participants, and each of
the other 39 profiles has just a few (no more than
12) participants so can be considered background
noises. Probably not surprisingly, two (the most and
the third most) “popular” profiles turned out to be
(NIL,MIL,NMIL,PAL) and (NIH,MIH,NMIH,PAH), rep-
resenting un-incentivizable privacy fundamentalists and
those privacy-unconcerned, respectively. The remaining
7 profiles can be classified into four sub-groups: 1) 4
profiles (those close to the left bottom corner) repre-
sent moderately incentivizable privacy fundamentalists; 2)
the profile (NIH,MIH,NMIMH,PAH) representing those
with slight privacy concerns over non-monetary incen-
tives; 3) the profile (NIM,MIM,NMIMH,PAH) represent-
ing privacy pragmatists happy with privacy assurance
more than monetary and non-monetary incentives; and
4) the profile (NIL,MIM,NMIMH,PAH) that represents
pragmatic privacy fundamentalists who are incentivizable,
more so by non-monetary incentives and privacy assur-
ance than monetary incentives. To summarize, the above
behavioral patterns lead to the following observation:
70.5% of participants fall into two ends of the spectrum
– over half of all participants (51.2%) are more like
privacy fundamentalists and 18.4% have no or only
slight privacy concerns; only two profiles (which cover
only 9.6% of all participants) can be considered privacy
pragmatists; and all the other 39 profiles cover the
remaining 19.9% of participants.

Cluster-migration rates from the two NI clusters to
cluster in other three nudging conditions are shown
in Table 6. As a general trend, all three data-sharing
nudging strategies have no (L to L or H to H) or only a
moderate (L to ML/M or H to MH/M) influence on most
participants, although a small portion of participants
changed their data-sharing willingness level drastically
(L to H or H to L). This observation is aligned with the
results shown in Figure 1.

Data-Sharing Nudges vs. Individual Behaviors. The results
discussed in the previous sub-subsection already give
some indication on the lack of effectiveness of all
the three data nudging strategies, but the analysis is
based on collective behaviors at the cluster level. In
this sub-subsection we look at how the three data
nudging strategies influenced individual participants’
self-reported data-sharing willingness levels, to get
more direct evidence on their actual effectiveness.
Denoting the difference of the self-reported data-
sharing willingness level reported by a participant
under a nudging condition C and that under no-
nudging condition by ∆C(w), Table 7 shows the
median and mean values of ∆C(w) for all the three
nudging conditions, from which we can see a surprising
result – all the three nudging strategies actually led
more participants to report a reduced willingness
level comparing with the no-nudging condition. The
observed failure of all nudging strategies even holds for
participants in NIH.

One may argue that the direction of change in the
value of w (i.e., no change, increased or decreased)
matters more than how much it changed. Table 8
shows the percentages of participants who fall into
these three categories. The results are indeed more
revealing: for all nudging strategies, there are more
participants with a decreased willingness level than
those with an increased level. This implies that, while
all the three nudging strategies can work for some
participants, they failed for more participants so the
overall effect is a failure (according to their purpose of
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Table 5. The size # (i.e., the number of participants), the percentage and the average data-sharing willingness level w ∈ [1, 5] of
all clusters (C = nudging condition).

C NI MI NMI PA
i L H L M H L ML MH H L H
# 482 203 204 306 175 202 187 169 127 404 281
% 70% 30% 30% 45% 26% 30% 27% 25% 19% 59% 41%
w 2.19 3.45 1.31 2.38 3.57 1.27 2.04 2.82 3.54 1.97 3.38

(NIL,MIL) (NIL,MIM) (NIL,MIH) (NIH,MIL) (NIM,MIM) (NIH,MIH)

(NMIL,PAL)

(NMIML,PAL)

(NMIMH,PAL)

(NMIH,PAL)

(NMIL,PAH)

(NMIML,PAH)

(NMIMH,PAH)

(NMIH,PAH)

