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MOTIVATION Multimodal deep-learning models can be used to obtain personalized survival predictions.
However, the small size of most matched omics-imaging-clinical studies currently poses significant chal-
lenges to the development and application of such tools. Furthermore, the lack of interpretability makes it
difficult to understand the biological rationale behind the predictions, leading to a lack of trust and reluctance
to adopt them in clinical settings. Specifically, the inability to explain how specific features contribute to the
predictions limits the potential for new insights and identification of prognostic biomarkers. We propose two
biologically interpretable and robust deep-learning architectures for survival prediction of 130 non-small cell
lung cancer (NSCLC) patients, integrating patient-specific clinical, transcriptomic, and imaging data. We
incorporate KEGG and Reactome pathway information, adding biological knowledge within the learning pro-
cess. Introducing a cross-attention mechanism in a sparse autoencoder allows extracting prognostic gene
biomarkers andmolecular pathways that are biologically interpretable even in the presence of small samples
and highlights tumor regions successfully validated by two radiologists.
SUMMARY
Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed
to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-
clinical datasets poses challenges. Here, we propose two biologically interpretable and robust deep-learning
architectures for survival prediction of non-small cell lung cancer (NSCLC) patients, learning simultaneously
from computed tomography (CT) scan images, gene expression data, and clinical information. The proposed
models integrate patient-specific clinical, transcriptomic, and imaging data and incorporate Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and Reactome pathway information, adding biological knowledge
within the learning process to extract prognostic gene biomarkers and molecular pathways. While both
models accurately stratify patients in high- and low-risk groups when trained on a dataset of only 130 pa-
tients, introducing a cross-attention mechanism in a sparse autoencoder significantly improves the perfor-
mance, highlighting tumor regions and NSCLC-related genes as potential biomarkers and thus offering a sig-
nificant methodological advancement when learning from small imaging-omics-clinical samples.
INTRODUCTION

Lung cancer is one of the most prevalent types of cancer world-

wide, having a high incidence rate and low 5-year survival rate.1,2
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tected in stages I and II, about a quarter of patients experience
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postoperative recurrence, with themajority dying from the recur-

rence of the disease. The overall 5-year survival of NSCLC pa-

tients for stages I, II, and III is 55%, 35%, and 15%, respectively.5

Furthermore, depending on how far the tumor has spread, the

5-year relative survival rates for those with regional involvement

(cancer disseminated outside the lung or lymph nodes) and

localized (cancer limited to one lung) NSCLC are 34.5% and

61.4%, respectively.6 Therefore, NSCLC is one of the leading

causes of cancer deaths, which can only be reduced by precise

diagnosis, prognosis, and personalized treatments.

To date, studies on personalized medicine have mostly

focused onmolecular characterization using omics technologies

(e.g., transcriptomics, genomics, metabolomics, and prote-

omics).7 However, these approaches need tissue samples ob-

tained by invasive biopsy or surgery,8 and NSCLC patients

often have an insufficient amount of tissue that can be sampled

at diagnosis.9 As cancer tumors are heterogeneous lesions,

samples taken from a small area of the lesion may not

adequately reflect the anatomic, functional, or physiologic char-

acteristics of the entire lesion.10 On the other hand, imaging

techniques hold great potential for tumor characterization as

they provide a more general view of the tumor than biopsy sam-

ples alone.11–14 The integration of radiological images and multi-

omics data is an emerging field, and awide range of studies have

been carried out for various applications, including radiogenom-

ics data analysis for disease diagnosis, image and gene expres-

sion correlation analysis, and survival prediction.15–26 Recently,

several approaches have been proposed to predict patient sur-

vival by combining the power of traditional survival analysis

methods with various machine-learning techniques, with the

aim of predicting event occurrence at a given point in time.

Such techniques are best suited for high-dimensional data

because of their ability to perform survival analysis using both

statistical and machine-learning methods.27–29

In learning architectures for survival analysis, despite the

recent surge in multimodal data generation, achieving a

reliable, precise, and interpretable prognosis remains an open

challenge, with existing methods achieving satisfactory but not

high accuracy. For instance, Ellen et al.,24 proposed an autoen-

coder-based multimodal model for survival prediction of NSCLC

(i.e., lung adenocarcinoma [LUAD] and lung squamous cell car-

cinoma [LUSC]), using microRNA (miRNA), messenger RNA

(mRNA), DNA methylation, long non-coding RNA (lncRNA), and

clinical data from 732 common samples. For the LUAD dataset

(408 samples), the model achieved a C-index of 0:67± 0:04 for

early integration and late integration of different combinations

of data, while, for the LUSC dataset (324 samples), the model

achieved a C-index of 0:63± 0:02 for early integration and

0:59± 0:03 for late integration of different combinations of

data. In another paper, Jiang et al.22 proposed an attention-

based model to predict survival for four cancer types: bladder

cancer (BLCA), breast cancer (BRCA), colon adenocarcinoma

(COAD), and lower-grade glioma (LGG) each with 386, 1,050,

449, and 490 samples, respectively, using whole-slide images.

The models achieved a C-index of 0.604, 0.607, 0.636, and

0.714, respectively.

The challenge of achieving high accuracy is due to various

reasons, including the small size of imaging-omics datasets,
2 Cell Reports Methods 4, 100817, July 15, 2024
the heterogeneity of multi-dimensional images, the high dimen-

sionality and low sample size of omics data, and the complex

non-linearity in biological components. Several dimensionality

reduction algorithms, such as mutual information-based feature

selection (MIFS), minimum redundancy maximum relevance

(mRMR), and normalized mutual information feature selection

(NMIFS), are widely used to reduce the dimension of omics

data.30,31 These dimensionality reduction techniques, however,

are data driven and may therefore lose biologically significant

features. New methods of interpretability can identify cancer-

related features and biomarkers that play a significant role in

estimating cancer survival and patient-specific survival predic-

tion. Therefore, there is a need to design robust and biologically

interpretable deep neural networks for survival analysis using

high-dimension and low-sample-size integrated features from

radiomic, genomics (collectively called radiogenomics), and clin-

ical information for NSCLC.

Recent research on survival prediction using multimodal

deep-learning architectures has demonstrated that integrating

multi-omics data using multimodal models enhances survival

prediction when compared to single-omic data.32–39 Several au-

toencoder-basedmodels have been developed for survival anal-

ysis using single- or multi-omics data.40–46 However, these

models do not consider images with other omics data for survival

prediction. Furthermore, as these do not incorporate biological

pathways-related information within the learning process, they

tend to lose biological information while generating latent fea-

tures. These shortcomings directly affect the reliability and inter-

pretability of such autoencoder-based models.

Here, we propose two sparse variational autoencoder-based

methods, namely a hierarchical variational autoencoder-based

Cox model (H-VAE-Cox) and a cross-attention-based sparse

variational autoencoder Cox (XAT-VAE-Cox) model, for the in-

termediate integration of multi-dimensional computed tomog-

raphy (CT) scan images, gene expression, and clinical profiles,

incorporating biological knowledge into the models. In partic-

ular, a sparse matrix of Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) and Reactome pathway information was used

to create the sparsity between the gene and pathway layers

of the models, adding important biological knowledge. We

show that both the proposed models incorporate patient-spe-

cific data and KEGG-Reactome pathway information as addi-

tional biological knowledge within the learning process and

can extract prognostic gene biomarkers and molecular path-

ways. Both models accurately stratify patients into risk groups

when trained on a small dataset of only 130 patients, therefore

representing a new method to learn on typically small datasets

with matched imaging, omics, and clinical information for the

same patients.

While both approaches accurately stratify patients into risk

groups, the best model to be adopted depends on the modeling

priorities. Specifically, H-VAE-Cox, being a modular model, re-

quires fewer computational resources. Conversely, XAT-VAE-

Cox, with an attention mechanism, can learn from cross-modal-

ity information (imaging and gene modalities) and incorporate

biological information. XAT-VAE-Cox also considered a larger

number of NSCLC-related genes as important genes for survival

prediction, providing better overall biological interpretation.
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Figure 1. Workflow of our study

(A) Radiogenomics data (CT-scan images and gene expression) along with clinical data were collected from TCIA and GEO.

(B) The collected data were then preprocessed as follows. First, the ROIs, i.e., tumor regions, were segmented using the U-Net model, the null values from gene

expression data were removed, and the resulting data were finally normalized.

(C and D) Feature selection was then performed on images, gene expression, and clinical data, and 130 common samples from all the datasets were selected to

be fed into the deep-learning models.

(E) The deep-learning models estimate the PI using images, gene expression, and clinical data.

(F) To ensure robustness, the models were trained and validated using a nested cross-validation approach, where the inner loops were used to tune the

hyperparameters and the outer loops were used to validate and evaluate the models. The SHAP and biological interpretations in the following steps were

performed on the outer-loop validation folds.

(G and H) (G) The results from the models were evaluated using C-index, and KM curves (H) were plotted. A log rank test was performed to measure the

classification accuracy of high- and low-risk group patients.

(I and J) (I) Themodels were interpreted usingGrad-CAMand SHAP values and, finally, the significant genes identified in the analysis were biologically interpreted

using KEGG and Reactome pathway (J).
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The workflow of the proposed framework is shown in Figure 1.

First, coupled radiological images, gene expression, data, and

clinical information (NSCLC-Radiogenomics dataset) were

collected from publicly available datasets The Cancer Imaging

Archive (TCIA) and GEO,47 while The Cancer Genome Atlas

(TCGA)-LUAD and TCGA-LUSC datasets were collected from

TCGA repository48,49 (Figure 1A). The data were then prepro-

cessed (Figure 1B), and feature engineering was performed to

select the features to be fed to the deep neural network models

(Figures 1C and 1D). The sparse autoencoder-based models

were designed to incorporate biological knowledge into the

model and learn from small-sample-size radiological images,

gene expression, and clinical information. The models were

trained using a nested cross-validation approach (Figure 1F),

where the inner loops were used to tune the hyperparameters

and the outer loops were used to validate and evaluate the

models’ performance (Figures 1G and 1H). We used Shapley ad-

ditive explanation (SHAP) values,50 Grad-CAM,51 and pathway

interpretation to interpret these models and identify important

prognostic biomarkers and pathways for high-risk categorized

patients, with the goal of elucidating the biological significance

of the proposed models (Figures 1I and 1J) (see STAR Methods

for details).
RESULTS

Our goal was to develop and test biologically interpretable deep

neural networks with robust performance on small datasets. To

achieve this, we developed two deep-learning architectures,

H-VAE-Cox (Figure 2) and XAT-VAE-Cox (Figure 3), for the inter-

mediate integration of multi-dimensional radiological images,

high-dimensional gene expression, and clinical data along with

biological pathway knowledge for precise survival prediction.

The performance was evaluated using the concordance index

(C-index).52

Firstly, the tumor regions from CT-scan images were

segmented using the U-Net architecture (Figure S1A) to extract

the region of interest (ROchanI). The tumor location and size

were determined via segmentation. A K-fold cross-validation

approach was adopted to train, validate, and test the model,

while the dice loss53 and mean intersection over union were

used to assess the model performance. The U-Net architecture

achieved outstanding performance for tumor segmentation.

The K-fold cross-validation resulted in a validation loss of

0:083± 0:017 (where 0.083 is themean and 0.017 is the standard

deviation) and a mean intersection over union of 0:901± 0:024.

The trained model was then used to segment the tumor CT-scan
Cell Reports Methods 4, 100817, July 15, 2024 3



Figure 2. H-VAE-Cox: Hierarchical variational autoencoder-based Cox model

The latent features from the gene sparse autoencoder (step 1) and the image autoencoder (step 2) are fed into a high-level autoencoder (step 3) along with clinical

data to estimate the PI. A sparse connection is created between the gene and pathway layers of the gene autoencoder (step 1) where a binary pathway mask

matrix is fed into the pathway layer. Steps 1 and 2 are used for two purposes: (1) generate lower-dimensional latent features from each data modality, and (2)

estimate the survival prediction for gene expression and image data individually, with the pathway mask injecting biological pathway knowledge into the learning

process.
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slices that had not yet been segmented, including CT-scan slices

from TCGA-LUAD and TCGA-LUSC cohorts. The tumor region

was then cropped using theOpenCV library54 to obtain the tumor

region as well as the surrounding information.

After preprocessing and extracting the ROI from CT-scan im-

ages, we trained H-VAE-Cox and XAT-VAE-Cox using the crop-

ped tumor images along with preprocessed gene expression

and clinical data for survival prediction.

