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A B S T R A C T   

In this study, we present the evidence of dramatic changes in the structure and time-varying patterns of volatility 
connectedness across equities and major commodities (oil, gold, silver and natural gas) in the US economy before 
and during the COVID-19 outbreak. We utilize high frequency 5-min trading data of most actively traded US ETFs 
to construct the volatility connectedness network. We compute the intraday volatility estimates using MCS- 
GARCH model and then employ Diebold and Yilmaz (2012) spillover index approach to approximate vola
tility spillovers between the financial markets. Our main findings showcase significant impact of COVID-19 
pandemic on the volatility linkages of financial markets as the volatility connectedness among the different 
assets peaked during the outbreak. Other findings and implications of the study are further discussed.   
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1. Introduction 

The coronavirus outbreak began in December 2019 in Wuhan 
(China), afterwards the virus spread across the world. So far, the virus 
has infected a large number of people in almost 200 countries (Remuzzi 
and Remuzzi, 2020) and, still, remains a challenging task for global 
public health community. Aside the tragedies of death and disease, the 
COVID-19 pandemic has emerged as a global threat to world economies. 
Resultantly, various reports attribute the sluggish growth in world 
economies since 2019 to COVID-19 outbreak. Similarly, in the awake of 
the pandemic, the volatilities in financial markets significantly soared, 
which led to enormous losses for market participants. For instance, 
within one week equity worth $5 trillion was wiped out of global 
financial markets due to the outbreak. In the same way, commodities 

prices also experienced great fluctuations such as significant fall in oil 
prices (e.g., the negative price of West Texas Intermediate (WTI) crude 
oil futures) due to drop in the demand, and gold prices hit all-time high 
in the anticipation of weak economic recovery after the pandemic (Le 
et al., 2021). Given the extreme price movements in all of the major 
financial markets, investors and policy makers are left with many 
questions related to asset allocation and portfolio diversification. 

Due to globalization, securitization, deregulation and the increasing 
development of information technology the integration among world 
major financial markets is generally on the rise, which significantly 
contributed to intensifying the previous episodes of financial crises such 
as Global Financial crisis 200-7-08 and European debt crisis 2012 (Jo, 
2014; Öztek and Öcal, 2017; Bai et al., 2019). In addition, during the 
periods of financial meltdown, policy makers and investors take keen 
interest in understanding the magnitude and direction of spillovers be
tween different asset classes to restore financial stability and enhance 
portfolio decisions (Bouriet al., 2020). This is also applicable to disas
trous events such as COVID-19 pandemic as in periods of economic 
turmoil contagion increases the co-movement among the asset classes, 
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which further enhances the importance of the safe-haven asset (Baur and 
Lucey, 2010). Resultantly, there is growing interest in understanding the 
volatility connectedness network across different asset classes during 
the COVID-19 outbreak. And to examine whether spillover connected
ness network across assets exhibit shift over the time due to the outbreak 
effects? Also, to investigate which asset class emerged as a superior 
hedge or safe-haven against the catastrophic shocks of the COVID-19? 
Explorations of these questions hold important implications related to 
risk management and portfolio diversification as once again the need for 
safe-haven assets during such exceptional times has resurfaced. In view 
of this, specifically in this paper we examine the effects of COVID-19 on 
connectedness network of equities and major commodities in the US 
economy. Pertinent to our objectives of the study we consider a network 
of five interrelated assets such as stocks, oil, gold, natural gas and silver, 
and then evaluate intra-day volatility transmission between the under
lying markets before and during the pandemic. In this way our study 
contributes to the literature that uses connectedness measures to 
examine the risk-return spillovers between the assets during periods of 
economic downturn (Gebka and Serwa, 2006; Kang and Yoon, 2019; 
Antonakakis et al., 2019; Tiwari et al., 2020; Corbet et al., 2020, 2021). 

The search for alternative investments in the face of trade integration 
and market risks has triggered higher connectedness among asset clas
ses. Particularly, in the last two decades commodity markets have 
attracted a large influx of investors, which contributed to rapid growth 
of liquidity in commodity markets (Mensiet al., 2013; Balli et al., 2019; 
Naeem et al., 2020). Nowadays, investors consider commodities as pure 
alternative investments assets rather than as a channel to reinforce real 
economic activity via hedging of risks (Vivian and Wohar, 2012). Also, 
in view of the prevailing fragility and unfavourable shocks in conven
tional financial markets (especially stock markets), investors see com
modities as an essential component of investment portfolios. In light of 
this, a large thread of academic literature has documented the causal 
relationship between commodities and financial markets, where often 
opportunities and associated risks are spilling from one to other (e.g., 
Roy and Roy, 2017; Yoon et al., 2019; Adekoya and Oliyide, 2020). In 
addition, the previous literature has also identified various channels 
driving the connectedness between commodity and financial markets. 

Ever-increasing technological development and rise of algorithmic 
trading in the recent times have significantly contributed to growing the 
interactions between financial markets (Kirilenkoet al., 2017). In 

particular, portfolio managers pay keen interest to understand the speed 
of information flows and volatility spillovers originating from high fre
quency trading among financial markets to safeguard against contagion 
risk and adjust their asset allocation. In fact, precise knowledge of 
risk-return spillovers between financial markets during the crisis periods 
(marked with high contagion) provides even more valuable insights for 
portfolio diversification and hedging. In the same way, investor senti
ments, algorithmic trading and rapid transmission of information 
through social media are cited among the major reasons for driving the 
financial contagion across financial markets during the COVID-19 
outbreak (e.g., Corbet et al., 2020; Zhang et al., 2020). Keeping this in 
view, in this study we use high frequency data as oppose to daily and 
monthly data to provide more detailed understanding of the volatility 
spillover network between major commodities and equities during the 
pandemic. More importantly, the volatility estimations based on high 
frequency data portray more precise image of market risk, since they 
track much smaller intraday price movements. Hence, this offers port
folio managers and policy makers a great deal of important economic 
information for portfolio management and policy initiatives to stabilize 
financial markets. 