18.83% 5.11% 0.73% 0.88% 0.29% 0.15%

4.53% 17.52% 0.58% 0.29% 0.73% 0.15%

0.73% 6.13% 0.44% 0% 0.58% 0.15%

0% 0.29% 0.44% 0% 0% 0.44%

1.61% 0.58% 0.29% 0.73% 0.29% 0.00%

0.29% 1.75% 0.44% 0.15% 0.58% 0.29%

0.15% 5.84% 1.75% 0.29% 3.80% 4.82%

0.29% 0.73% 1.31% 1.02% 0.44% 13.58%

0

3.14

6.28

9.42

12.55

15.69

18.83

%

Figure 1. Distributions of participants to all 48 user profiles.

Table 6. Similarity scores between the two NI clusters and the clusters under the other three nudging conditions, calculated according
to Eq. (2) (C = nudging condition).

C MI NMI PA
i L M H L ML MH H L H

SCi ,NIL
0.38 0.54 0.09 0.39 0.36 0.21 0.04 0.79 0.21

SCi ,NIH
0.11 0.23 0.66 0.08 0.07 0.33 0.52 0.12 0.88

Table 7. Median and mean (± standard deviation) values of ∆C(w) under different nudging conditions (C).

C Participants in NIL Participants in NIH All participants
MI -0.13 (−0.14 ± 0.69) -0.09 (−0.34 ± 0.87) -0.13 (−0.20 ± 0.75)

NMI -0.22 (−0.26 ± 0.64) -0.17 (−0.33 ± 0.73) -0.22 (−0.28 ± 0.67)
PA -0.04 (0.01 ± 0.53) 0 (−0.09 ± 0.62) -0.04 (−0.02 ± 0.56)

increasing the overall data-sharing willingness level).
This result came as a surprise to us, and has a profound
implication on if and how service providers should use
data-sharing nudges at all to solicit personal data from
their customers.

While all the three nudging strategies failed to work
as a whole, data in Tables 7 and 8 also show the order
of overall effect of the three nudging strategies: PA > MI
> NMI. The fact PA works better than MI implies that
service providers should consider how to increase trust
of their customers on their services rather than relying
on monetary or non-monetary incentives.

Data Type vs. Data-Sharing Willingness. All our previous
analysis is based on the data-sharing willingness level
averaged across all 23 different types of personal
data. Figure 2 shows how the willingness level
varies across those data types. Despite the visible
variations, for all 23 data types and all four nudging
conditions, participants in a L cluster always reported
a lower average level of willingness than those in
the corresponding H cluster. Under the MI condition,
participants in the H cluster reported a lower average
level of willingness than those in the M cluster for all
data types except for one (N). Under the NMI condition,
results are more mixed: differences are less clear among
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Table 8. Percentages of participants with an unchanged (=), increased (+) and decreased (-) value of w under different nudging
conditions (C).

C
Participants in NIL Participants in NIH All participants
= + - = + - = + -

MI 7% 31% 62% 12% 28% 60% 8% 30% 61%
NMI 6% 25% 69% 7% 30% 63% 7% 26% 67%
PA 9% 39% 52% 15% 39% 46% 11% 39% 51%

ML, MH and H clusters for 10 data types (N, DoB, HA,
EA, PhN, CCI, P, E, PaN, PP), showing the boundary
between these clusters are not always a clear cut for
these data types. As a whole, we felt the results based on
averaging across 23 data types should still give largely
reliable results since the mixed results have a limited
effect. However, we believe that more future research is
needed to further explore the data type-specific aspects.

Looking at all the results, another observation stands
out: across all four nudging conditions, participants
in H-clusters and those in non-H-clusters behaved
particularly differently for the following types of
personal data: BAI, CAB, PaN, DLN, F, VS, FS/I, I/RP,
SMPD, SSH. Comparing with other data types, the
above types seem generally more sensitive such as
biometric features (F, VS, FS/I, I/RP), finance-related
(CCI, BAN), and more private data (PaN, DLN, SSH).
SMPD seems a notable exception – many people have
public profiles on social media so it remains unclear
why some participants had more concerns on this type
of personal data. More future research will be required
to understand more about this particular observation.