H-VAE-Cox
We implemented H-VAE-Cox using a multimodal architecture

and hierarchical integration approaches for combining multiple

individual modalities. As depicted in Figure 2, the prognostic in-

dex (PI) of NSCLC patients was estimated using CT-scan im-

ages, gene expression, and clinical data in three steps. The

H-VAE-Cox model is based on a multimodal architecture and hi-

erarchical integration approaches, where lower-level autoen-

coders are used to generate low-dimensional latent features

from images and gene expression data separately. Specifically,

independently supervised autoencoders were designed for each

data type, where the gene sparse autoencoder generates the

latent features from gene expression data and the convolutional

neural network (CNN)-based image autoencoder generates the

latent features from images.

In order to generate lower-dimensional latent features asso-

ciated with survival prediction, we designed supervised au-

toencoders in which a Cox neural network appended to the

autoencoder bottleneck layer predicts the PI. Hence, the
4 Cell Reports Methods 4, 100817, July 15, 2024
latent features generated from the supervised autoencoders

are closely associated with the survival prediction and are

also capable of being reconstructed to represent the orig-

inal data.

The lower-level autoencoders (Figure 2, step 1 and step 2)

are used for two purposes: (1) estimate the PI and perform

the survival prediction for each independent data type (i.e.,

gene expression data and images separately) and (2) generate

lower-dimensional latent features from gene expression and im-

age data. These latent features generated from the gene sparse

autoencoder and the image autoencoder were then integrated to

form an integrated input feature for the high-level b-variational

autoencoder (step 3).

The design of the H-VAE-Cox model architecture has the

benefit of being a modular architecture in which a separate au-

toencoder is fitted on each modality independently to create

low-dimensional features, ensuring that no information is lost

from each modality during dimensionality reduction. In addition,

due to its modularity, this architecture can be easily extended to

add other omics data by adding independent modalities without

having to change the entire architecture. Furthermore, since

each lower-level autoencoder is trained independently, H-VAE-

Cox requires less computational power compared to XAT-

VAE-Cox.

XAT-VAE-Cox
For the secondarchitecture, a cross-attention-based b-variational

sparse autoencoder Cox model, XAT-VAE-Cox (Figure 3), was



Figure 3. XAT-VAE-Cox: Cross-attention-based sparse variational autoencoder-based Cox model

The b-variational autoencoder architecture consists of encoder and decoder phases made from convolutional layers and dense layers for image and gene

expression data. A sparse connection is created between gene and pathway layers, where a binary pathway mask matrix is fed into the pathway layer, adding

biological knowledge to the network. The features from image and gene modalities are then fed to the multi-head self-attention layer, followed by the multi-head

cross-attention layer to capture the cross-modality features. The latent vector m is linked to the Cox regression component, which concatenates the latent vector

and clinical features to estimate the PI.
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designed to integrate CT-scan images and gene expression data

using a single framework rather than independent autoencoders

for each data type. In this model, both images and gene expres-

sion data were fed into a cross-attention-based autoencoder,

where each modality was connected to the multi-head self-atten-

tion layer, followed by a cross-attention layer, to generate a low-

dimensional Gaussian distribution Nðm; sÞ of the latent feature z.

The attention mechanism enables the network to focus on the

most relevant features by assigning varying importance to distinct

input features. The self-attention layer after the pathway layer in

the gene modality highlights the important genes connected to

the pathways, while the self-attention layer in the imagingmodality

helps the network to focus on the regions of an image that are

most informative for PI estimation. The cross-attention mecha-

nism helps the model establish cross-modality communication

between the images and gene expression, improving the genera-

tion of the latent representation.

The latent vector m and the clinical data are input to the subse-

quent Cox regression component. The encoder output vector m

was concatenated to the Cox proportional hazard layer, while

the decoder reconstructed the images and gene expression

data from a homogeneous latent representation. While training

the model, the Cox regression component encouraged the

network to develop latent representations capable of not only

adequately reconstructing the input sample but also predicting

the hazard ratio for survival analysis. The primary advantage of

this architecture is that the attention mechanism focuses on

the important features (both from genes and images) for the sur-
vival estimation, which not only improves the robustness of the

model but also helps in biomarker identification. Furthermore,

this autoencoder generates a single low-dimensional latent vec-

tor fromboth images and gene expression data, and the decoder

of this model can reconstruct images and gene expression from

that single latent vector.

Survival prediction with H-VAE-Cox and XAT-VAE-Cox
outperforms other models
We used radiological imaging, gene expression, and clinical data

to stratify NSCLC patients into risk groups based on the PI esti-

mated by the two proposed models. The risk scores (i.e., PI)

from gene expression and images were estimated independently

using the two low-level autoencoders for H-VAE-Cox, i.e., the

gene sparse autoencoder and the image autoencoder (Figure 2,

steps 1 and 2 respectively). Then, the Cox regression component

was configured to estimate the PI using clinical data only. In addi-

tion, theXAT-VAE-Coxmodelwasalsoconfigured for survival pre-

diction using two data modalities (i.e., images with clinical data,

and gene expression with clinical data). For each of these experi-

ments, the samples were categorized into two risk groups (high-

risk and low-risk) byusing themedian value of thePI as a threshold

(high risk if PI > median, low risk otherwise). The survival distribu-

tions of high- and low-risk groups of individuals were compared

using the log rank test. Kaplan-Meier (KM) curves were then

plotted to visualize the results using the survival package in R.55

As illustrated in Figures 4A–4G, KM curves were evaluated for

high- and low-risk grouped patients using: (A) clinical data (Cox
Cell Reports Methods 4, 100817, July 15, 2024 5
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Figure 4. KM curves using radiological images, gene expression, clinical data, and survival risk groups

(A) KM curves for clinical data only (using the Cox regression component).

(B) KM curves for gene expression data (using the gene sparse autoencoder Cox model).

(C) KM curves for gene expression with clinical (using XAT-VAE-Cox).

(D) KM curves for images only (using the image autoencoder Cox model).

(legend continued on next page)
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regression component), (B) gene expression data only (gene

sparse autoencoder), (C) gene expression and clinical data

(XAT-VAE-Cox), (D) CT-scan images only (image autoencoder),

(E) images and clinical data (XAT-VAE-Cox), and (F and G) the in-

tegrated features from images, gene expression, and clinical

data as input for H-VAE-Cox and XAT-VAE-Cox, respectively.

When comparing high- and low-risk survival groups using only

clinical data (Figure 4A), only gene expression data (Figure 4B),

or merging gene expression data with clinical data (Figure 4C),

there was no statistically significant difference ðp > 0:05Þ be-

tween the risk groups. Even if using only imaging data (Figure 4D),

or merging images with clinical data (Figure 4E), no statistically

significant difference was observed between the risk groups

ðp > 0:05Þ. This suggests that using only clinical information,

gene expression, or imaging data is insufficient to precisely strat-

ify patients into risk groups. The most significant p values were

associated with the integration of radiogenomics and clinical

data through the proposed H-VAE-Cox ðp = 1:21e � 4Þ and

XAT-VAE-Cox ðp = 3:49e � 4Þ, as shown in Figures 4F and

4G, respectively. Overall, the KM curves show that employing

the integrated features from images, gene expression, and clin-

ical data using both H-VAE-Cox and XAT-VAE-Cox outperforms

all the other models in terms of both survival prediction and pa-

tient risk group stratification.

The performance of the integration of three data modalities

(imaging, gene expression, and clinical data) by the H-VAE-

Cox and XAT-VAE-Cox models was then compared to that of

the single and two data modalities (Figure 4H). The C-index esti-

mated when using only clinical data for the Cox regression

component was 0:55± 0:10, while the C-index estimated when

using only gene expression data for the low-level gene sparse

autoencoder was 0:51± 0:05. Similarly, the C-index estimated

when using only image data for the image autoencoder was

0:57± 0:08. Then, two data modalities (i.e., gene expression

with clinical data and images with clinical data) were integrated

to estimate the PI. The model achieved a C-index of 0:54± 0:09

when using only gene expression with clinical data and a

C-index of 0:59± 0:09 when integrating images with clin-

ical data.

We then asked whether we could elucidate the advantage of

integrating image, gene expression, and clinical data for the

survival prediction task. To this end, three data modalities

were integrated to estimate the PI. A significant improvement

in the survival prediction was observed by integrating the fea-

tures from images, gene expression, and clinical data in the

H-VAE-Cox model (Figure 2 step 3), with a C-index of 0:73±

0:06. Moreover, the XAT-VAE-Cox model (Figure 3) estimated

the PI from images, gene expression, and clinical data more

precisely, with a C-index of 0:76± 0:05. These results confirm

that compared to single or two data modalities, the integration

of three data modalities (CT-scan images, gene expression,

and clinical data) improves survival prediction. Figure 4H illus-
(E) KM curves for images and clinical data (using XAT-VAE-Cox).

(F and G) KM curves for XAT-VAE-Cox and H-VAE-Cox using images, gene expre

with clinical features show significant survival differences ðp < 0:05Þ between the

(H) Statistical and experimental results of H-VAE-Cox and XAT-VAE-Cox in term

significance is denoted by * for adjusted p < 0.05, ** for adjusted p < 0.01, *** fo
trates the performance of H-VAE-Cox and XAT-VAE-Cox

using CT-scan images, gene expression, and clinical data.

The statistical test assesses the difference between the perfor-

mance of the models across all the possible combinations

of input data, showing that there is a significantly improved

performance by the H-VAE-Cox and XAT-VAE-Cox models

compared to other models.

To compare our proposed approach with existing techniques,

in Figure 4H we compare the performance of both the proposed

architectures with DeepSurv35 using the PyCox library56 and

deep Cox mixture (DCM).38 While these models were originally

designed for low-dimensional high-sample size unimodality

data, the multimodal CT-scan images, gene expression, and

clinical data needed to be preprocessed and transformed into

lower dimensions prior to training these models. Therefore, the

latent features from the gene sparse autoencoder and image au-

toencoder (Figure 2, step 1 and step 2, respectively) and clinical

information were fed into the DeepSurv and DCM models. In

particular, the latent representation, each of size 500 features,

generated from these autoencoders, along with clinical features,

were concatenated to form an input feature of size 1,006.

This concatenated feature was then fed into the DeepSurv

and DCM models to predict the survival of NSCLC patients. To

ensure consistency and robustness, each model was trained

five times using a nested cross-validation approach. The

DeepSurv model obtained a C-index of 0:58± 0:09, 0:50± 0:12,

and 0:51± 0:18 on NSCLC-Radiogenomics, TCGA-LUAD, and

TCGA-LUSC datasets, respectively, while the DCM model ob-

tained a C-index of 0:59± 0:095, 0:54± 0:05, and 0:51± 0:11

on NSCLC-Radiogenomics, TCGA-LUAD, and TCGA-LUSC da-

tasets, respectively. When compared to the DeepSurv and DCM

models, both our proposed autoencoder-based architectures

achieved a significantly higher survival prediction accuracy using

images, gene expression, and clinical information.

We then asked whether the proposedmodels are robust when

applied to unseen external datasets and are therefore suitable

for use within entirely new prediction tasks. The models trained

on 130 samples from the NSCLC-Radiogenomics dataset were

therefore evaluated on two cohorts from the TCGA repository

(TCGA-LUAD and TCGA-LUSC). It was observed that the atten-

tion-based XAT-VAE-Cox model trained on a small sample

was robust to make predictions on unseen TCGA-LUAD and

TCGA-LUSC datasets (0:68± 0:03 and 0:65± 0:05, respectively)

compared to H-VAE-Cox model on TCGA-LUAD and TCGA-

LUSC datasets (0:64± 0:06 and 0:60± 0:04). The performance

of the proposed models on NSCLC-Radiogenomics data,

TCGA datasets, and the performance of DeepSurv and DCM

models on NSCLC-Radiogenomics data was also evaluated us-

ing additional two metrics, concordance index inverse probabil-

ity of censoring weighting (C-index IPCW), and cumulative dy-

namic area under the curve (AUC), as shown in Table S1. The

evaluation using these metrics further revealed the robustness
ssion, and clinical features. Radiogenomics (images + gene expression) along

risk groups.

s of C-index. (IM, imaging; GE, gene expression; CL, clinical data). Statistical

r adjusted p < 0.001 and ns for non significant.
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of the proposed approach, with the XAT-VAE-Coxmodel outper-

forming all other models.

Model interpretation
The proposed H-VAE-Cox and XAT-VAE-Cox models inte-

grate the features from images, gene expression, and clinical

data to estimate patient-specific PIs. As a result, it is critical to

interpret both models to identify the cancer-related features

that play a key role in survival prediction and to identify the

best model to choose in each scenario. SHAP values50 were

used for interpretation due to their several properties, which

made them suitable for our investigation. First and foremost,

SHAP values are model agnostic. This means they can be

applied to any model, which was critical for our methods

based on custom-designed architectures. Furthermore,

SHAP values exhibit properties of local accuracy, missing-

ness, and consistency that are not simultaneously present in

other explainability approaches.