The unsatisfactory performance of conventional GARCH models in 
modelling the intraday returns is well documented (Drost and Nijman, 
1993; Andersen & Bollerslev, 1997, 1998). Moreover, the poor perfor
mance of these models is attributed to pronounced patterns of intraday 
volatility and trading activity. Keeping this in view, in this study we use 
multiplicative component GARCH (MCS-GARCH) model proposed by 
Engle and Sokalska (2012). The model decomposes the volatility of high 
frequency asset returns into multiplicative components, which are easy 
to estimate and interpret. The MCS-GARCH model expresses the con
ditional variance of intraday returns as a product of three components 
which include daily variance component, diurnal variance pattern and 
stochastic intraday volatility component. Thereby, the volatility esti
mates based on MCS-GARCH model are more stable and outperform 
conventional GARHC models. More importantly, the authors also sug
gest that the intraday volatility estimates from the model are particu
larly useful for devising optimal portfolio strategies. Accordingly, the 
study employs multiplicative component GARCH model to estimate 
intraday volatilities of network of five interrelated assets. Further, we 
use Diebold and Yilmaz (2012) spillover index approach to examine the 
volatility connectedness network among the underlying assets. 

Table 1 
Descriptive statistics and correlations.   

SPY USO UNG GLD SLV 

Mean 0.947 0.955 1.002 0.925 0.968 
Median 0.851 0.866 0.942 0.812 0.895 
Maximum 4.260 6.359 2.652 4.489 4.265 
Minimum 0.375 0.483 0.593 0.475 0.572 
Std. Dev. 0.401 0.380 0.244 0.396 0.290 
Skewness 2.248 4.833 1.675 3.200 3.569 
Kurtosis 11.382 42.926 7.193 17.607 23.083 
Jarque-Bera 104127.8*** 1942267.0*** 33147.7*** 292733.8*** 522833.3*** 
Probability [0.000] [0.000] [0.000] [0.000] [0.000] 
ADF − 19.467*** − 20.788*** − 22.864*** − 23.736*** − 23.286*** 
PP − 19.437*** − 18.564*** − 21.600*** − 21.225*** − 21.135*** 
KPSS 0.577 0.531 2.773 2.890 0.886 
No. of Observations 27623 27623 27623 27623 27623 
SPY 1.000     
USO 0.202*** 1.000     

(34.276)     
UNG 0.079*** 0.132*** 1.000    

(13.207) (22.157)    
GLD 0.414*** 0.218*** 0.165*** 1.000   

(75.606) (37.139) (27.781)   
SLV 0.312*** 0.167*** 0.106*** 0.794*** 1.000  

(54.649) (28.227) (17.707) (217.117)  

Notes: ADF, PP and KPSS are the empirical statistics of the Augmented Dickey-Fuller (1979), and the Phillips-Perron (1988) unit root tests, and the Kwiatkowski et al. 
(1992) stationarity test, respectively. The asterisk (***) denotes the rejection of the null hypotheses of normality, unit root and significance of correlation at the 1% 
significance level. Values in parenthesis are t-statistics. 
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The findings of the study show disastrous impact of COVID-19 on the 
financial markets. The global transmission of the virus led to soaring 
volatilities in the US financial markets. The empirical findings indicate 
significant effects of COVID-19 pandemic on the volatility linkages of 
financial markets as the volatility connectedness among the different 
assets peaked during the outbreak. The findings also exhibit that US 
stock market is the largest transmitter of volatility shocks in the system 
before and during the spread of virus. Additionally, our pair-wise 
spillover analysis exhibits various instances where volatility receivers 
switched to volatility transmitters during the outbreak. Finally, our 
findings also suggest that natural gas natural gas is least connected to 
other assets in terms of volatility spillovers, which reveal potential 
hedging and safe-haven function of natural gas against stocks and major 
commodities. 

The rest of the paper is organized as follows. Section 2 provides brief 
literature review. Section 3 describes the methodology. The data 
description and preliminary analysis is presented in section 4. Section 5 
presents empirical findings of the study. The last section concludes the 
paper. 

2. Literature review 

Extant literature has extensively covered the linkages among finan
cial markets. More specifically, a large thread of literature has docu
mented the risk and return spillovers between stocks and commodities, 
and across commodity classes. First, a strand of literature focuses on the 
linkages between commodities and financial markets. Wherein, the 
existing literature suggests various channels through which financial 
markets relate to commodities. These channels include inflation chan
nel, interest rate channel and macro-economic factors based channel (e. 
g., Jain and Biswal, 2016; Ahmadi et al., 2016; Adekoya and Adebiyi, 
2020; Akbar et al., 2019; Adekoya and Oliyide, 2020). Accordingly, 
numerous studies using variety of econometric methods present the 
evidence of spillovers among prices, returns and volatilities of com
modities and stock markets. The related literature is summarized in 
Table 1. 

Table A1 
A summary of previous research on the relationship between commodities and stock markets.  