4.3. Step 3: Profile Prediction
In Section 4.1, we have shown how an individual’s
profile can be predicted by training four classifiers,
one for each nudging condition, and then used the
profile predictor to help further validate the clustering
results and determine the the “best” k values for k-
means clustering. We have also shown the performance
of the classifiers are generally good (see Table 4). In this
subsection we look at how the number of input features
of the four classifiers can be reduced from 23 × 4 = 92 to
a more usable number in real-world applications, i.e., a
user needs to answer only fewer questions (ideally just
up to a handful) to let the system set up his/her privacy
(data-sharing) preference profile.

To help determine the most important features
for all the four classifiers we built, we show all
23 features for each of the four trained classifiers
in Figure 3, visualizing the significance level ([0,1])
of each feature (measured by running the method
feature_importances_ in the scikit-learn library). From
the results shown in Figure 3, we can see that, for
decision trees (with parameter min_sample_leaf = 2)
only a very small number of features have a high

significance level, therefore we can easily choose the
most important features. While for random forests
(with parameter n_estimators = 1,000), it seems more
difficult to select significant variables as their weights
are more evenly distributed. The significance patterns
of different nudging conditions are also significantly
different, so we need to select the reduced feature
subsets for the four classifiers separately.

When decision trees are used to build classifiers,
we are able to select only 7 features out of 92
features across the four classifiers. For the no-nudging
condition, the significance of willingness to share
Voice data (significance level = 0.68) is much higher
than the significance of any other features, and thus
only this feature is selected for profile prediction.
Similarly, a significantly reduced feature set can be
determined for the other three nudging conditions:
(Email Address, Face Scan/Image) (significance level =
0.33, 0.25) for monetary incentives, (Name, Education,
Fingerprint) (significance level = 0.29, 0.2, 0.23) for non-
monetary incentives, and Activity Sensors (significance
level = 0.41) for privacy assurances. Hence, for these
experiments with the most significant variables only,
when using the decision tree algorithm, only 7 out of the
23 variables were used across the four datasets, in order
to predict the class labels in four nudging conditions. In
the case of random forests, we simply selected the five
most significant features from each nudging condition
to reduce the total number of features to 20. The
prediction accuracy of the classifiers built with the
reduced number of features can be seen in Table 9.
While the performance drops in general, the accuracy
is very good for the no-nudging condition (over 96%
for both decision trees and random forests) and still
reasonably high for the other three conditions: ≥ 79%
for decision trees and ≥ 88% for random forests. Note
that in real-world applications, a relatively accurate
prediction is often sufficient and better than what is
currently being used (a default profile for all or multiple
profiles the user has to manually choose).

5. Further Discussions and Limitations
5.1. Further Discussions
The results reported in the previous section lead to
a number of interesting observations about privacy
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Figure 2. Means and standard deviations of the data type-specific data-sharing willingness levels w, under the four different nudging
conditions, shown as error bar charts.

Table 9. Prediction accuracy of classifiers trained with a reduced
number of important features only. The number within brackets
indicates the reduced number of features used.

NI, k = 2 MI, k = 3 NMI, k = 4 PA, k = 2
DT 0.964 (1) 0.854 (2) 0.861 (3) 0.796 (1)
RF 0.978 (5) 0.891 (5) 0.883 (5) 0.920 (5)

(data-sharing) preferences of individuals. First, our
study draws a more comprehensive picture of 48
user profiles of individual privacy (data-sharing)

preferences, showing that people’s privacy preference
patterns could be changed by data-sharing nudging
strategies in different ways, which suggest that
personalized solutions are needed. The surprising
observation on the lack of overall effectiveness
of all three data-nudging strategies indicates that
people’s privacy (data-sharing) preferences can be more
complicated and service providers should re-consider if
and how monetary and non-monetary incentives should
be used. As we reviewed in Section 2.1, conflicting
results on data-sharing nudges have been reported in
the literature, so more research is needed to clarify if
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Figure 3. Feature significance levels of decision trees ( ) and random forests ( ).

what we observed in this research can be reproduced
in other experiments and different contexts. Second,
our results on automatic profile prediction show that
it is possible to use four separate classifiers with
a small number of features (as few as 7 in total)
to capture the complicated user profiling problem,
therefore potentially offering service providers a better
tool to serve their customers with enhanced usability.