We computed SHAP values for both the proposed models

(H-VAE-Cox and XAT-VAE-Cox) focusing on high-risk catego-

rized patients. In particular, we used the GradientExplainer

function from the SHAP library with high-risk samples. Since

our models used three types of input data (images, gene

expression, and clinical data) to estimate the PI, it was impor-

tant to identify relevant features from each data type. The

low-dimensional latent features encoded by the gene sparse

autoencoder and image autoencoder, along with clinical data,

were input into the SHAP Explainer for H-VAE-Cox, while the

images, gene expression, and clinical data were input into the

SHAP Explainer for XAT-VAE-Cox. The SHAP representations

for both models for the three input data modalities were then

analyzed to understand the impact of the input features on

the model predictions.

As the latent features generated from low-level autoencoders

were fed into the high-level autoencoder-based Cox model (Fig-

ure 2 step 3) for H-VAE-Cox, the SHAP interpretation of the high-

level autoencoder-based Cox model identified the important

gene and image latent features (Figure 5A). We noted that, to

explore the important features and identify the markers from

each omic data influencing the prediction, the SHAP value

generated for H-VAE-Cox had to be decoded by the gene sparse

autoencoder and image autoencoder in order to generate SHAP

representations for the original gene expression and multi-

dimensional images. Hence, for further biological interpretation

and identification of significant genes and ROI for high-risk sur-

vival prediction, the SHAP values generated from the high-level

autoencoder-based Cox model were decoded using the low-

level autoencoders (gene sparse autoencoder and image au-

toencoder; steps 1 and 2 in Figure 2).

The SHAP representation of the gene sparse autoencoder

identified the important genes impacting the prediction for

high-risk patients (Figure 5B), which was further analyzed to un-

derstand if these genes have any biological significance for

NSCLC prognosis. Similarly, the SHAP representation from the

image autoencoder identified the important regions in images

influencing the prediction. The SHAP importance was overlaid

over the original images to identify regions in CT-scan images

significant for the model output (Figure 5D). The SHAP image
8 Cell Reports Methods 4, 100817, July 15, 2024
plots clearly illustrated that the tumor region and the areas

near the tumor regions were identified as the important regions

in the CT-scan images for the model prediction.

Unlike H-VAE-Cox, the XAT-VAE-Cox model directly used the

images, gene expression, and clinical data to train the model. As

a result, the SHAP interpretation for XAT-VAE-Cox was able to

use the images, gene expression, and clinical data directly and

identify the important features from each omic dataset. The

SHAP representation for the gene expression data identified

the important genes influencing themodel prediction (Figure 5C),

which was also further analyzed to find the biological relevance

with NSCLC. The list of genes sorted by SHAP values for both

models is provided in Tables S3 and S4. Importantly, the tumor

regions in the radiological images also contributed toward the

estimation of PI, as demonstrated by the SHAP importance over-

layed over images (Figure 5E). The SHAP interpretation of the

clinical feature for both models highlighted recurrence status

as an important clinical feature for high-risk grouped patients

(Figures 5F and 5G).

To quantify the contribution of each data modality for both the

proposed models, the multimodality score was estimated based

on SHAP values (see experimental design and model evalua-

tion). Specifically, the multimodality score determines the contri-

bution of each modality toward the estimation of PI. It was found

that the features from the images or the gene expression data did

not overshadow each other, as the multimodality score for the

H-VAE-Cox model was estimated as 0.36, 0.16, and 0.48 for im-

ages, gene expression, and clinical data respectively. Similarly,

the multimodality score for the XAT-VAE-Cox model was esti-

mated as 0.25, 0.3, and 0.45 for images, gene expression, and

clinical data, respectively.

The interpretability of the imaging modality in the proposed

multimodal models was further improved by applying Grad-

CAM, where the activation map was visualized in the last CNN

layer of the image autoencoder for the H-VAE-Cox model, and

in the self-attention layer of the imaging modality in the XAT-

VAE-Cox model. As shown in Figures 5D and 5E, this analysis

highlighted the core tumor regions as important features for

the estimation of the PI. The highlighted regions in the images

were further validated by comparing the region with the segmen-

tation ground truth. It was observed that the Grad-CAM-based

interpretation of the imaging modality in the XAT-VAE-Cox

model highlighted the tumor region more precisely, compared

to the H-VAE-Cox model.

Clinical validation of the Grad-CAM-based
interpretation
The Grad-CAM-based interpretation demonstrated that the

cross-attention mechanism in the XAT-VAE-Cox model better

learned the cross-modality interaction between CT-scan images

and gene expression, compared to the H-VAE-Cox model,

where each modality was trained independently to generate

a latent representation. Thus, the heatmap generated by the

Grad-CAM-based interpretation of the XAT-VAE-Cox model for

the imaging modality was validated by the radiologists in our

team. Specifically, they examined sample images from 60

high-risk-categorized patients and confirmed that the XAT-

VAE-Cox model effectively identified key areas in the images.
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Figure 5. Model interpretation using SHAP values and Grad-CAM

(A–G) Summary plots for SHAP values are used to interpret the H-VAE-Cox and XAT-VAE-Cox models. Each dot represents an instance of the dataset (i.e., a

patient in the high-risk group). The x axis shows the SHAP value, while the y axis shows the features ranked by their contribution to the model output, as

determined by the average of Shapley values. Important features are positioned higher on the y axis. Instances with high-value features are in red, while instances

with low-value features are in blue. The summary plot in (A) illustrates the SHAP importance of gene and image latent features fed into the high-level autoencoder

in H-VAE-Cox. (B) and (C) report the summary plots for gene expression for H-VAE-Cox and XAT-VAE-Cox, respectively, used to identify the most significant

genes for survival prediction. In (B), SHAP values for genes were obtained by decoding the SHAP value for gene latent features in H-VAE-Cox (A). (D) and

(E) present the SHAP image plot, Grad-CAM visualization, and tumor ground truth to interpret the H-VAE-Cox and XAT-VAE-Cox models’ input images; in (D),

SHAP values for images were obtained by decoding the SHAP value for image latent features in H-VAE-Cox (A). The x axis shows the SHAP value, while each row

represents a sample image. The impact of the regions of the images on the model output for the individual patient is depicted by the color of dots plotted over the

images. The red color represents important regions with a high impact on themodel output, while the blue color represents less important regions. TheGrad-CAM

heatmap highlights the regions in the images that contribute to the estimation of PI.When comparing the highlighted regionwith the tumor ground truth, XAT-VAE-

Cox ismore accurate thanH-VAE-Cox in emphasizing the tumor region. (F) and (G) present the summary plots used to identify the clinical features with the highest

impact on the model output for both H-VAE-Cox and XAT-VAE-Cox.

(H) Summary of responses from radiologists for Grad-CAM-highlighted images, where the radiologists validated the images based on three questions (evaluation

criterion). Out of 300 images, Grad-CAM highlighted tumor regions for 278 images, while for the remaining 22 images the Grad-CAM-highlighted regions were not

tumorous.

(I) Sample of Grad-CAM-highlighted images validated by the radiologists. Each image was scored based on the questionnaire as shown in (H).
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The images were evaluated and scored based on the following

three questions.

d For each scan, are the highlighted regions tumor regions?

(Yes or No).

d For each scan, how well can the model identify tumor re-

gions? (Score 1–4) Scores: (1), tumor regions are not iden-

tified at all; (2) tumor regions are somewhere identified; (3)

most of the tumor regions are correctly identified; (4) all the

tumor regions are correctly identified.

d For each scan, are all the highlighted regions (yellow/red)

related to tumor regions? Score 1 to 4: (1) highlighted re-

gions (yellow/red) do not make sense; (2) only some of

the highlighted (yellow/red) regions are correct; (3) most

of the highlighted regions (yellow/red) are related to tu-

mors; (4) all the highlighted regions (yellow/red) are related

to the tumor.

As summarized in Figure 5H, among 300 images, Grad-CAM

highlighted tumor lesions in 278 images. It was interesting

to observe that Grad-CAM highlighted most of the tumor re-

gions correctly in 122 images. Furthermore, in 139 images, tu-

mor regions along with nearby regions were correctly high-

lighted. Interestingly, for 17 images, all the tumor regions

were correctly highlighted by the Grad-CAM-based interpreta-

tion. In response to the third question, it was observed that, for

224 images, Grad-CAM highlighted the tumor region along with

nearby regions, vessels, heart, and even chest wall, while, for

53 images, most of the highlighted regions (yellow/red) are

related to tumors.

It was also noted that the periphery of the tumor was high-

lighted, which is important for radiologists as it helps find the

tumor contour (Figure 5I). However, some regions adjacent to

the lesion were also highlighted, which may not be of interest.

To refine the image analysis and resolve these issues, we believe

a combined analysis of Grad-CAM and tumor segmentation

should be used. Moreover, some samples had movement or

breathing artifacts in the CT-scan images, which hindered the

ability to highlight tumor areas, resulting in false-positive cases.

Such images could also impair the radiologist’s judgment and, in

such cases, the radiologists would suggest re-imaging or using

alternative imaging techniques, such as positron emission to-

mography (PET) scan.

It was further observed that some images showed lesions

that could be benign or indeterminate, requiring follow-up exam-

inations to monitor their growth. Overall, albeit with some false-

positive cases, the radiologists strongly agreed that the Grad-

CAM-highlighted regions were of interest and would constitute

valuable support to their decision-making process. They also

confirmed that the model correctly identified the lesions in

93% of the images, suggesting that the model learned to focus

on relevant regions. The Grad-CAM-highlighted CT-scan images

validated by the radiologists are provided as supplemental

information.
Biological interpretation
In order to further biologically interpret the proposedmodels and

explore the significant biological processes characterizing high-
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risk patients, the top 40 important genes identified by the SHAP

interpretation of both models (Figures 5B and 5C) were investi-

gated for KEGG pathways and Gene Ontology (GO) (Figure 6).

Then, the study was extended by selecting the top 15% (i.e.,

1,714) genes, sorted by SHAP value, to perform a KEGG and Re-

actome pathway analysis. Additionally, we performed gene set

enrichment analysis (GSEA) for two KEGG pathways (i.e.,

‘‘NSCLC KEGG pathway’’ and ‘‘pathways for cancer’’) using

the gene expression dataset and the high- and low-risk survival

groups estimated by the models (Figure 7).

Identification of potential biomarkers through
enrichment analysis of SHAP-identified genes
The KEGG pathways and functional GO in the context of NSCLC

were investigated by analyzing the top 40 genes from both

models, as determined by the SHAP interpretation (Figures 5B

and 5C).

To assess the relevance of these markers in predicting a poor

prognosis for NSCLC, a KEGG pathway analysis was conducted

using DAVID (https://david.ncifcrf.gov/) (Tables S5 and S6).

Firstly, the pathway analysis was performed for the H-VAE-

Cox model (Figure 6A), where the results revealed that 12

genes (GCLC, NDUFS8, NDUFA11, NDUFA5, NDUFA12,

NDUFAB1, NDUFA2, ADCY4, PLA2G4A, UQCRFS1, UQCR11,

and ACSL3) were actively involved in the metabolic pathway,

while eight genes (NDUFS8, NDUFA11, NDUFA5, NDUFA12,

NDUFAB1, NDUFA2, UQCRFS1, and UQCR11) were associated

with oxidative phosphorylation pathway. Mitochondrial oxidative

phosphorylation, i.e., aerobic mitochondrial respiration, plays

a crucial role in providing energy to cancer cells, including

NSCLC. The markers of mitochondrial biogenesis and compo-

nents of oxidative phosphorylation complexes are important bio-

markers for lower survival in NSCLC patients.57

Furthermore, six genes (CREB3L4, COL6A1, CREB3L2,

ITGB8, PIK3R3, and KRAS) were found to play a role in the

PI3K-Akt signaling pathway. Dysregulation of PI3K-Akt

signaling pathway activates cellular stimuli and regulates

fundamental cellular functions such as transcription, transla-

tion, proliferation, growth, and survival of NSCLC.58 Moreover,

three genes (PIK3R3, PLA2G4A, and KRAS) were also linked to

the vascular endothelial growth factor (VEGF) signaling

pathway, which plays a crucial role in angiogenesis. Angiogen-

esis is essential for tumor growth and metastasis, and the

VEGF signaling pathway is one of the most important pathways

involved in this process. In particular, the PIK3R3 gene en-

codes a regulatory subunit of phosphatidylinositol 3-kinase

(PI3K), which is a key mediator of the VEGF signaling pathway

and PI3K-Akt signaling pathway. PLA2G4A encodes an enzyme

that catalyzes the hydrolysis of membrane phospholipids to

release arachidonic acid (AA). AA metabolism has been impli-

cated in various cellular processes, including inflammation

and cancer progression. KRAS encodes a protein involved in

cell signaling pathways, including the VEGF and PI3K-Akt

signaling pathways. Mutations in KRAS have been associated

with various cancers, including NSCLC.59,60 Taken together,

the KEGG pathway analysis of important genes identified by

SHAP interpretation of the H-VAE-Cox model demonstrated

their relevance in the poor prognosis of NSCLC.

https://david.ncifcrf.gov/
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Figure 6. KEGG pathways and functional GO analysis for the top 40 genes identified by the SHAP interpretation of H-VAE-Cox and XAT-

VAE-Cox

(A and B) Top 50 KEGG pathways for the important genes identified by H-VAE-Cox and XAT-VAE-Cox models, respectively, where rows represent the KEGG

pathways and columns represent the genes. The brown color on the heatmap illustrates the association of genes with the KEGG pathway.