Authors Sample Methodology Variables Main findings 

Creti et al. 
(2013) 

2001–11 
Daily 

DCC-GARCH Stocks and 25 commodities (precious 
metals, energy, food, agriculture and 
livestock) 

The findings suggest highly volatile and time varying 
correlations among commodity returns and stock markets. In 
particular during the crisis period of 2007–08. 

Sadorsky 
(2014) 

2000–12 
Daily 

ARMA-AGARCH and DCC- 
AGARCH 

Stock, oil, copper and wheat The findings indicate that strong volatility spillovers between 
commodities and stock returns in emerging markets post GFC 
2007–08. In addition, oil is found to serve as a least expensive 
hedge for stock prices. 

Mensi et al. 
(2017) 

2000–16 
Daily 

Diebold and Yilmaz spillover 
index (2009, 2012) and DECO- 
FIGARCH 

Stocks, gold, silver, platinum and palladium The findings reveal strong volatility spillovers between 
commodities and stock markets, where stock markets serve as 
a source of volatility spillovers and precious metals are net 
receivers, especially during GFC and European Sovereign Debt 
Crisis. 

Zhang (2017) 2000–16 
Daily 

Diebold and Yilmaz spillover 
index (2009, 2012, 2014) and 
DECO-GARCH 

Stocks and oil The findings indicate weak contribution of oil shocks to stock 
markets. However, large shocks matter for stock-oil 
connectedness. 

Zhang et al. 
(2017) 

1999–2015 
Daily 

VT-DCC and Block-DCC- 
GARCH 

stock VIX, oil and gas The findings show that US Henry Hub gas is significantly 
associated with stock market implied volatility indexes. 

Junttila et al. 
(2018) 

1989–2016 
Daily 

DCC-GARCH Stocks, oil and gold The findings suggest that the correlations between oil and 
equities increase during the periods of economic downturn, 
whereas the correlations of gold become negative. The 
findings advocate the hedge and safe-haven role of gold. 

Mensi et al. 
(2018) 

1997–2016 
Daily 

Wavelet decomposition method Stocks, oil and gold The findings show that stock returns in BRICS countries co- 
move with oil prices in lower frequencies. In particular strong 
price connectedness is observed post GFC. 

Al-Yahyaee 
et al. (2019) 

2005–16 
Daily 

Diebold and Yilmaz spillover 
index (2014) and DECO- 
FIAPARCH 

Stocks, precious metals (gold, silver, 
palladium and platinum) and energy 
commodities (crude oil, heating oil and 
gasoline) 

The findings show significant volatility spillovers between 
commodities and stock markets in GCC region. 

Kumar et al. 
(2019) 

2006–15 
Daily 

VARMA-DCC-GARCH Stocks, oil and natural gas The study found lack of long-term correlation between three 
markets in the Indian economy. 

Wang and Wang 
(2019) 

2000–18 
Daily 

Diebold and Yilmaz (2012) and  
Baruník and Křehlík (2018) 

Stocks and Oil The findings suggest that volatility spillovers between the two 
markets are mainly driven by short-term volatility. Also, 
heterogeneous results are found for net pairwise (frequency) 
spillovers between the oil sector and stock indexes in Chinese 
economy. 

Boako et al. 
(2020) 

1996–2018 
Daily 

Morlet 
Wavelet method 

Stocks and commodities including energy, 
precious metals, agricultural and beverages 

The findings show that stock returns and commodities co- 
move across multiple scales and establish a long-term 
integration in African countries. 

Morema and 
Bonga (2020) 

2006–20 
Daily 

VARMA-ADCC-GARCH Stocks, oil and gold The findings confirm strong volatility spillovers among three 
asset markets. Also, the linkages between commodities and 
stock market are crucial for portfolio management. 

Uddin et al. 
(2020) 

1996–2016 
Daily 

ARMA-GJR-GARCH and Copula 
approach 

Stocks, oil, gold, silver, and platinum The findings show that oil and gold co-move with US stock 
market under normal and extreme circumstances. 
Additionally, asymmetric tail dependence of silver and 
platinum is found with US stock market, in particular during 
economic slowdown periods. 

Ali et al. 
(2020)<

2001–18 
Daily 

Cross-quantilogram Stocks, energy, precious metals, industrial 
materials and agricultural 

The findings unveil valuable hedging and safe-haven 
properties of precious and industrial metals against 
international stock markets  
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Second, another strand in literature focuses on the volatility spill
overs between individual commodities and across commodity classes. In 
particular, financialization of commodity market after GFC 2007-08 has 
also led to high integration among different commodity classes (Caporin 
et al., 2020). In this regard, energy commodities are leading other 
commodity groups in terms of financialization (Zhang, 2018). Resul
tantly, Diebold et al. (2017) suggest that energy commodities often 
transmit shocks to other commodity groups, indicating strong connect
edness with other commodity classes. In view of this, many authors have 
explored volatility interconnections and spillovers between various 
commodity classes including energy, precious metals, agricultural and 
industrial metals (Kang et al., 2017; Shahzad et al., 2019, among others). 