In addition to the direct implications of our results
for service providers mentioned above, our work can
provide useful insights to more parties of the larger data
economy ecosystem. For instance, many independent
personal data management platforms (PDMPs)3 have
been developed to give users more control of their
own data and to empower users to trade data with
service providers. Such PDMPs can use the user
profiling method reported in this paper to engage
users and better serve users, including recommending
services to users according to their privacy (data-
sharing) preferences and special requirements on
utility. In addition, new businesses opportunities can be
generated around user-facing tools to help individual
users using the work reported in this paper, e.g., a data
sharing awareness tool can help users better understand
how they are sharing data with multiple entities online

3Some examples: Solid (https://solid.mit.edu/), HAT
(https://www.hubofallthings.com/), Databox (https:
//www.databoxproject.uk/) and digi.me (https://digi.me/).

and in the physical world, and a service comparison tool
can assist users to choose the best service based on their
personal privacy (data-sharing) preferences, including
switching to physical services to avoid sharing more
sensitive data online. Furthermore, our work could
help policy makers such as national data protection
authorities, e.g., to define more granular regulations
and guidelines for different businesses sectors and user
groups.

Due to the sensitive nature of many personal data
and privacy as a basic human right4, our work has
important links to issues around ethics, transparency,
trust and legal obligations of different parties in
the data economy ecosystem. For instance, ignoring
consumers’ privacy wishes and constantly nudging
them for more personal data is likely unethical if not
illegal. Our results reported in this paper re-confirmed
previous findings that some people would become
more alerted and less willing to share personal data
if they see any data-sharing nudges, which could be
explained by the lack of trust between some consumers
and service providers. Such a lack of trust is often
caused by the lack of transparency about service
providers’ data collection and processing practices.

4As defined in the Universal Declaration of
Human Rights (UDHR, https://www.un.org/en/

universal-declaration-human-rights/) and human right laws in
many jurisdictions.
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Service providers should therefore increase the level
of transparency of their processes, and provide more
diverse solutions to people with different privacy (data-
sharing) preferences, which can help build a more
privacy-friendly ecosystem. Having a more user-centric
ecosystem will eventually benefit service providers
especially those who respect consumers more and
engage them more actively. Our work can offer service
providers tools towards such a direction.

5.2. Limitations
Since our analysis is based on data collected from
an online survey, it can reflect only self-reported
privacy attitudes rather than actual behaviors in real
world. However, as widely reported in past studies
around the privacy paradox theory [9], the self-reported
willingness may not be consistent with actual data-
sharing behaviors, which can be affected by various
factors such as how information is presented and the
context of the data sharing. We plan to investigate
actual data-sharing behaviors in selected real world
scenarios and see if how behavioral profiles may
change. This will allow us to look at how people’s
privacy attitudes and behaviors evolve over time, e.g.,
via a longitudinal study.

As with all empirical studies, some biases may have
been introduced in the data collection procedure and
the experimental design. For instance, in the survey
we conducted, for all questions the four nudging
conditions were presented in one fixed order, i.e.,
“No Nudge” → “Monetary Incentive” → “Privacy
Assurances” → “Non-Monetary Incentive”. To identify
and avoid such biases, we will consider re-validating
our work under different experimental setups.

In addition, the panel survey we conducted may have
attracted people in different base-line clusters (NIL and
NIH) unevenly so the results on the overall population
may be biased. Despite this uncertainty, aggregated
results on both clusters in Section 4.2 showed that the
affects of the three nudging strategies on the two NI
clusters are largely aligned with just a small margin, so
we believe that our main conclusions should hold.