(C and D) GO of top 40 genes from SHAP interpretation of H-VAE-Cox and XAT-VAE-Cox models. The important genes were significantly enhanced in biological

process (BP), cellular component (CC), and molecular function (MF) with adjusted p < 0.005.
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Then, a KEGG pathway analysis was performed on the top 40

genes identified by the SHAP interpretation of the XAT-VAE-Cox

model (Figure 6B). Out of 40 genes, nine genes (NRAS, PIK3CA,

E2F1, KRAS, E2F3, SOS1, TP53, EGFR, and MAPK3) were

involved in the NSCLC pathway. This pathway is a complex

network of genes and signaling pathways involved in the devel-

opment and progression of NSCLC.61 Mutations in these genes
can lead to the activation of various signaling pathways such as

PI3K-Akt, VEGF, and MAPK. NRAS and KRAS are members of

the RAS family of oncogenes that play a crucial role in regulating

cell growth and differentiation.

The SHAP interpretation revealed 10 genes (NRAS, KRAS,

IKBKG, SOS1, TP53, MAP3K14, EGFR, TGFBR1, MAPK12,

and MAPK3) that have been associated with activation of the
Cell Reports Methods 4, 100817, July 15, 2024 11
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Figure 7. KEGG and Reactome pathway analysis for H-VAE-Cox and XAT-VAE-Cox using the top 15% significant genes sorted by SHAP

values

(A–C) The top 20 significant KEGG pathways were identified using H-VAE-Cox and XAT-VAE-Cox, respectively, where Benjamini values were used to assess the

significance of each pathway.

(B) The NSCLC KEGG pathway was further analyzed using the top 15% significant genes identified by H-VAE-Cox and XAT-VAE-Cox. Gene names in red color

indicate oncogenes and tumor suppressor genes significant for NSCLC. Blue stars represent significant genes identified by H-VAE-Cox, and red stars represent

significant genes selected by XAT-VAE-Cox.

(D) Significance of signaling pathways in the ‘‘diseases of signal transduction via growth factor receptors and second messengers’’ Reactome pathway for XAT-

VAE-Cox and H-VAE-Cox.

(legend continued on next page)
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MAPK signaling pathway. These mutations have been linked to

the activation of the MAPK signaling pathway, which plays a

role in regulating the growth and differentiation of NSCLC cells.62

E2F1 and E2F3 are transcription factors that play a role in regu-

lating cell cycle progression. The overexpression of these genes

has been associated with the development of NSCLC.63 SOS1 is

a guanine nucleotide exchange factor that plays a role in acti-

vating RAS proteins. Mutations in this gene have been linked

to the activation of the RAS-MAPK signaling pathway.64 TP53

is a tumor suppressor gene that helps regulate cell cycle pro-

gression and apoptosis. EGFR is a receptor tyrosine kinase

that regulates cell growth and differentiation. MAPK3 is a mem-

ber of the MAP kinase family that also contributed to regulating

cell growth.65,66

Furthermore, 16 genes (APC2, FZD3, EGFR, TGFBR1,

NRAS, PIK3CA, COL4A4, IL2RB, E2F1, GNB4, KRAS, E2F3,

IKBKG, SOS1, TP53, and MAPK3) are involved in pathways

in cancer, while 11 genes (NRAS, PIK3CA, COL4A4, IL2RB,

GNB4, KRAS, IKBKG, SOS1, TP53, EGFR, and MAPK3) are

involved in PI3K-Akt signaling pathway and five genes (NRAS,

PIK3CA, KRAS, MAPK12, and MAPK3) are involved in VEGF

signaling pathway, demonstrating that the important genes iden-

tified by the SHAP interpretation of XAT-VAE-Cox model are

linked with poor prognosis of NSCLC.

Figure 6C presents the GO analysis, performed using the clus-

terprofiler R package,67 of the top 40 genes from the SHAP inter-

pretation of H-VAE-Cox model. The pathways by GO analysis

were found to be related to the process of cellular respiration

and oxidative phosphorylation. Oxidative phosphorylation con-

sists of two components: the electron transport chain and ATP

synthesis, which were also found to be enriched by GO anal-

ysis.68 It was observed that the significant pathways identified

by GO for biological processes are either part of or related to

the electron transport chain or ATP synthesis. For instance, aer-

obic respiration, aerobic electron transport chain, and respira-

tory electron transport chain were found to be enriched in

NSCLC. Similarly, other enriched pathways such as the ATP

metabolic process and energy derivation by oxidation of organic

compounds are general terms for the production of ATP by

cellular respiration. Mitochondrial respiratory chain complex as-

sembly and mitochondrial respiratory chain complex I assembly

were also found to be enriched.69 The relevance of these path-

ways in NSCLC is that they are essential for the survival and pro-

liferation of NSCLC cells, as they provide them with the energy

they need to grow and divide. These pathways are also potential

targets for cancer therapy, as disrupting them could impair the

energy metabolism of cancer cells and induce cell death.

Furthermore, the mitochondrial pathways related to cellular

components were also found to be enriched. The mitochondrial

respiratory chain complexes I and III, the NADH dehydrogenase

complex, the oxidoreductase complex, and the respirasome are

involved in the oxidative phosphorylation (OXPHOS) process,

which generates ATP and reactive oxygen species (ROS) in the
(E and F) Highly enriched Reactome pathways for XAT-VAE-Cox and H-VAE-Cox,

represented on the x axis.

(G and H) GSEA results for XAT-VAE-Cox for ‘‘non-small-cell lung cancer’’ and ‘‘

(I and J) GSEA results for XAT-VAE-Cox for ‘‘Non-small-cell lung cancer’’ and ‘‘p
mitochondria. NSCLC cells can switch between OXPHOS and

glycolysis depending on the availability of oxygen and nutrients,

and this metabolic flexibility confers them an advantage in sur-

vival and adaptation.70 Similarly, collagen pathways were also

enriched, where collagen is the main component of the extracel-

lular matrix (ECM) providing structural and biochemical support

to the cells. Collagen plays a role in modulating the signaling and

behavior of NSCLC cells, such as proliferation, migration, inva-

sion, and angiogenesis.71 Therefore, collagen pathways are rele-

vant for the poor prognosis of NSCLC and may be targeted by

anti-fibrotic or anti-angiogenic agents.

Similarly, Figure 6D demonstrates the GO analysis of the top

40 important genes from SHAP interpretation of the XAT-VAE-

Cox model. The pathways identified enriched by GO analysis

were found to be related to the regulation of cell growth, survival,

differentiation, and death in NSCLC. The alterations in these

biological processes are often associated with mutations or

overexpression of the EGFR or the ErbB family of receptor tyro-

sine kinases (RTKs), which include EGFR, ErbB2, ErbB3, and

ErbB4. For instance, the enriched EGFR signaling pathway reg-

ulates diverse cellular functions related to survival, growth, pro-

liferation, and differentiation.72 Similarly, the ErbB signaling

pathway was also found to be enriched, which is activated by

the binding of various ligands to the ErbB family of RTKs, which

form homo- or heterodimers with each other. ErbB signaling is

also frequently altered in NSCLC due to ErbB2 amplification or

overexpression.73 Macroautophagy is another significantly en-

riched pathway that is found to have a dual role in NSCLC, as

it can either promote cell survival and adaptation under stress

conditions or induce cell death and senescence under excessive

or prolonged stress.74 Another enriched pathway is the negative

regulation of the EGFR signaling pathway. The EGFR signaling

pathway is often dysregulated in NSCLC, leading to increased

tumor growth and resistance to therapy. Therefore, negative

regulation of the EGFR signaling pathway is considered a poten-

tial therapeutic strategy for NSCLC.75

The GO analysis also identified enriched cellular component-

related pathways. For instance, dysregulation of DNA-directed

RNA polymerase complex and RNA polymerase complex in

NSCLCmay alter gene expression and regulation. Themutations

in the RNA polymerase II core complex can affect the transcrip-

tion of tumor suppressor genes or oncogenes.76 TheGO analysis

identified endocytic vesicle and endocytic vesicle membranes

dysregulated in NSCLC, which are involved in receptor-medi-

ated signaling.77 Similarly, the enriched endopeptidase complex

and peptidase complex are found to be altered in NSCLC, which

play a role in protein degradation and processing.78 The enriched

mitochondrial outer membrane is involved in various cellular

processes, such as apoptosis, metabolism, or oxidative stress,

which can be altered in NSCLC.79 Transferase complex is

involved in various signaling pathways, such as the PI3K-Akt

signaling pathway or the MAPK signaling pathway, which can

be dysregulated in NSCLC.80
where the Reactome pathways are displayed on the y axis and the gene ratio is

pathways in cancer’’ KEGG pathways.

athways in cancer’’ KEGG pathways.
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The top genes were also found to be enriched in

molecular functions associated with NSCLC. For instance,

ATPase-coupled cation transmembrane transporter activity,

ATPase-coupled ion transmembrane transporter activity, and

ATPase-coupled transmembrane transporter activity are molec-

ular functions that describe the ability of some proteins to use

the energy of ATP hydrolysis to transport cations or ions

across membranes. They are involved in maintaining the ion ho-

meostasis and the electrochemical gradient of various cellular

compartments, such as the cytosol, the mitochondria, the lyso-

somes, or the vacuoles, which can be altered in NSCLC.81 The

dysregulated activity of MAP kinase activity in NSCLC alters

various cellular processes, such as cell proliferation, differentia-

tion, survival, migration, and invasion.82 Therefore, understand-

ing these pathways could help to develop new strategies to treat

NSCLC.

KEGG and Reactome pathway analysis for the top 15%
genes
The study was subsequently extended by selecting the top 15%

important genes identified by SHAP interpretation. For each

model, significant pathways with p value or Benjamini value

(i.e., adjusted p values) < 0:05 were examined using DAVID

(https://david.ncifcrf.gov/). Figures 7A–7C demonstrates the

top 20 significant KEGG pathways, while the complete list of sig-

nificant KEGG pathways is provided in Tables S7 and S8. As

illustrated in Figures 7A–7C, XAT-VAE-Cox identified a larger

number of genes involved in the significantly enriched KEGG

pathways compared to the H-VAE-Cox. Moreover, out of the

top 1,714 important genes sorted by SHAP importance, 829

genes from H-VAE-Cox and 1,501 genes from XAT-VAE-Cox

were associated with the KEGG pathways. Furthermore, the

Benjamini values for the KEGG pathways linked with significant

genes by H-VAE-Cox were higher than those obtained with

XAT-VAE-Cox. While both models identified the significant

genes and biological pathways responsible for NSCLC, our re-

sults suggest that XAT-VAE-Cox was able to learn more biolog-

ical pathway knowledge than H-VAE-Cox.