Especially, an overwhelming focus has been given to document the 
inter- and intra-group volatility spillovers between energy commodities 
and precious metals (e.g., Sensoy, 2013; Batten et al., 2015). For 
example, Uddin et al. (2019) investigate the risk-return spillovers 
among precious metals. The authors discover asymmetric spillovers 
among the precious metals, which are more noticeable during the crisis 
period. Silver and gold are found to be net-transmitter of spillovers to 
other precious metals. Kang et al. (2017) use DECO-GARCH model and 
spillover index to estimate the spillovers between the oil futures and 
other five other commodity futures including gold and silver. The 
findings reveal strong bi-directional spillovers between the underlying 
commodities and the level of spillovers increased after GFC. In the same 
way, Al-Yahyaee et al. (2019) examine the risk and return spillovers 
among energy and precious metals futures. The findings of the study 
unveil significant risk-return spillovers between the two commodity 
classes in GCC region. The results also show that oil and precious metals 
excluding silver are net-transmitter of volatility in GCC markets. Using 
causality in variance tests, Yıldırım et al. (2020) examine the volatility 
spillovers between energy commodities and precious metals. The find
ings confirm volatility spillovers effects from oil to other commodities, 
which are pronounced during the crisis period. The authors also suggest 
that magnitude of spillovers decreases the benefits portfolio diversifi
cation in periods of economic slowdown. Similarly, Mensi et al. (2020) 
use spillover index and bivariate and multivariate wavelet coherence 
approaches to study volatility spillovers among energy commodities and 
precious metals. The findings disclose that volatility spillovers are dy
namic and intensify during energy and financial crisis. In addition, with 
increase interest in exploring the volatility spillover network among and 
between energy commodities and precious metals, some studies also 
employ realized volatility measures based on high frequency data. For 
instance, Wang et al. (2020) use dynamic model averaging model to 
predict realized volatility spillovers among precious metals in Chinese 
market. Also, Hu et al. (2020) document the impact of macro factors on 
volatility spillovers network of energy commodities and precious metals. 

Third, the study is also related to strand of literature that investigates 
the risk-return spillovers among alternative assets classes, in particular 
during the periods of financial meltdown. Thus, once again due to the 
catastrophic effects of COVID-19 outbreak on economic and financial 
variables, a steam of studies have attempted to shed light on the impact 
of outbreak on the connectedness network of different asset classes. For 
example, using TVP-VAR connectedness approach Bouri et al. (2020) 
show increased network connectedness among five assets including 
crude oil, gold, stocks, currencies, and bonds during the pandemic. Le 
et al. (2021) explore the tail dependency network of assets during the 
outbreak. The results show that tail dependency in both lower and upper 
joint distributions of asset returns increased during the COVID-19 
outbreak. Amar et al. (2021) use spillover index approach of Diebold 
and Yilmaz (2012) and continuous time-frequency of Torrence and 
Webster (1999) to showcase the relationship between commodities and 
stock market in the major oil-producing and consuming economies 
during the COVID-19 outbreak. The findings suggest strong interde
pendence among the underlying market, which peaked during the 
pandemic. Adekoya and Oliyide (2020) investigate volatility spillovers 
among commodities and other financial markets. The results showcase 

strong volatility spillovers among commodities and financial markets. 
Also, the findings highlight significant impact of COVID-19 measures on 
driving connectedness between the underlying markets. Similarly, Cui 
et al. (2021) examine the risk connectedness among oil and stock mar
kets for major oil-importing and oil-exporting economies. The findings 
indicate the risk connectedness among the market reached its peak 
during the GFC and COVID-19 crises. In addition, in order to search for 
safe-haven assets during the outbreak period of high financial contagion, 
some authors also re-examine the hedging and safe-haven properties of 
different assets including energy commodities and precious metals 
during the global pandemic (e.g., Ji et al., 2020; Conlon and McGee, 
2020; Conlon et al., 2020; Sherif, 2020; Salisu et al., 2020). 

3. Methodologies 

3.1. MCS GARCH 

The study uses MCS GARCH model that helps to capture the condi
tional variance for the high frequency (intraday) financial returns. 
Previously various authors have employed the method to accurately 
estimate volatility dynamics in the financial markets (e, g., Raza et al., 
2018, 2019; Banerjee and Paul, 2020). Consider the financial data 
intraday returnsγl,m , where j (1,2,3 … …,J) represents the day and q the 
equal period of interval at which intraday returns are estimated. The 
model specifies the conditional variance is the multiplicative product of 
diurnal, daily and stochastic (high frequency/intraday) volatility, so 
that intraday financial returns process may be described as: 

γl,m = μl,m + εl,m  

εl,m = βl,mvl,m (1)  

vl,m =wl,mσlpm  

where wl,m is the stochastic (high frequency/intraday) volatility, σl is a 
daily extrinsically measured forecast volatility,pm the diurnal volatility 
in the equal period of interval,wl,m finally represent the standardized 
innovation which follow a specific distribution. 

The symmetric/asymmetric forecast volatilityσl results are derived 
through the multifactor risk model exogenously, but the results can also 
be obtained through simple daily GRACH (forecast) model. The GRACH 
model is given bellow: 

γl = μl + σlpl  

μl =ϕγ(l− 1) (2)  

ln(σ2
l )=ωo + α1|pl− 1| + γ1pl− 1 + (β1σ2

l− 1)

where σl and μl are conditional volatility and mean of financial data 
returnsγl, pl should be between zero and one due to the properties of 
standard innovationγl and here σ2measures the sign effect and magni
tude effect. 