While we believe the data we collected are sufficiently
representative and the main insights are reliable, there
are some factors that may affect the generalizability of
the reported results especially at the lower level, e.g.,
which profiles out of the 48 ones are more dominating.
For instance, our pool of participants was limited to
a single country (UK) and the number of participants
(685) may not be large enough to allow examination of
some profiles, especially those that are less common.
In addition, our survey was put into a more realistic
context of data sharing with online travel service
providers, which may not be able to capture different
responses in other contexts. We will conduct more

future work to further validate our reported results
with participants from other countries.

When performing the first step, i.e., the clustering, a
prior step was taken to reduce the dimensionality using
PCA. Since our datasets contain 23 dimensions (n = 23),
using PCA was helpful to reduce the dimensionality to
6 (n = 6) and thus avoid problems with the computation
of distances between examples (samples) in datasets,
where all examples would be essentially far away from
each other due to the high dimensionality (if n = 23 was
used). Such a pre-processing step has been commonly
used by researchers for clustering high-dimensional
data [52–57]. PCA has the drawback of being global so
it cannot preserve pairwise distance between points in
the original space. To address this problem, we can use
a dimensional reduction algorithm that can preserve
such distances better [58], e.g., t-SNE [59]. We plan
to test such distance-preserving dimensional reduction
algorithms in our future work and compare the results
with what are reported in this paper with PCA.

For clustering we tested three algorithms, and for
automatic profile prediction we tested three algorithms
– decision trees, random forests and naïve Bayes.
While those chosen algorithms gave good results, other
algorithms may perform even better. We will explore
these possibilities in future work.

6. Conclusions
This paper presents our work on utilizing both unsuper-
vised and supervised machine learning algorithms to
analyze 685 UK residents’ self-reported willingness lev-
els to share 23 types of personal data with online travel
companies, under four different data-sharing nudg-
ing conditions (no nudge, monetary and non-monetary
incentives, and privacy assurances). By applying a
three-step data analysis process, we revealed more com-
prehensive user segmentation results when we consider
how different types of data-sharing nudges influence
people’s data-sharing behaviors. We also showed that,
using four classifiers and a small number of features
(as few as seven), people’s data-sharing behavioral pro-
files can be predicted with good accuracy. The results
reported provide new insights on how people’s privacy
preferences interact with data-sharing nudges and how
machine learning methods can be used to analyze and
capture such interactions. They can find direct applica-
tions in many real-world scenarios, e.g., online booking
for flights and hotels, OSN-based communication, and
web forum discussions, to help better balance people’s
wishes for privacy protection and service providers’
desires to provide more personalized services.
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Appendix A. Survey questions for disclosure willingness
Table C.1 shows the questions we used to collect self-reported levels of willingness to share the 23 types of personal data from
human participants in the panel survey.

Appendix B. Demographic information of human participants
Table C.2 shows some basic statistics on the demographic information of human participants of the user study.

Appendix C. Determining the best clustering method
Tables C.3–C.5 show the detailed performance metrics of all clustering algorithms we applied to all the four databases
corresponding to the nudging conditions, for determining the best clustering method.

Table C.1. Questions we used to capture the level of willingness to disclose personal information with online travel companies. Each
question is followed by a list of 23 data types and a 5-point Likert scale.

Nudging Condition Items
No Nudge “How willing are you to share the following information with online travel

companies?”
Monetary Incentives “Should you receive monetary incentives (i.e., cash), how willing are you to share

the following information with online travel companies?”
Non-Monetary Incentives “Should you receive non-cash incentives (such as coupons and discounts), how

willing are you to share the following information with online travel companies?”
Privacy Assurances “If the online company is providing privacy assurances (such as an easy to read

privacy policy) about the protection of your personal data, how willing are you to
share the following information with online travel companies?”

Table C.2. Demographic profiles of all human participants (N = 685).