Among the significantly enriched pathways, several pathways

linkedwith NSCLCwere identified. Dysregulation in the cell cycle

is a characteristic of cancerous cells.83 Cell cycle checkpoints

regulate the mechanism of apoptosis or natural cell death,84

and most tumor cells are resistant to apoptosis or natural cell

death.85 Cell cycle regulators, including KRAS, EGFR, and

BRAF, are involved in several significant molecular pathways in

NSCLC.86 31 genes from the H-VAE-Cox model and 90 genes

from the XAT-VAE-Cox model were associated with the cell

cycle pathway with Benjamini values 3:35e � 5 and 3:8e �
28, respectively. Another significant pathway identified was

the PI3K-AKT pathway, where 74 genes from the H-VAE-Cox

model and 175 genes from the XAT-VAE-Cox model were asso-

ciated with this pathway, with Benjamini values 2:44e � 08 and

3:15e � 42, respectively. PI3K-AKT pathway is a transduction

pathway that plays an essential role in cell growth, metabolism,

proliferation, and survival.87 Studies have shown that alterations

in this pathway are likely to decrease the survival rate in NSCLC

patients.88 Previous studies have established the PI3K-AKT

pathway as an interesting target for cancer therapy.89–91
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Several studies have assessed the efficacy of proteoglycans

as a significant biomarker for NSCLC.92 The ‘‘proteoglycans in

cancer’’ pathway is responsible for the regulation of various

cellular processes such as adhesion, proliferation, differentia-

tion, survival, and death.93 42 genes from the H-VAE-Cox model

and 140 genes from the XAT-VAE-Cox model were associated

with the proteoglycans in cancer pathway, with Benjamini values

7:16e � 5 and 7:47e � 57, respectively. Tumor-necrosis factor

(TNF) signaling pathway plays an essential role in apoptosis,

cellular differentiation, survival, and proliferation.94 TNF pathway

was associated with 27 genes from the H-VAE-Cox model and

64 genes from the XAT-VAE-Cox model, with Benjamini values

of 1:43e � 2 and 1:636e � 19, respectively. The TNF pathway

is found to be more significant in the XAT-VAE-Cox model than

in the H-VAE-Cox model. Previous studies have established

the TNF signaling pathway as a significant biomarker for

NSCLC therapy.95 It has been observed that the genes related

to apoptosis in the TNF signaling pathway are linkedwith the sur-

vival of NSCLC patients.96

The focal adhesion pathway is linked to focal adhesion kinase

(FAK). This is a cytoplasmic tyrosine kinase that is crucial for

cellular signaling. Overexpression and activation of FAK have

been associated with tumor progression and metastasis.97

Studies have observed the upregulation of FAK in NSCLC pa-

tients98 and its relationship with the metastasis of NSCLC.99

The focal adhesion pathway was associated with 51 genes

from the H-VAE-Cox model and 131 genes from the XAT-VAE-

Cox model, with Benjamini values of 1:58e � 8 and 6:57e �
49, respectively. The comparison of the enriched pathways for

the H-VAE-Cox and the XAT-VAE-Cox models revealed that

the significant prognostic genes identified by the SHAP interpre-

tation of the XAT-VAE-Cox model contained more NSCLC-

related biological knowledge than the prognostic genes identi-

fied by the H-VAE-Cox model. Figures 7A and 7C depict the

bar graphs for the count of genes involved in the top 20 path-

ways, where the significance of each pathway was determined

using the Benjamini value (i.e., adjusted p values).

In addition to the above pathways, we thoroughly investigated

the NSCLC KEGG pathway. The H-VAE-Cox and XAT-VAE-Cox

models identified 24 and 51 genes associated with the NSCLC

pathway, respectively, as shown in Figure 7B. The mutation

of KRAS, EGFR, TRIM59, P53, cyclines, P16INK4, P14ARF,

survivin, VEGF, and telomerase are considered potentially clini-

cally useful as prognostic biomarkers and several studies

have demonstrated their negative correlation with survival

time.100,101 Most oncogenes and tumor suppressor genes for

the NSCLC pathway (e.g., EGFR, KRAS, P53, CDKN2A, and

PIK3CA) were identified as important genes by both models for

high-risk patients (i.e., patients with low survival rates).

We then biologically interpreted those selected genes using

Reactome pathways (Figures 7D–7F). ReactomePA102 was

used for enrichment analysis and to identify significant biological

processes via hypergeometric testing. Reactome pathways

such as ‘‘diseases of signal transduction by growth factor recep-

tors and second messengers,’’ ‘‘signaling by interleukins,’’ ‘‘M

phase,’’ ‘‘cell cycle checkpoints,’’ ‘‘signaling by ROBO recep-

tors,’’ and ‘‘regulation of expression of SLITs and ROBOs’’

were identified as the most significant pathways with low

https://david.ncifcrf.gov/
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adjusted p value and high gene ratio. The gene ratio of the dis-

eases of signal transduction by growth factor receptors and sec-

ond messengers pathway was the highest for both models. This

pathway is a hierarchical pathway with signaling pathways as

children pathways; therefore, we further investigated the chil-

dren pathways and, for both the models, cancer-causing

signaling pathways were significantly enriched.

Figures 7E and 7F illustrate the top 30 significant Reactome

pathways identified by the ReactomePA package for the XAT-

VAE-Cox andH-VAE-Coxmodels, respectively. Reactome path-

ways such as diseases of signal transduction by growth factor

receptors and second messengers, signaling by interleukins, M

phase, cell cycle checkpoints, signaling by ROBO receptors,

and regulation of expression of SLITs and ROBOswere identified

as the most significant pathways with low adjusted p value and

high gene ratio.

As the gene ratio of the diseases of signal transduction by

growth factor receptors and second messengers pathway was

the highest for both models, we further investigated this partic-

ular pathway using the reactome.org Website to identify signifi-

cant disease-related Reactome signaling pathways. Figure 7D

illustrates the significance of signaling pathways associated

with the diseases of signal transduction by growth factor recep-

tors and second messengers pathway for the H-VAE-Cox and

XAT-VAE-Cox models. Signaling by EGFR in cancer is one of

the significant signaling pathways, with 19 genes from the

XAT-VAE-Cox model and 11 genes from the H-VAE-Cox model

overlapping with the background gene list. EGFR is a tyrosine

kinase (TK) receptor that is activated when it binds to the

epidermal growth factor and other growth factor ligands, acti-

vating several downstream pathways such as RAS/MAPK,

PI3K/Akt, and STAT, which regulate various cellular processes,

including DNA synthesis and proliferation. EGFR signaling is

frequently disrupted in cancer, including NSCLC.103 Specifically,

in approximately 50% of NSCLC cases, EGFR expression is

found activated.104

Similarly, the PI3K/AKT signaling in cancer pathway is another

significant pathway identified with 49 genes from the XAT-VAE-

Cox model and 22 genes from the H-VAE-Cox model overlap-

ping with the background gene list. The PI3K/Akt/mTOR

signaling pathway is critical in the control of cellular development

and metabolism. This pathway has been involved in both carci-

nogenesis and disease progression in NSCLC.91 The ‘‘signaling

by KIT in disease’’ signal pathway activated by onco-miRNA,

miR-1260b, and mediated by YY1 regulates cell proliferation

and apoptosis in NSCLC was also identified as a significant

pathway, with 175 genes from the XAT-VAE-Cox model and 74

genes from the H-VAE-Cox model overlapping with the back-

ground gene list.105 The genes selected from the XAT-VAE-

Cox model were found to be more significant for cancer-related

pathways compared to the genes from the H-VAE-Cox model,

suggesting that the XAT-VAE-Cox model was able to learn

more about cancer-related biological processes than the

H-VAE-Cox model.

Gene set enrichment analysis
To explore the biological basis of high-risk and low-risk patients,

we then performed a GSEA.106 The PI estimated by H-VAE-Cox
and XAT-VAE-Cox models were split into two groups, where

samples having a PI value greater than the median value were

categorized as high risk and samples having PI less than or equal

to the median value were categorized as low risk. The samples

categorized into high- and low-risk groups were used as differ-

entiating phenotypes for GSEA. The enrichment score was

calculated based on the KEGG pathway for the NSCLC pathway

and pathways in cancer downloaded from the Molecular Signa-

tures Database (MSigDB). The gene set enrichment score re-

flects the degree to which a gene set is overrepresented at the

top or bottom of a ranked list of genes. GSEA calculates the

enrichment score by walking down the ranked list of genes,

increasing a running-sum statistic when a gene is in the gene

set and decreasing it when it is not. The magnitude of the incre-

ment depends on the association of the gene with the phenotype

(high-risk and low-risk groups). The enrichment score (ES) quan-

tifies the association of the rank of genes with pathways, and it is

validated with a false discovery rate (FDR) as corrected for mul-

tiple comparisons. The enrichment plots for the NSCLC pathway

and pathways in cancer for the XAT-VAE-Cox model are re-

ported in Figures 7G and 7H, respectively. Figures 7I and 7J

report the enrichment plots for both pathways when using the

H-VAE-Cox model. The XAT-VAE-Cox model ES was higher

than the H-VAE-Cox model score for both pathways (i.e.,

NSCLC pathway and pathways in cancer), indicating that the

XAT-VAE-Cox model estimation was highly associated with

those pathways.

Baseline VAE-Cox model
In order to investigate the impact of sparsity on the performance

of the proposed models for small sample CT-scan images, gene

expression, and clinical data, a baseline variational autoencoder

was designed by modifying the XAT-VAE-Cox model. Specif-

ically, the baseline variational autoencoder was designed by

removing the attention mechanism and replacing the sparse

connection between the gene and pathway layers with a dense

layer, as shown in Figure S2. The image modality in the encoder

was constructed using pre-trained VGG-19 layers, while the

gene modality was constructed using dense layers. The latent

vector m and clinical data were input to the subsequent Cox

regression component. The encoder’s output vector m was

concatenated with the clinical layer, followed by the Cox propor-

tional hazard layer, while the decoder could reconstruct the im-

ages and gene expression data from a homogeneous latent

representation.

The baseline-VAE-Cox model did not incorporate any

pathway-related information or attention mechanism, providing

a baseline performance for the survival prediction model without

prior biological knowledge or feature selection. The model was

trained using nested cross-fold validation, where the inner

loop was used to tune the hyperparameters, while the outer

loop was used to evaluate the model performance. The trained

model was then evaluated on unseen datasets, namely TCGA-

LUAD and TCGA-LUSC. Five independent experiments were

conducted, and the model predicted the survival of NSCLC pa-

tients with a C-index of 0.59 ± 0.08, 0.58 ± 0.02, and 0.52 ±

0.05 on NSCLC-Radiogenomics, TCGA-LUAD, and TCGA-

LUSC datasets, respectively (Table S2).
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To further investigate the advantage of the sparsity in the pro-

posed models on identifying the potential prognostic biomarker

genes and associated pathways, we performed the SHAP inter-

pretation for the baseline-VAE-Cox model and investigated the

important genes identified by this model. Figure S3A depicts

the top 40 genes identified as important by the SHAP interpreta-

tion of the Baseline-VAE-Cox model. When the top 40 genes

from the SHAP summary plot were analyzed for KEGG pathways

using DAVID, it was found that none of the KEGG pathways were

enriched. Then the study was extended by selecting the top 15%

(i.e., 1,714) genes for KEGGpathways analysis. It was found that,

out of 1,714 genes, only 730 genes were included in KEGG path-

ways; however, only twopathways: Lysosome (Benjamini value =

0.048926) and cell cycle (Benjamini value = 0.048926) pathways

were enriched.

Hence, this experiment demonstrates that the sparsity in the

proposed variational autoencoder not only improves the predic-

tive performance of the model but also helps identify prognostic

biomarkers in high-risk NSCLC patients. Moreover, the XAT-

VAE-Cox model was able to identify biologically relevant path-

ways and genes that were associated with the survival outcome

of the patients, compared to the baseline-VAE-Cox model.

Therefore, we conclude that the sparsity in the autoencoder,

the incorporation of pathway information, and the attention

mechanism are beneficial for improving the accuracy of survival

analysis of cancer patients when using multimodal data.

DISCUSSION

Radiogenomics is an emerging field of research that combines

radiological images and gene expression data to extract mean-

ingful information for cancer diagnosis and prognosis, therefore

supporting decision making and precision medicine.107 Howev-

er, the integration of such heterogeneous data is complex and

challenging. Several data integration strategies like early integra-

tion, intermediate integration, and late integration have been at-

tempted for multi-omics data integration for cancer diagnosis

and prognosis.108,109 Because of the heterogeneity of the data

types (multi-dimensional images and high-dimensional gene

expression), an early integration approach is often infeasible.

Hence, an intermediate integration strategy to integrate radio-

logical images, gene expression data, and clinical information

for NSCLC survival prediction was proposed here. Furthermore,

the small sample size for radiological images and gene expres-

sion posed the challenge of designing a robust and efficient pre-

diction model from only 130 samples. As observed in the exper-

iment conducted by Subramanian et al.110 on the data used in

this paper, developing a robust and efficient deep-learning archi-

tecture for survival prediction using a small sample size remains

an open challenge. This is of high importance in the clinical

context, as several studies involve a very small number of

patients.

We here addressed these challenges by proposing two sparse

autoencoder-based Cox architectures (H-VAE-Cox and XAT-

VAE-Cox). In particular, a sparse connection was created be-

tween gene and pathway layers in both architectures, where a

pathway mask based on KEGG and Reactome information

was used to create the sparsity between the layers, adding
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further biological knowledge within the learning process and al-

lowing more comprehensive interpretation (see sparse connec-

tion between the gene and pathway layers). We used both archi-

tectures for the intermediate integration of heterogeneous data

(i.e., CT-scan images, gene expression, and clinical data) to es-

timate patients’ PI. To ensure that the proposed models are

robust (i.e., they are not overfitting or underfitting), we adopted

a nested cross-validation approach to train and validate them.

Specifically, the inner loops were used to tune the hyperpara-

meters and train the model with the identified best hyperpara-

meter, while the outer loops were used to validate the trained

model.