The process of seasonal (diurnal) part of is given below: 

sm =
1
L
∑L

l=1
(ε2

l,m
/

σ2
l( (3) 

Then residuals of the diurnal is divided by daily volatility and ob
tained the e normalized residuals: 

ε̂l,m = εl,m
/
(σlsm) = wl,mvl,m (4) 

They help generate the stochastic component of volatility wl,m by 
using GARCH model. 
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Fig. 1. Intraday volatilities without seasonal component.  
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3.2. Diebold and Yilmaz (2012) 

The Diebold-Yilmaz spillover method is based upon forecast error 
variance decomposition (VAR process). Hence, let the VAR model with p 
variables and m lags, which can be written as: 

Yl = θ(Q)Yl + εl (5)  

where Yl indicate a p × 1 vector of problem variables θ(Q) =
∑

f
θf Kf is a 

p × p m-th order lag (polynomial matrix) of coefficients, L is the lag 
operator, εl , Σ denotes white noise and covariance matrix. 

The moving average process in VAR is represented by 

Yl =Ψ(Q)εl− i (6)  

where Ψ (Q) is a p × p matrix (infinite lag polynomials) can be measured 
recursively. The generalized forecast error variance decomposition 
(FEVD) can be estimated as: 

ϕi,g(F)=
∑− 1

gg
∑F

f=0ΨfΣ)(ΨfΣ)(ΨfΣ)i,g]
2

∑F
f=0(ΨgΣΨ′

g)ii

(7)  

where Ψf depict p × p matrix for calculating the coefficients of moving 
average having f lags, ​ Σgg is the gth diagonal element, F denotes the 
selected forecast and ϕi,g is the variance of forecast error of concerned 
variable. 

In the generalized form of VAR framework is the combination of 

cross-and own-variable variance, i.e. 
∑F

f=1
ϕi,g(F)∕= 1. (Not necessarily to 

equal one). Hence, the sum of columns does not add up by definition in 
the variance decomposition matrix and the process is given below: 

ϕĩ,g(F)=
ϕi,g(F)

∑p
f=1ϕi,g(F)

(8) 

The pair wise connectedness is measured through ϕi,g(F) from g to i at 
horizon F in the different time domain. Moreover, normalized variance 
matrixes reflect the level of connectedness among different studied 
variable can be easily introduced. 

4. Data and preliminary analysis 

We use five actively traded US exchange traded funds (ETFs) to 
represent the US financial markets. First, the SPDR S&P 500 trust ETF 
(SPY) tracks down the performance of S&P 500 stock index. The index is 
considered as one of the main benchmarks for tracking the performance 
of the US stock market. The index is made up of 500 large- and mid-cap 
U.S. stocks which are selected based on industry, market capitalization 
and liquidity. Second, the US oil fund ETF (USO) tracks the prices of WTI 
crude oil. The fund was first launched by US commodity fund on April 
10, 2006. The fund primarily invests its assets in crude-oil futures and 
other oil related future contracts. The fund tracks the performance of 

Fig. 2. Autocorrelation functions of absolute intraday returns.  
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crude oil market by tracking the daily percentage changes of the spot 
price of WTI crude oil. Third, the US natural gas fund ETF (UNG) tracks 
the prices of natural gas. It is the largest natural gas ETF fund with shares 
listed on NYSE Arca. The fund enables the investors to invest in natural 
gas without investing in futures market. Fourth, SPDR gold shares trust 
ETF (GLD) traces the performance of the gold market by tracking the 
price of gold bullion in the over-the-counter (OTC) market. The fund is 
considered to provide easy and cost-efficient way to gain exposure to 
gold market. Finally, iShares silver trust ETF (SLV) illustrates the per
formance of the silver prices. All the indices are denominated in USD. 
We employ high-frequency-5 min data of the mentioned ETFs from 02, 
January 2019 to 29, May 2020 for the empirical analysis. We choose 5 
min high-frequency price data as it strikes a logical balance between 
microstructure noise and accurate estimations (Degiannakis, 2008; 
Andersen and Todorov, 2010; Luo and Ji, 2018). Also, the sample 
duration enables us to effectively model the spillover connectedness 
network among the underlying markets before and during the COVID-19 
pandemic. 

For the empirical analysis continuously compounded returns are 
calculated by converting the price series into log first difference. Table 1 
displays the descriptive statistics of the five US ETFs representing the 
five alternative financial assets. As shown in Table 1, UNG has the 
highest mean return during the sample period, followed by SLV and 
USO. Not surprisingly, the statistics also show that among all the ETFs 
highest standard deviation is noted for SPY, which reflects the unprec
edented volatility experienced in US stock market during the outbreak. 
On the contrary, among all the financial markets the lowest volatility is 
reported for natural gas. In addition, the results of skewness, kurtosis, 
and Jarque Bera tests clearly show that all the series are not normal with 
positive skewness. The results of Augmented Dickey-Fuller (1979), and 
the Phillips-Perron (1988) unit root tests, and the Kwiatkowski et al. 
(1992) stationarity test suggest that all return series are stationary. 
Finally, the results of historical correlations analysis among the financial 
markets show positive moderate correlations between US equities and 

other financial assets excluding natural gas. The results also manifest 
high positive correlation between two precious metals in US during the 
sample period. Additionally, the results also show that natural gas is 
least correlated with other assets in our sample duration, which once 
again highlight the superior performance of UNG over other ETFs. 