Demographic characteristic Features Percentage (%)
Gender Male 47.15

Female 52.41
Other 0.44

Age (years) 25 or younger 4.82
26–35 23.94
36–45 12.26
46–55 17.23
56–65 22.19

over 65 19.56
Education Less than high school 2.92

High school 38.83
Bachelor’s degree 34.45
Master’s degree 14.31

PhD/Doctoral degree 3.94
Other 5.55

Frequency of travel 1-2 times per year 33.87
3-4 times per year 36.93

More than 4 times per year 29.20
Frequency of online shopping Daily 9.78

Several times a week 21.02
Several times a month 41.32
Roughly once a month 23.50

Almost never 4.38
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Table C.3. Performance of user clustering (DatasetNI).

Metric DBSCAN (D) k-means (K) HAC (H) Best
k = 2 S 0.008 0.298 0.349 H

CH 44.559 310.220 204.861 K
DB 1.593 1.292 0.960 H
SD 1.076 1.196 1.053 H

k = 3 S -0.076 0.260 0.198 K
CH 57.372 305.391 225.800 K
DB 1.200 1.342 1.301 D
SD 1.072 1.048 1.224 K

k = 4 S -0.034 0.241 0.205 K
CH 55.837 274.006 237.771 K
DB 1.392 1.371 1.401 K
SD 1.112 1.178 1.272 D

k = 5 S -0.125 0.227 0.200 K
CH 46.030 247.373 212.119 K
DB 1.334 1.380 1.521 D
SD 1.243 1.464 1.293 D

k = 6 S -0.120 0.230 0.182 K
CH 53.244 234.26 193.284 K
DB 1.689 1.337 1.439 K
SD 1.316 1.224 1.279 K

k = 7 S -0.160 0.222 0.165 K
CH 38.300 222.745 180.731 K
DB 1.144 1.325 1.469 D
SD 1.256 1.122 1.273 K

k = 8 S -0.159 0.221 0.150 6 K
CH 44.481 209.744 169.485 K
DB 1.479 1.345 1.497 K
SD 1.463 1.233 1.226 H

k = 9 S -0.17 0.216 0.146 K
CH 36.055 199.121 160.126 K
DB 1.106 1.378 1.49 1 D
SD 1.445 1.222 1.250 K

k = 10 S -0.161 0.203 0.145 K
CH 37.571 185.255 152.538 K
DB 1.315 1.399 1.566 D
SD 1.650 1.615 1.306 H

End of Table

Table C.4. Performance of user clustering (DatasetMI).

Metric DBSCAN (D) k-means (K) HAC (H) Best
k = 2 S 0.012 0.346 0.332 K

CH 81.010 463.115 425.800 K
DB 1.582 1.158 1.205 K
SD 0.989 1.046 1.066 D

k = 3 S 0.018 0.324 0.271 K
CH 70.737 427.812 331.866 K
DB 1.549 1.185 1.205 K
SD 1.069 .992 0.971 H

k = 4 S 0.033 0.313 0.276 K
CH 105.662 377.193 315.944 K
DB 1.278 1.309 1.268 H
SD 1.179 0.942 0.914 H

k = 5 S 0.005 0.320 0.278 K
CH 88.851 350.365 297.708 K
DB 1.265 1.291 1.240 H
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Continuation of Table C.4
Metric DBSCAN (D) k-means (K) HAC (H) Best

SD 1.209 1.079 0.950 H
k = 6 S -0.004 0.326 0.274 K

CH 79.416 334.567 284.012 K
DB 1.293 1.190 1.391 K
SD 1.342 1.054 1.140 K

k = 7 S -0.028 0.329 0.252 K
CH 72.697 319.228 261.962 K
DB 1.268 1.161 1.358 K
SD 1.255 1.034 1.134 K

k = 8 S 0.043 0.329 0.255 K
CH 62.776 319.228 248.332 K
DB 1.258 1.161 1.389 K
SD 1.411 1.034 1.115 K

k = 9 S NA 0.322 0.265 K
CH NA 285.074 239.369 K
DB NA 1.270 1.380 K
SD NA 1.039 1.097 K

k = 10 S 0.008 0.321 0.268 K
CH 66.721 270.381 229.357 K
DB 1.331 1.225 1.334 K
SD 1.334 1.084 1.072 H

End of Table

Table C.5. Performance of user clustering (DatasetNMI).