The models trained on 130 samples were further evaluated on

additional cohort datasets: TCGA-LUAD and TCGA-LUSC. To

ensure the robustness of the models, the TCGA-LUAD and

TCGA-LUSC datasets were never used for tuning the hyperpara-

meters or training the models but only for the final evaluation of

the proposed models. While both H-VAE-Cox and XAT-VAE-

Cox models increased their accuracy when integrating imaging,

gene expression, and clinical data, compared to using a single or

two data modalities, the attention-based XAT-VAE-Cox model

trained on small sample size was more robust in making predic-

tions on the unseen TCGA-LUAD and TCGA-LUSC datasets

(0:68 ± 0:03 and 0:65± 0:05, respectively) compared to the

H-VAE-Cox model (0:64± 0:06 and 0:60± 0:04).

To assess the proposed architectures, we examined the pre-

dictive performance of single omics and multiple combinations

of omics data. We observed that, compared to single-omics

data, the integration of multi-omics data improves survival pre-

diction. For instance, (1) the combination of image and clinical

data outperforms image-only data; (2) the combination of gene

expression and clinical data outperforms gene expression

data; and (3) the integration of radiological images, gene expres-

sion, and clinical data significantly improves survival prediction.

It was observed that the model trained using only clinical data

stratified high- and low-risk group patients with a p value of

0.116 and estimated the PI with a C-index of 0:55± 0:10. Impor-

tantly, this suggests that only clinical information is not sufficient

to precisely stratify patients into risk groups. Hence, the combi-

nation of other omics datasets along with clinical data signifi-

cantly improves the survival estimation.

Having achieved more accurate survival prediction using inte-

grated multi-omics data, it is crucial to investigate whether the

models are considering biologically significant features as

important features in deriving the prediction. Therefore, to inter-

pret the proposed models and investigate significant genes and

biological processes associated with high-risk-group patients,

the trained models were interpreted using SHAP values. We

identified important genes, clinical features, and regions in radio-

logical images for the PI prediction (see Figure 5). We observed

that specific tumor regions are considered important features for

survival prediction. Similarly, both models identified disease

recurrence as the most important clinical feature for high-risk

patients.

To further biologically interpret the results and assess the bio-

logical knowledge learned during the training phase, the top 40

important genes identified by the SHAP interpretation of both

models were investigated for KEGG pathways and functional
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GO (Figure 6). The study was then expanded by selecting the top

15% (i.e., 1,714) genes sorted by SHAP value for the KEGG and

Reactome pathway analysis. The results showed that the signif-

icant prognostic genes are highly associated with cancer-related

KEGG pathways. Notably, XAT-VAE-Cox selected a larger num-

ber of genes associated with top-ranked cancer-related KEGG

pathways compared to H-VAE-Cox. The significant pathways

determined by the Benjamini value were found to be more

related to NSCLC-causing pathways for XAT-VAE-Cox

compared to H-VAE-Cox (Figures 6 and 7A–7C). The NSCLC

KEGG pathway and pathways in cancer were enriched when

performing GSEA with positive ESs (Figures 7G–7J).

Similarly, the Reactome pathway analysis (Figures 7D–7F) per-

formed on the selected genes, identified cancer-related path-

ways with high gene ratios, including the diseases of signal

transduction by growth factor receptors and second messen-

gers pathway, which had the highest gene ratio and the

lowest p value for both models. The cancer-related signaling

pathways under diseases of signal transduction by growth factor

receptors and second messengers (e.g., signaling by EGFR in

cancer, signaling by FGFR in cancer, PI3K/AKT signaling in can-

cer, signaling by ALK in cancer, signaling by NOTCH1 in cancer,

oncogenic MAPK signaling, etc.) were identified as significant

pathways from the model-selected genes (Figure 7D). When

compared to H-VAE-Cox, the significant prognostic genes iden-

tified by XAT-VAE-Cox had a larger number of overlaps with

background gene lists for these signaling pathways. Thus, the

proposed models were able to learn cancer-causing biological

knowledge, while the top-ranked genes identified by XAT-VAE-

Cox were more relevant in cancer-related biological processes,

as shown by the biological interpretation analysis.

In summary, our results suggest that the integration of radio-

logical images with gene expression data and clinical data in a

deep neural network framework can improve survival prediction

in the presence of a small dataset. The integration of gene

expression data and clinical data improved the predictive perfor-

mance compared to using only gene expression data. Similarly,

the integration of images and clinical data performed better

compared to only images and, most importantly, the integration

of gene expression, images, and clinical data outperformed all

previous models, with the highest C-index and lowest p value.

Furthermore, when compared to DeepSurv and DCM models,

both our proposed models achieved a more accurate survival

prediction using low-sample-size images, gene expression,

and clinical data. We note that, while both the H-VAE-Cox and

XAT-VAE-Cox models perform well in terms of survival predic-

tion, XAT-VAE-Cox can learn more biological knowledge and

identify significant cancer-related genes and biological path-

ways. We envision that the integration of radiomic features

with multi-omics (transcriptomics, proteomics, epigenomics,

and metabolic) data will further improve the performance of our

models and enhance our understanding of significant genes

and biological processes associated with cancer.

Limitations of the study
While both proposed models accurately stratify patients into risk

groups when trained on a dataset of only 130 patients, the best

model to be adopted depends on the modeling priorities.
H-VAE-Cox, being a modular model, requires fewer computa-

tional resources, and can readily incorporate additional modal-

ities, but it has limited interpretability. In particular, H-VAE-Cox

is not able to precisely highlight the tumor regions in the high-

risk categorized CT-scan images. Conversely, XAT-VAE-Cox,

with a built-in attention mechanism, is better able to learn from

cross-modality information, making the model more interpret-

able. However, as all the data modalities are integrated within

a single framework, it requires higher computational resources.

In cases where high computational resources are not available

and the interpretability of the model is less important, H-VAE-

Cox could be adopted.
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METHOD DETAILS

Two sparse variational autoencoder-based architectures were developed: the Hierarchical Variational Autoencoder Cox model

(H-VAE-Cox) and the cross-attention-based sparse Variational Autoencoder Cox model (XAT-VAE-Cox). Within these, radiological

images (CT scan images) were integrated with RNA-seq data, biological pathways, and clinical data for survival prediction.

Data collection and preprocessing
For our experiment, we used NSCLC radiogenomics (i.e., a combination of radiological images and transcriptomics data) and clinical

data. Specifically, CT scan images and clinical information for 211 patients were obtained from TCIA,111 while the corresponding

RNA-seq data available for 130 patients was downloaded fromGEO (GSE103584).111 The clinical data contains 38 features including

gender, smoking status, EGFR mutation status, KRAS mutation status, ALK translocation status, survival status, and time to death.

The RNA-seq data contains log normalised expression values of 22126 genes for 130 patients, namely 96 male patients with an

average age of 69 years and 34 female patients with an average age of 64 years. Additionally, we extracted biological pathway in-

formation from DAVID,112,113 where we focused on the KEGG and Reactome pathway databases. We only considered the pathways

that included the genes available in our RNA-seq dataset.

The raw RNA-seq count dataset contained NA values and underexpressed genes, which needed to be preprocessed prior to

being used for the model. Genes with NA values in more than 70% of the samples were filtered out, resulting in 11,175 genes.
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The next stage was to address dropout events in which a gene expressed even at a relatively high level may be undetected because

of some technical limitations, including reverse transcription inefficiency.114 We imputed the dropouts or underexpressed genes us-

ing scImpute115 in R, a statistical method to accurately and robustly impute the dropouts. In our case, we detected gene expression

values impacted by dropout events, and performed imputation only on those imputed values without impacting or introducing any

bias to the remaining data. Using ScImpute, we also detected the outliers and removed them during the imputation process.115

CT scan images from 144 patients (out of the initial 211 patients) had labelled tumor segments, which could be used as ground truth

for the U-Net model.116 Further, each sample had a varying number of CT scan slices, but only a few of them were tumorous slices.

The number of slices for each sample varied depending on the region and position of the undertaken CT scan. The number of

tumorous slices also differed for each sample, depending on the size and location of the tumor. Therefore, only the CT scan image

slices having their respective labelled segments were considered. Thus, we considered only 2358 tumorous slices and segment la-

bels from 144 samples for the next step.

We then designed and trained a model based on the U-Net architecture116 to segment the tumor from CT scan images. We paired

the 2358 CT scan images and their corresponding binary mask segments (labels). Specifically, the pre-trained VGG-16model117 was

used to construct the contraction path (encoder), while the expansion path (decoder) of theU-Net architecture was constructed using

transposed convolutional layers. Themodel was trained using tumorous CT scan images and their respective labelled segments. The

trained model was then used to predict the segment of unlabelled CT scan images so that those images could be used along with

RNA-seq data. During the segmentation process, we used the Dice loss53 as a loss function, and the intersection over union (Jaccard

index) as an evaluation metric to measure the contact or overlap ratio between the predicted segment (PS) and ground truth (GT).

Equation 1 reports the Dice coefficient formula:

DiceCoeff =
2jPSXGTj
jPSjWjGTj ; (Equation 1)

where PS represents the predicted segment and GT represents the ground truth. jPSXGTj represents the common elements

betweenpredicted segments and theground truth. For binary image segmentation,GT is considered tobe aset of foreground labelled

pixels. TheDice coefficient can range from0 (thePSdoesnot overlapwith theGT ) to 1 (perfect agreement/overlapbetween thePS and

GT ). As a loss function to beminimized while training themodel, the dice loss between two binary volumes 0 and 1was computed as:

DiceLoss = 1 �
2
PN
i

PiTi+e

PN
i

P2
i +
PN
i

T2
i +e

; (Equation 2)

where Pi is the predicted pixel value, Ti is the true pixel value, N is the total number of pixels in the image and e is a small smoothing

constant and was set to 1. In our experiment, Ti ˛ f0;1g and 0<Pi < 1.

After segmenting the tumor using the U-Net-based model, we used the OpenCV library to crop the tumorous region from CT scan

images and resize the images to 224 x 224 pixels. Figure S1 illustrates the tumor segmentation process and the extraction of the

Region of Interest (RoI). Then the segmented images, clinical data and RNA-seq data from 130 common patients were selected

to train and validate the proposed survival prediction models.

Data for external validation
To evaluate the robustness of the trained models and their performance on unseen external datasets, two additional cohort datasets

were collected from the TCGA repository: TCGA-LUAD and TCGA-LUSC.48,49 The TCGA-LUAD dataset contains 28 joint samples of

CT scan images, gene expression and clinical data. Among these samples, 19 are from female patients with an average age of 67.2

years, and 9 are frommale patients with an average age of 69.22 years. Similarly, the TCGA-LUSC dataset contains 34 joint samples,

comprised of 16 female patients with an average age of 71.56 years and 18 male patients with an average age of 64.11 years.

H-VAE-Cox: Hierarchical Variational Autoencoder-based Cox model
H-VAE-Cox is based on multimodal hierarchical integration approaches for combining multiple single-type models. Hierarchical and

multimodal techniques are integration approaches that aim to compute higher-level classification or regression by integrating mul-

tiple modalities computed separately over distinct data types. H-VAE-Cox is amodular architecture in which a separate autoencoder

was trained with each data type independently to generate low-dimensional features, minimising the information loss during the

dimensionality reduction. This architecture is composed of two low-level autoencoders (see Low-level autoencoder: Extraction of

pathway-guided latent features from RNA-seq data and Low-level autoencoder: Extraction of features from radiological (CT

Scan) images) to extract the latent features from gene expression and images separately. The resulting latent features along with

clinical data are then assembled in a high-level variational autoencoder (see High-level variational autoencoder: Cox model) to

generate a vector of integrated latent features, which is then used to estimate the prognostic index (PI) for survival analysis.

Hence, H-VAE-Cox estimates the prognostic index from radiological images, gene expression, and clinical data in three steps (Fig-

ure 2). First, the high-dimensional gene expression was encoded to a pathway-guided lower-dimension latent vector using a sparse
Cell Reports Methods 4, 100817, July 15, 2024 e2
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autoencoder. Then, a supervised convolutional autoencoder encoded the multi-dimensional images to lower-dimension latent vec-

tors. Finally, these latent features were concatenated to form an integrated input, which was fed into the high-level b-VAE along with

the clinical data to estimate the prognostic index (PI), as discussed in the section High-level variational autoencoder: Cox model.

Low-level autoencoder: Extraction of pathway-guided latent features from RNA-seq data

The preprocessed RNA-seq data was a high-dimensional and low-sample size gene expression data, which constitutes one of the

main challenges when working with omics data in the context of multimodal machine learning.118 To overcome the curse of dimen-

sionality and focus on biologically relevant genes based on pathway knowledge, we designed a supervised autoencoder that reduces

the dimension of gene expression data in a way that generates pathway-guided latent features (Figure 2, step 1). The encoder of the

gene sparse autoencoder consists of (i) an input layer, (ii) a gene layer, (iii) a pathway layer, and (iv) a latent feature layer Z1. The pre-

processed gene expression data g0, with N samples andm genes (features), was used as the encoder input. The second layer of the

encoder is the pathway layer with q nodes, where each node represents the biological pathway associated with the input genes.