Next, Fig. 1 illustrates intraday volatility patterns of US financial 
markets during the sample period. It is evident from the graphs that 
volatility in the US financial markets soared after the COVID-19 virus 
was declared as a global pandemic. A large volatility jump is noted for 
all markets post World Health Organization (WHO)’s announcement. 
Here, our findings distinctly second the evidence that suggests the 
widespread panic caused quick sell-outs and havoc in financial markets 
around the globe (Zhang et al., 2020; Akhtaruzzaman et al., 2020). 
Resultantly, investor’s beared major losses and financial markets 
tumbled due to great uncertainty linked with the pandemic. Further, it 
can be seen from the graphs that high-rise in the volatility of financial 
markets persists till the end of April 2020 and then markets seem to 
recover and rebound quickly. Consequently, volatilities declined across 
the US financial markets. Additionally, apart from the COVID-19 
pandemic crash we also note recurrent episodes of high volatility in 
US natural gas market, which correspond to low natural gas prices in 
2019 due to oversupply problem in US natural gas industry. 

Further, as the MCS GARCH model is effective in capturing the 
intraday seasonality pattern, thus in this study we directly fit the MCS 
GARCH on the original return series of US ETFs. Fig. 2 displays the 
absolute autocorrelation functions (ACF) of original return series. ACF of 
absolute original return series of all ETFs excluding UNG show the U- 
shaped seasonality pattern of asset return volatilities. Furthermore, 
Table 2 presents the obtained parameters from the model fit. The results 
show that most of the parameters of the mean model (ARCH) and the 
volatility model (GARCH) are significant across all the ETFs. Also, the 
high values of β1 for all the assets suggest significant high impact of 
previous period volatility on the current volatility. We also note signif
icant positive value of the asymmetry parameter (γ1) for majority of the 

Table 2 
Estimation results from ARMA (1,1)-mcsGARCH(1,1) model on intraday returns.   

SPY USO UNG GLD SLV 

φ0  0.0000 0.0000 0.0000 0.0000 0.0000  
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

ψ1  0.7278*** 0.2281** 0.6071*** 0.6763*** 0.0655  
(0.1046) (0.1063) (0.0737) (0.1001) (0.0482) 

ψ2  − 0.7528*** − 0.2939*** − 0.6387*** − 0.7080*** − 0.2019***  
(0.1002) (0.1041) (0.0705) (0.0956) (0.0471) 

ω  0.0149*** 0.0244*** 0.0343*** 0.0270*** 0.0306***  
(0.0018) (0.0079) (0.0085) (0.0030) (0.0047) 

α1  0.0995*** 0.0871*** 0.0716*** 0.1089*** 0.0821***  
(0.0053) (0.0129) (0.0106) (0.0074) (0.0073) 

β1  0.8895*** 0.8903*** 0.8953*** 0.8623*** 0.8857***  
(0.0057) (0.0198) (0.0183) (0.0090) (0.0109) 

Asymmetry − 0.0889*** − 0.0354*** − 0.0068 − 0.0403*** − 0.0623***  
(0.0151) (0.0127) (0.0129) (0.0131) (0.0117) 

Tail 1.7482*** 1.1576*** 1.2598*** 1.1280*** 1.5112***  
(0.1124) (0.0694) (0.0646) (0.0589) (0.1155) 

Diagnostic tests 
LL 162074.6 135986.2 137461.6 169912.7 153485.2 
AIC − 11.734 − 9.8453 − 9.9521 − 12.302 − 11.112 
Q(20) [0.5385] [0.1522] [0.8632] [0.5990] [0.4605] 
Q2(20) [0.0143] [0.1236] [0.8106] [0.2461] [0.9937] 
K–S [0.2468] [0.1355] [0.5643] [0.2435] [0.9594] 
LiMcLeod [0.8282] [0.2654] [0.1294] [0.2733] [0.1613] 
Hosking [0.8446] [0.7200] [0.1710] [0.1745] [0.1932] 

Notes: We report the maximum likelihood (ML) estimates and the z statistics (in parentheses) for the parameters of the volatility models. The lags p, q, r and m are 
selected using the log likelihood (LL) for different combinations of values ranging from 0 to 2. Q(k) and Q2(k) are the Ljung-Box statistics for serial correlation in the 
model residuals and squared residuals, respectively, computed with k lags. ARCH(k) is the Engle LM test for the ARCH effect in the residuals up to the kth order. K–S 
denotes the Kolmogorov-Smirnov test (for which the p-values are reported), representing the adequacy of the Student-t distribution model. Hosking (1981) and Li and 
McLeod (1981) are the autocorrelation tests until lag 20. The p-values [in the square brackets] below 0.05 indicate the rejection of the null hypothesis. The asterisks 
(***), (**) and (*) represent significance at the 1%, 5% and 10% levels, respectively. 
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US ETFs, which indicates stronger reaction of financial markets to bad 
news in comparison to good news. Finally, the tail coefficients are also 
significant across all the financial markets. 

5. Main results and findings 

5.1. Static analysis 

In order to study the volatility spillovers among US financial markets 
before and during the COVID-19 pandemic, we construct state-of-art 
volatility connectedness network of five interrelated assets namely 
stocks, oil, natural gas, gold and silver using Diebold and Yilmaz (2012) 
spillover index approach. Fig. 3 illustrates the spillover network of 
complete sample period. The analysis highlights important insights 
about the volatility linkages among US financial markets. 