Metric DBSCAN (D) k-means (K) HAC (H) Best
k = 2 S 0.028 0.356 0.297 K

CH 91.533 472.667 340.444 K
DB 1.539 1.130 0.972 H
SD 1.001 1.037 0.922 H

k = 3 S 0.038 0.334 0.271 K
CH 106.643 423.579 321.449 K
DB 1.390 1.195 0.984 H
SD 1.117 0.956 0.926 H

k = 4 S 0.005 0.331 0.273 K
CH 99.461 391.390 320.465 K
DB 1.227 1.294 1.321 D
SD 1.196 1.031 0.949 H

k = 5 S -0.004 0.334 0.307 K
CH 81.566 361.857 318.903 K
DB 1.125 1.253 1.237 D
SD 1.134 0.933 0.965 K

k = 6 S -0.001 0.331 0.303 K
CH 73.022 338.671 296.393 K
DB 1.133 1.184 1.355 D
SD 1.254 1.001 1.211 K

k = 7 S 0.006 0.335 0.295 K
CH 94.013 330.169 280.170 K
DB 1.426 1.205 1.353 K
SD 1.238 0.979 1.173 K

k = 8 S -0.045 0.335 0.295 K
CH 84.165 315.980 264.054 K
DB 1.490 1.201 1.300 K
SD 1.370 0.995 0.984 H

k = 9 S NA 0.334 0.271 K
CH NA 301.091 253.002 K
DB NA 1.194 1.283 K
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Continuation of Table C.5
Metric DBSCAN (D) k-means (K) HAC (H) Best

SD NA 1.219 1.138 K
k = 10 S NA 0.332 0.270 K

CH NA 287.920 242.973 K
DB NA 1.214 1.298 K
SD NA 1.113 1.146 K

End of Table

Table C.6. Performance of user clustering (DatasetPA).

Mertic DBSCAN (D) k-means (K) HAC (H) Best
k = 2 S .0180 0.318 0.293 K

CH 73.695 389.328 350.373 K
DB 2.050 1.245 1.320 K
SD 1.125 1.079 1.094 K

k = 3 S -0.015 0.281 0.257 K
CH 75.688 349.108 279.382 K
DB 1.437 1.306 1.353 K
SD 1.027 0.991 1.118 K

k = 4 S -0.062 0.277 0.204 K
CH 71.926 314.660 257.368 K
DB 1.496 1.356 1.405 K
SD 1.214 1.037 1.032 H

k = 5 S -0.089 0.277 0.227 K
CH 51.031 293.509 253.661 K
DB 0.999 1.278 1.356 D
SD 1.251 1.046 1.106 K

k = 6 S -0.077 0.258 0.224 K
CH 60.531 279.631 242.466 K
DB 1.044 1.249 1.313 D
SD 1.327 1.082 1.109 K

k = 7 S -0.076 0.262 0.228 K
CH 63.501 268.403 240.777 K
DB 1.125 1.212 1.281 D
SD 1.423 1.043 1.026 H

k = 8 S -0.088 0.265 0.226 K
CH 64.001 254.786 224.765 K
DB 1.145 1.268 1.379 D
SD 1.291 1.076 1.209 K

k = 9 S -0.090 0.260 0.219 K
CH 64.865 238.436 210.855 K
DB 1.218 1.248 1.459 D
SD 1.279 1.004 1.207 K

k = 10 S -0.084 0.260 0.217 K
CH 63.402 225.423 199.442 K
DB 1.259 1.318 1.455 D
SD 1.386 1.235 1.219 H

End of Table
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