To add biological knowledge to the network and implement the sparse connection between the gene and pathway layer, a pathway

mask based on KEGG and Reactome was introduced. This was encoded as a binary matrix vector A of dimensionm3 q, wherem is

the number of genes and q is the number of pathways. Each element of the pathwaymatrix was set equal to 1 if the gene is associated

with the corresponding pathway, and equal to 0 otherwise. The neurons in the gene layers were sparsely connected to the neurons in

the pathway layer (see Sparse connection between the gene and pathway layers for more details on the pathway mask). Thus, the

pathway layer incorporates biological knowledge, and the autoencoder can learn from these biologically interpretable features.

On the other side, the decoder was constructed with three layers, where the latent features were fed as input to reconstruct the

original gene expression data. Similar to the encoder part, a pathwaymatrix was introduced into the pathway layer. A Cox regression

component was connected to the autoencoder bottleneck (latent) layer to predict the prognostic index and generate the latent fea-

tures associated with survival prediction while having the capability to be used to reconstruct the original data. As a result of the Cox

regression approach, the latent representation was further regularised through the Cox negative log likelihood loss function:

Closs =
XN
i = 1

di

(
X0
ig � log

" X
j˛RðtiÞ

eðX0
j
gÞ
#)

� PlðgÞ; (Equation 3)

where PlðgÞ is a network-constrained penalty function on the coefficients g, N is the number of samples, ti is the survival times and di

is the censoring indicator for each sample (di = 1 if the survival time is observed and di = 0 if the survival time is censored), RðtiÞ is the
risk set at time ti, namely the set of all patients who still survived prior to time ti. The function is used to estimate the PI for each in-

dividual, which is the linear predictor X0
jg, where X0

j represents the weights of the linear combination of neurons in the previous layer.

The Mean Squared Error (MSE) was used as the reconstruction loss:

LgMSE =
1

N

XN
i = 1

ðbg0 � g0Þ2; (Equation 4)

whereN represents the number of samples, g0 represents the input gene expression value and bg0 represents the reconstructed gene

expression value. AnL2 regularisation losswas added to theCox regression component to regularise themodel and avoid overfitting.

L2 is proportional to the squared magnitude of the coefficients ðwiÞ, and it was included as a penalty term added to the loss function:

L2 = l
XN
i = 1

wi
2; (Equation 5)

where l is the regularisation coefficient set during the hyperparameter tuning phase. As a result, the total losswe used for themodel is

given by Equation 6:

Ltotal = Closs +LgMSE +L2: (Equation 6)

This low-level supervised gene sparse autoencoder was used for two purposes: (i) to generate lower-dimensional latent features

from gene expression data, and (ii) to perform survival prediction with gene expression data only.

Low-level autoencoder: Extraction of features from radiological (CT scan) images

To encode the multi-dimensional images into a low-dimension representation Z2, we designed and trained a supervised convolu-

tional autoencoder (Figure 2, step 2). Supervised dimensionality reduction aims to reduce higher or multi-dimensional data to lower

dimensions in order to make classification and regression algorithms more effective. Our goal was to obtain an autoencoder that

reduced the dimension of tumourous CT scan images such that the latent features Z2 could: (i) be related to survival prediction,

and (ii) reconstruct the original data with minimal error. The encoder and decoder parts were constructed using convolutional layers.

Similar to the gene sparse autoencoder (Figure 2, step 1), a Cox regression component was connected to the autoencoder latent

layer to predict the prognostic index. As a result of the Cox regression, the latent representation was further regularised with the

Cox negative log likelihood loss function, as shown in Equation 3. An L2 regularisation loss was added to the Cox regression compo-

nent to regularise further the model and avoid overfitting.
e3 Cell Reports Methods 4, 100817, July 15, 2024
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Let Di = ðTi; t; eÞ be the image dataset, where Ti represents cropped tumourous images, t is the time, and e is the event indicator

(i.e., censored or uncensored). Let E and D be the encoder and decoder of the supervised convolutional autoencoder. The encoder

encodes tumourous images as:

Z2;pred hz = Eqe ðTi; t; eÞ; (Equation 7)

where qe is the encoder weight matrix and pred hz is the predicted risk score. However, in this process, the images would gradually

lose information. To avoid this information loss, the decoder D reconstructs the images from the latent representation Z2. The recon-

struction of the images by the decoder can be represented as:bTi = Dqd ðZ2Þ; (Equation 8)

where qd is the weight matrix of the decoder.

We used the mean squared error loss as image reconstruction loss:

LMSE =
1

N

XN
i = 1

ð bT i � TiÞ2; (Equation 9)

where N represents the number of samples, Ti represents the cropped tumourous images and bTi represents the reconstructed im-

ages. The reconstruction loss is computed by comparing the pixel intensities of the original and reconstructed images.

An L2 regularisation loss was used to further regularise the model. Thus, the total loss for the image autoencoder is:

Ltotal = Closs +LMSE +L2: (Equation 10)

As a result, with minimal loss of information from the images, this supervised convolutional autoencoder generates latent features

associated with survival prediction. This low-level autoencoder was used for two purposes: (i) to generate lower-dimensional latent

features from multi-dimensional CT scan images; and (ii) to perform survival prediction using images only.

High-level variational autoencoder: Cox model

To integrate the latent features generated from the low-level autoencoders (i.e., the gene sparse autoencoder and the image autoen-

coder) for survival prediction, we designed a high-level b-variational autoencoder (b-VAE), based on the Cox regression. A b-VAE,

unlike standard autoencoders, encodes the input as a distribution over a latent space rather than as a single point.119 The latent fea-

tures z1 and zz from the gene sparse autoencoder and image autoencoder, each of d-dimensions withN samples, weremerged as an

input (of dimension 2d) for the encoder. We note that, besides the important information extracted from radiogenomics data, clinical

data also plays a vital role in precise survival analysis and treatment planning. Hence, a separate clinical layer was introduced to the

autoencoder to capture the clinical effect for survival prediction. The architecture of our b-VAE is therefore composed of the three

components as outlined below: encoder, decoder, and Cox regression component.

Encoder
The latent features encoded from the gene expression autoencoder (see Low-level autoencoder: Extraction of pathway-guided latent

features from RNA-seq data) and the image autoencoder (see Low-level autoencoder: Extraction of features from radiological (CT

Scan) images) were concatenated and further encoded to form integrated radiogenomics low-dimensional features. Each latent var-

iable zi was encoded by the encoder using a latent distribution pqðzÞ. The final hidden layer of the encoder was connected to two

output layers, which represent the mean ðmÞ and the standard deviation ðsÞ of the Gaussian distribution Nðm; sÞ of the latent variable

zi given the input sample x, which corresponds to the variational distribution q4ðzjxÞ. To estimate the posterior latent distribution and

solve the intractability of the real posterior pqðzjxÞ, the encoder inserts a variational distribution q4ðzjxÞ, where 4 is the encoder set of

learnable parameters.46 To make the sampling process differentiable and suitable for backpropagation, the reparametrisation trick

was applied in the bottleneck layer as shown in Equation 11:

z = m+se; (Equation 11)

where z represents the latent feature vector, m and s represent themean and standard deviation of the Gaussian distribution, respec-

tively, and e is a random variable sampled from Nð0;1Þ.

Decoder
The points sampled from a conditional distribution pqðxjzÞ, where q is the decoder’s set of learnable parameters, are decoded by the

decoder, which reconstructs the input x as x0. Here, the b-VAE estimates the loss or error using a loss function composed of two

losses, namely the reconstruction loss and the regularisation loss. To regularise the latent space, the reconstruction loss computes

the loss for the reconstruction of input x0 compared to the original input x, while the regularisation loss quantifies the distance between

the estimated posterior q4ðzjxÞ and true posterior pqðzjxÞ. The regularisation loss in a conventional VAE is the Kullback-Leibler diver-

gence (Equation 12). However, for a b-VAE, the regularisation loss is multiplied by b (the regularisation coefficient, where b> 1). b

constrains the capacity of the latent information channel Z and puts implicit independence pressure on the learnt posterior due to
Cell Reports Methods 4, 100817, July 15, 2024 e4
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the isotropic nature of the Gaussian prior pqðzÞ. In our implementation, the encoder and decoder were jointly optimised using the

following loss function, which relies on the traditional evidence lower bound (ELBO) criterion:

Lvae = Ez�q4ðzjxÞ log pqðxjzÞ � bðDKLðq4ðzjxÞkpqðzjxÞÞ � eÞ; (Equation 12)

where Ez�q4ðzjxÞ log pqðxjzÞ corresponds to the ELBO contribution andDKL is the Kullback-Leibler (KL) divergence between two prob-

ability distributions.

Cox regression component
For the survival prediction using the integrated latent features in H-VAE-Cox, the b-VAEwas combinedwith a Cox regression compo-

nent. Clinical features contain relevant information for survival analysis, thus we introduced a 2-layer fully connected neural network

to extract the features from the clinical dataset. Then, to estimate the PI, the encoder output vector m was concatenated with the

clinical layer’s output, and connected to the Cox regression component. The final output layer (i.e., PI layer) of the Cox regression

component is a single-neuron, non-linear hazard function parameterised by the weights of a linear combination of neurons in the pre-

vious layer.120,121

As part of the Cox regression, the latent representation was further regularisedwith the Cox negative log likelihood loss function, as

shown in Equation 3. With the regularisation of the Cox regression component, the model is encouraged to acquire latent represen-

tations that can not only properly reconstruct the input sample, but also predict the hazard ratio for survival analysis. An L2 regular-

isation loss was added to the Cox regression component to regularise themodel and avoid overfitting. Thus, the total loss function for

H-VAE-Cox was composed of reconstruction loss, regularisation loss and Cox loss as follows:

Ltotal = Lvae +Closs +L2; (Equation 13)

where Lvae is the reconstruction loss and regularisation loss obtained from Equation 12, and Closs is the Cox loss presented in Equa-

tion 3. L2 is the squared magnitude of the coefficients as a penalty term added to the loss function.

XAT-VAE-Cox: Cross-attention-based sparse Variational Autoencoder Cox model
The second architecture we designed to integrate radiological images, gene expression, and clinical data and estimate Cox propor-

tional hazard ratio is the Cross-attention-based sparse Variational Autoencoder Cox model (XAT-VAE-Cox). As shown in Figure 3,

high-level representations of multiple data sources, e.g., multi-dimensional cropped tumourous images ðTiÞ and high-dimensional

gene expression data (g0 with N samples and m genes), were transformed into a single latent representation by learning to recon-

struct these multiple data sources starting from a common latent representation. XAT-VAE-Cox, like the high-level autoencoder ar-

chitecture of H-VAE-Cox, is composed of an encoder, a decoder, and a Cox regression component. In XAT-VAE-Cox, however,

rather than low-level latent features from low-level autoencoders, both images and gene expression data were directly introduced

into the model as input and reconstructed by the b-VAE.

In the encoder phase, two different modalities, namely imaging and transcriptomics, were introduced to overcome the integration

challenges between multi-dimensional images and high-dimensional gene expression data, incorporating biological information into

the network. The imaging modality, constructed using a single-head self-attention layer and pre-trained VGG-19, in the encoder is

responsible for extracting the features from tumourous images Ti. In particular, the imagingmodality consists of a convolutional layer,

a single-head self-attention layer and four layers from the pre-trained VGG-19model. Themulti-dimensional features from the images

are then transformed into a low-dimensional feature vector (of dimension q).

Similarly, the transcriptomics-specific genemodality is the encoder’s second input, where the first layer is used to introduce the gene

expressiondatag0. The pathway layer is the second layer in thismodality, withq nodes representing the biological pathways associated

with them input genes. Before this layer, a pathway mask based on KEGG and Reactome databases was introduced to add biological

knowledge to the model and implement a sparse connection between the gene and pathway layers (see Sparse connection between

the gene and pathway layers). This is a binary matrix A of dimension m3 q, where m is the number of genes, and q is the number of

pathways.Aði; jÞ = 1 if the i-th gene is related to the j-th pathway. The neurons in the gene layerwere therefore sparsely connected to the

neurons in the pathway layer. The node values in the pathway layer reflect the associated pathways as high-level representations for the

survival model, which allows the autoencoder to learn biologically interpretable features. To generate a high-quality latent representa-

tion from the genemodality and highlight the features relevant to survival prediction, a multi-head self-attentionmechanismwas imple-

mentedwithin the genemodality. The pathway-guided low-dimensional features of sizeq from thismodalitywere considered query, key

and value for the multi-head self-attention layer (see 1 for details on the attention mechanism implemented).

Furthermore, to learn cross-modal interactions between images and gene expression, two layers of themulti-head cross-attention

mechanism were implemented. In particular, the first cross-attention layer was constructed considering the latent representation of

size q from the imaging modality as query, and the output of the self-attention layer of size q from the genemodality as key and value.