First, the empirical results reveal strong bi-directional volatility 
spillovers between precious metals in US over the full sample period. 
The findings match the earlier obtained evidence in the preliminary 
analysis that suggested strong positive co-movement between gold and 
silver. The findings are also validated by a strand of literature that ar
gues strong volatility dependence across precious metals, in particular 
gold and silver (Reboredo and Ugolini, 2015; Dutta, 2018; Mensi et al., 
2019). Second, the results also unveil moderate bi-directional volatility 
spillovers between US stocks and oil prices. The findings are similar to 
studies of Arouri et al. (2011) and Ewing and Malik (2016) that found 
bi-directional volatility transmission between oil prices and stock mar
ket in the US economy. Further, we also find some volatility linkages 
between stocks and gold prices. The findings are some way different 

from Husain et al. (2019) who suggest lack of significant volatility 
spillovers between US stock index and precious metals. Instead, our 
findings oppose the popular notion of weak volatility linkages between 
stocks and gold and rather suggest safe-haven property of gold against 
US stocks is not stable. Furthermore, we find unilateral volatility 
transmission from crude oil to natural gas market. Overall, the findings 
indicate that the gold market and stocks are the largest transmitters of 
volatility spillovers to volatility connectedness network. 

Next, in order to understand the effects of COVID-19 outbreak on the 
volatility connectedness of US financial markets, we present the spill
over network for the COVID19 sub-sample starting from 01 January 
2020 until 29 May 2020. Once again the results in Fig. 2 display US 
stocks as the largest transmitter of volatility during the virus spread. The 
findings are explained by the fact that investors view US stock market as 
a barometer of the economic and financial conditions of the US (Das 
et al., 2019). Hence, turbulences in the US equity market often translate 
into significant variations in asset prices and augmented volatility in 
other financial markets. The findings are further validated by Adekoya 
and Oliyide (2020), who also argue that stock market acts as a 
net-transmitter of volatility to other asset classes during the COVID-19 
outbreak. Also, the findings reveal strong volatility transmission from 
US stocks to oil and gold markets, which once more exhibit that financial 
contagion during the COVID-19 outbreak originated in the stock market 
and then spread to other financial markets. In addition, similar to our 
static analysis we find strong bi-directional volatility spillovers between 
precious metals such as gold and silver. Finally, our findings advocate 
the potential safe-haven function of natural gas to hedge the volatility in 
other financial markets during the pandemic. Since, natural gas market 

Fig. 3. Diebold-Yilmaz (2012) spillover network for the full sample.  
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Fig. 4. Spillover network for the COVID19 sub-sample from 01 January 2020 until 29 May 2020.  

Fig. 5. Rolling window DY total spillover index.  
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in the US is least connected to other major financial markets during the 
sample period. 

5.2. Dynamic analysis 

In order to establish whether spillover connectedness network across 
assets exhibit shift over the time due to the outbreak effects, we present 
time-varying total volatility spillover index among the five variables 
computed using the approach of Diebold and Yilmaz (2012). Fig. 4 
clearly manifest the significant impact of COVID-19 pandemic in driving 
volatility connectedness among the US financial markets as the volatility 
spillovers among the markets peaked in the month of March 2020. The 

findings indicate that contagion effects driven by market sentiment of 
fear quickly transmitted across US financial markets. In consequences, 
financial markets became highly volatile leading to severe economic 
losses. It can also be inferred from the findings that high volatility 
connectedness among US financial markets during the outbreak mirrors 
reduced portfolio diversification opportunities for investors across 
alternative assets classes. The findings are somewhat in line with Amar 
et al. (2021), who also showcase higher interdependence among stock 
and commodity markets during the outbreak period for a set of coun
tries. Additionally, our findings are also corroborated by recent growing 
evidence that suggests volatility connectedness among different asset 
classes spiked during the COVID-19 outbreak (e.g., Bouri et al., 2020; Le 
et al., 2021; Naeem et al., 2021). 

Fig. 5 exhibits time-varying total volatility spillovers from each asset 
class to other major financial assets in the US. The results of full sample 
period show that equities and gold are the net-transmitter of volatility to 
other assets. However, during the COVID-19 pandemic, stock, gold and 
oil emerge as the largest contributor of the volatility shocks in the sys
tem. In addition, natural gas transmits least volatility spillovers to other 
financial markets. In the same way, Fig. 5 also shows that natural gas 
receives least volatility spillovers from other assets before and during 
COVID-19 outbreak. On the contrary, rest of the financial markets 
receive augmented level of volatility shocks during the period of virus 
spread. Finally, the results of net spillovers are also presented in Fig. 5. 
Interestingly, the findings unveil that silver emerges as the largest 
contributor of net volatility spillovers to other asset categories during 
the outbreak. The finding reinforce the notion that financialization of 
commodity market has attracted investors to view different commod
ities as a mainstream financial assets and essential component of in
vestment portfolios. 

In the end, we present the bi-lateral net volatility spillovers among 
the financial markets in Fig. 6. Once again the results show that US stock 
market is net transmitter of volatility spillovers to other financial mar
kets before and during the pandemic. Wang et al. (2020) also display 
that US stock market acts as a net-transmitter of volatility shocks to 
other financial markets. In this regard, we observe high volatility 
connectedness between the stocks, oil and gold. However, natural gas 
has the lowest level of volatility connectedness with stocks, which 
highlights the potential use of natural gas to hedge stock market risk in 
the US economy (see Fig. 7). 

Now, regarding oil and natural gas we note that before the outbreak 
natural gas is the net transmitter of volatility to oil market as this period 
corresponds to turbulent times in US natural gas industry (prices hit the 
lowest in the three years). In opposite, during the COVID-19 pandemic 
crude oil switches from net receiver to net transmitter of volatility be
tween the two underlying markets. In the same way, gold is the trans
mitter of volatility to oil market before the COVID-19 outbreak, but 
during the pandemic crude oil shifts from net receiver to net transmitter 
of volatility to gold market. The findings are similar to the earlier evi
dence that indicates bi-directional contagion effects between the two 
underlying markets before and during the pandemic period (Gharib 
et al., 2021). In addition, silver is found to be a net-transmitter of 
volatility shocks to crude oil market during the full sample period. 

Furthermore, the results also show that natural gas is the net receiver 
of volatility spillovers from gold and silver during the virus outbreak 
period. Wherein, low volatility connectedness exists between the natural 
gas and silver. The findings once again show the potential use of natural 
gas to hedge price fluctuations in precious metals like silver. Finally, we 
note that gold is net transmitter of volatility shocks to silver before the 
outbreak, however silver emerges as the net-transmitter in the pandemic 
times. Overall, our pair-wise results exhibit various instances where 
volatility receivers switched to volatility transmitters and vice versa 
during the outbreak. Bouri et al. (2020) also display various such cases 
while documenting the return connectedness among financial markets 
during COVID-19 outbreak. 

Fig. 6. Rolling window spillover indices.  
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6. Conclusions 

The COVID-19 pandemic has caused great disruptions in the finan
cial markets around the world. In fact, increased stress in financial 
markets has led to growing contagion among financial markets, which 
has prompted policy makers around the globe to take wide range of 
monetary and financial easing measures. Taking this into consideration 
in this study we investigate the volatility transmission among major 
financial markets in the US economy before and during the pandemic. 

In particular, the study examines the volatility connectedness 
network of equities and major commodities including gold, oil, silver 
and natural gas by utilizing 5-min trading data of US ETFs. We compute 
the intraday volatility estimates using MCS-GARCH model, which is well 
recognized to produce superior and stable diurnal volatility estimates. 

Further, we construct the volatility connectedness network of assets 
using Diebold and Yilmaz (2012) spillover index approach. Addition
ally, we also document the time-varying dynamics of volatility spillovers 
among the underlying assets before and during the virus spread, which 
unveils the outbreak effects on US financial markets. 

Our empirical findings are as follows: First, our full sample network 
analysis shows that stocks and gold are two largest contributors of 
volatility shocks to the volatility connectedness network. Second, our 
sab-sample analysis of COVID-19 outbreak period also reveals that US 
stock market continues to act as the largest transmitter of volatility 
spillovers to major commodity markets in the US. The findings stress the 
fact that investors consider US equity market as the leading indicator of 
the economic and financial conditions of the US economy. Third, our 
dynamic analysis confirms the significant impact of the COVID-19 

Fig. 7. Pair-wise net spillovers.  
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pandemic on volatility spillovers among assets; since we note volatility 
connectedness among US financial markets peaked during the virus 
spread period. The findings showcase reduced portfolio diversification 
and hedging opportunities for investors across alternative asset classes. 
Fourth, our findings from static and dynamic analysis exhibit that nat
ural gas is least connected to other assets in terms of volatility spillovers, 
which reveal potential hedging and safe-haven function of natural gas 
against stocks and major commodities. Moreover, the results showcase 
that natural gas emerges a superior hedging and safe-haven option for 
investors in the financial markets during the pandemic crisis. Accord
ingly, investors and portfolio managers seeking portfolio diversification 
and hedging opportunities in environment of high risk such as COVID-19 
pandemic can consider natural gas market for investment. Finally, our 
findings from pair-wise spillover analysis illustrate various cases of net 
receivers switching to net transmitter of volatility spillovers and vice 
versa during the outbreak. 

The findings of the study hold important implications for policy and 
financial markets. Our findings advocate that policy makers should pay 
careful attention to volatility connectedness network among assets to 
restore financial stability and safeguard investments. In fact, lack of 
understanding of volatility spillovers linkages among different asset 
classes fuels systematic financial contagion. Therefore, policy makers 
should continuously monitor informational spillovers among different 
financial markets to design timely policy interventions to eliminate the 
contagion risk arising from inter-connectedness of financial markets. 
Also, investors can utilize the information regarding the net shocks 
transmitter or receiver nature of the different asset classes to optimize 
their portfolio investment strategies. 

Note: This network graph illustrates the degree of total connected
ness in a system that consists of the US stock market, oil, natural gas, 
gold and silver volatilities over the full sample period. Total connect
edness is measured using the Diebold-Yilmaz framework. The size of the 
node shows the magnitude of contribution of each variable to system 
connectedness, while the color indicates the origin of connectedness. In 
particular, the red color implies contribution from the variable under 
consideration to the other variables of the system and the green color 
means contribution from the other variables to the variable under 
analysis. The color and shape of the arrows refer to the strength of 
connectedness. The red colour and full line arrows represent spillovers 
more than 20% while green and blue colour arrows show spillover be
tween 10% and 20% and less than 10%, respectively. 

Note: This figure displays the time-varying behavior of the total 
volatility spillover index among the five variables considered computed 
using the approach of Diebold and Yilmaz (2012). These dynamic total 
spillover indices are calculated from the forecast error variance de
compositions using a rolling window size of 10 days (7800 intraday 
volatility observations) and a forecast horizon of H = 2 days. 

Note: These figures displays the time-varying behavior of To others, 
From others and pairwise net volatility spillover for the five variables 
considered computed using the approach of Diebold and Yilmaz (2012). 
These dynamic spillover indices are calculated from the forecast error 
variance decompositions using a rolling window size of 10 days (7800 
intraday volatility observations) and a forecast horizon of H = 2 days. 
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