Similarly, the second cross-attention layer was constructed considering the output of the self-attention layer of size q from the gene

modality as query, and the latent representation of size q from imaging modality as key and value. Finally, the outputs of these two

cross-attention layers, each of size q, were concatenated to form N32q dimensional vectors.

This concatenated layer was then connected to two output layers. In the Gaussian distribution Nðm;sÞ of the latent feature z,

given the input samples Ti and g0, these two layers represent the mean m and the standard deviation s. A reparameterisation
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method was used in the bottleneck layer i.e., z = m+ se, where e is a random variable sampled from the unit normal distribution

Nð0;1Þ to make the sampling process differentiable and appropriate for backpropagation during the training phase. The sampled

latent feature vector is the low-dimensional representation of the integrated features from the cropped tumourous images and

gene expression data.

In the decoder phase, the points sampled from a conditional distribution pqððTi;g0ÞjzÞ were decoded to reconstruct the

input images Ti and gene expression g0, where q is the decoder’s set of learnable parameters. The b-VAE uses a loss

function composed of two losses, reconstruction loss and regularisation loss, to estimate the error. The reconstruction loss

computes the loss for the image and gene expression reconstruction (T 0
i and g0

0, respectively). In particular, the sampled points

were split into two branches that produce individual reconstructions of input images and gene expression. The final reconstruction

loss was obtained by combining two different reconstruction loss functions for images and gene expression. The regularisation

loss quantifies the distance between the estimated posterior q4ðzjðTi; g0ÞÞ and true posterior pqðzjðTi; g0ÞÞ. The regularisation

loss, Kullback-Leibler divergence (Equation 12), was multiplied by b, the regularisation coefficient ðb > 1Þ. As for H-VAE-Cox,

the loss function of the b-VAE is composed of three losses: image reconstruction loss, gene reconstruction loss and b-regularisa-

tion loss ðDKLÞ, as illustrated in Equation 14:

Lx� vae = LTMSE +LgMSE � bðDKLðq4ðzjðTi;g0ÞÞkpqðzÞÞ � eÞ; (Equation 14)

where LTMSE is the image reconstructed loss, LgMSE is the gene expression reconstruction loss, DKL is the Kullback-Leibler (KL)

divergence between two probability distributions, and b is the regularisation coefficient.

The latent vector m from the b-VAE was then integrated into a Cox regression component. As done for H-VAE-Cox, the encoder’s

output latent vector m was concatenated with the clinical layer’s output and then linked to the subsequent Cox regression compo-

nent. As a result of the Cox regression, the latent representation was further regularised with a Cox negative log likelihood loss func-

tion (Equation 3). Therefore, the total loss function for XAT-VAE-Cox was composed of image reconstruction loss, gene expression

reconstruction loss, regularisation loss, and Cox loss, as illustrated in Equation 15:

Ltotal = Lx� vae �Kvl + ðCloss + L2Þ �Kcl; (Equation 15)

where Lx� vae is the reconstruction and regularisation loss in Equation 14, and Closs is the Cox negative log likelihood loss in

Equation 3. L2 is the squared magnitude of the coefficients used as penalty term added to the loss function.Kvl andKcl are the reg-

ularisation weights of the autoencoder loss and Cox loss, respectively.

Sparse connection between the gene and pathway layers
Let us consider the gene expression input feature vector g0 ˛Rm, the gene layer G, and the pathway layer P with ReLU activation

function sRðxÞ = maxð0;xÞ. Let the number of neurons in the gene and pathway layers be m and q, respectively. Initially, the two

layers were fully connected, where the number of connections is quadratic in the number of neurons. The forward pass for fully con-

nected layers can be represented by a matrix as:

fg0 = sR

�
WT :sR

�
W0

T :g0 + b0

�
+ b
�
; (Equation 16)

where W0 is the weight matrix of dimensions m3m for the gene layer, b0 ˛Rm is the bias vector for the gene layer, W is the weight

matrix of dimensionsm3q for the pathway layer, and b˛Rq is the bias vector for the pathway layer. Hence, the network function fg0
is

parameterised by weight matrices W0, W and biases b0, b. The weights and biases are randomly initialised and are then optimised

during the training phase using the backpropagation on fully connected layers.

In our architecture, in order to force sparse connections between the gene layer and the pathway layer, the weight of the pathway

layer ðWÞwas multiplied by a binary matrix A˛Rm3q to incorporate the information of membership gene-pathway taken from KEGG

and Reactome databases. The sparse connection was created during the training process by updating the weight of neurons in the

pathway layer after each training epoch. The output of the sparse network function was therefore computed as:

fg0 = sR

�
ðW+AÞT :sR

�
W0

T :g0 + b0

�
+ b
�
; (Equation 17)

where + represents the element-wise matrix multiplication.

Attention mechanism
The attention mechanism is implemented in the encoder of the XAT-VAE-Cox model, which enables the model to focus attention on

input features during output generation.122 In particular, the self-attention implemented in the imaging and gene modalities enables

intra-modality communication and focuses on important input features from each modality relevant to the output. The self-attention

matrix is calculated as:

AttentionðQ;K;VÞ = softmax

�
QKTffiffiffiffiffi
dk

p
�
V ; (Equation 18)
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where AttentionðQ;K;VÞ defines the function that computes a weighted sum of the value vectors V, where the weights are deter-

mined by the similarity between the query vector Q and the key vectors K. The similarity is measured by the dot product of Q and

K, scaled by the inverse square root of the key dimension dk . The softmax function normalises the dot products into a probability

distribution. For modality-specific self-attention, the query, key, and value vectors are all derived from the same input modality,

i.e., image and gene modality.

The latent representations from the image and gene modalities are connected within the encoder via a multi-head cross-attention

mechanism. In particular, the multi-head cross-attention mechanism is a technique that allows the model to learn from two different

modalities, imagingmodality and genemodality, by attending to both of them simultaneously. It is similar to self-attention, but instead

of using the single modality for query, key, and value, it uses one modality as query and another modality as key and value. This en-

ables the encoder to capture the cross-modal relations and to align the features from both modalities.

In order to establish two-way communication between two modalities, two multi-head cross-attention layers were constructed.

First, the cross-attention layer was constructed considering the latent representation from the imagingmodality as queryQ of dimen-

sion q, and the latent representation from the gene modality as key K and value V of dimension q. Then the secondmulti-head cross-

attention layer was constructed considering the latent representation from the genemodality as queryQ and the latent representation

from the imaging modality as key K and value V. These two cross-attention layers were then concatenated to form a single latent

representation layer for the encoder (Figure 3).

The multi-head cross-attention layer is mathematically represented as:

MultiHeadðQ;K;VÞ = Concatðhead1;.;headhÞWO; (Equation 19)

where

headi = Attention
�
QWQ

i ;KW
K
i ;VW

V
i

�
: (Equation 20)

Here, Q, K, and V are the query, key, and value matrices from different modalities, WQ
i , W

K
i , W

V
i , and WO are learnable weight

matrices, h is the number of heads which is selected via hyperparameter tuning, and Concat is the concatenation operation.

Experimental design and model evaluation
The first step of our analysis was to identify and segment the tumor and extract the region of interest fromCT scan images.We trained

the U-Net-based model (see Data collection and preprocessing for details of the U-Net model) for 100 epochs using the Dice coef-

ficient as a loss function (Equation 1). We adopted a K-fold validation approach to train, test and evaluate the model using 2358

labelled CT images from 144 samples. The pre-trained model was then used to segment the tumor from unlabelled/unsegmented

samples. To avoid the disturbance of other organs, the tumor region was cropped to 224 x 224 pixels using the OpenCV python li-

brary, with the tumor centered in each image. These cropped tumor regions were used in the H-VAE-Cox and XAT-VAE-Coxmodels,

along with gene expression and clinical data for the same samples.

To determine the effect of including each data type, the predictive performance of survival outcomes of the H-VAE-Cox and XAT-

VAE-Cox models were evaluated and compared in five input scenarios: (i) the cropped tumor regions from CT scan images, gene

expression, biological pathway, and clinical data; (ii) CT scan images only; (iii) CT scan images along with clinical data; (iv) gene

expression data only; and (v) gene expression with clinical data. We used the concordance index (C-index)52 to assess the predictive

performance of the models including censored data. The C-index is a rank correlation metric that counts concordant pairs between

the predicted scores and the observed survival times. The C-index ranges between 0 and 1, with 1 indicating an ideal prediction, and

0.5 indicating a random prediction.

To achieve high accuracy and avoid overfitting, deep learning architectures normally require large datasets. However, one of the

challenges in our case was the modest size of the NSCLC dataset, with only 130 samples containing all three data types (images,

gene expression, and clinical data). In principle, to eliminate bias in the model, the test dataset should be used only once, after sep-

aration from the training set (holdout validation). However, using holdout validation with a small dataset often leads to overfitting and

makes the model pessimistically biased.123 To overcome this limitation andmake the model robust, we adopted a nested cross-vali-

dation approach to randomly split the dataset into smaller folds (see Figure 1F). Nested cross-validation is a technique that involves

training a model and tuning the hyperparameters on a subset of data, and then validating the trained model with the best hyperpara-

meters on the remaining data. The process is repeated multiple times (on different folds) and the average of the validation errors is

computed to estimate the model generalisation performance. Since the test data is never used during each training process, the

entire dataset can be used to estimate the PI, hence reducing the bias. The nested cross-validation has two loops (outer loop

and inner loop), where the inner loop is used for hyperparameter tuning and training the model with the best hyperparameter, while

the outer loop is used for validation and survival prediction.

To assess the reproducibility and performance of the proposed models, we repeated the experiment five times on different com-

binations of the omics data: (a) the cropped tumor regions from CT scan images, gene expression, biological pathway, and clinical

data; (b) images data only; (c) images along with clinical data; (d) gene expression data only; (e) gene expression with clinical data;

(f) clinical data only. For each experiment, the outer loop was split into 5-folds with stratification based on the survival status, ensuring

the same percentage of censored and uncensored data in each fold, while the inner loop was used for hyperparameter tuning and
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training the model with the best hyperparameters (see Section ‘model tuning and hyperparameter optimisation’). The evaluation of

the trained model with the best hyperparameter was performed on the outer fold.

Finally, in order to evaluate the robustness of the proposed models, for each outer loop, the performance was evaluated on two

additional datasets from external cohorts, TCGA-LUAD and TCGA-LUSC. For each outer fold, we estimated the PI, and evaluated the

performance of all models using the C-index, the C-index IPCW, and the cumulative dynamic AUC, and identified high- and low-risk

patients (see Survival prediction with H-VAE-Cox and XAT-VAE-Cox outperforms other models).

Model interpretation
To interpret the models and identify important features contributing towards high-risk patients, we used the SHAP library to evaluate

Shapley values (see Results section). As we adopted the nested cross-validation approach to train and validate the model, the

SHAP values for images, gene expression, and clinical data were computed for high-risk samples identified from each outer loop vali-

dation dataset.

We then investigated the contribution of each modality towards the predictive performance of both models. Hence, the multimo-

dality score for each modality was computed based on SHAP values to quantify the proportions of the contribution of each modal-

ity.124 Equation 21 defines the imaging contribution FI, gene expression contribution FG, and clinical contribution FC towards the

prediction, where the SHAP value for each data modality is expressed as an absolute sum. The magnitude of the SHAP values

was studied as we were interested in quantifying whether the features from each modality are actively contributing towards PI esti-

mation, irrespective of the direction of contribution.

FI =
XNI

j

		4j

		; FG =
XNG

j

		4j

		; FC =
XNC

j

		4j

		; (Equation 21)

where FI, FG and FCL are the image, gene expression and clinical contributions towards the prediction, expressed as the absolute

sum of SHAP values for each data modality (image, gene expression and clinical data). NI, NG and NC represent the number of im-

aging, gene and clinical features.

To assess the extent to which each modality was contributing to the final prediction, we then calculated the multimodality scores.

The multimodality score for each data modality is estimated as the proportion of the contribution of each data modality to the total

contribution:

IM � score =
FI

FI+FG+FC

;

GE � score =
FG

FI+FG+FC

;

CL � score =
FC

FI+FG+FC

;

(Equation 22)

where IM � score,GE � score and CL � score represent the multimodality score for image, gene expression and clinical features,

expressed as a proportion of data modality contribution.

To further interpret the imaging modality of both models, we used Grad-CAM to visualise a heatmap concentrating on the signif-

icant regions contributing to the estimation of PI. To create the heatmap that visualises the important regions of the input image,

Grad-CAM uses the output-specific gradient information, and feeds it into the self-attention layer for the XAT-VAE-Cox model

and the final convolutional layer for the H-VAE-Cox model. The mathematical description of Grad-CAM is as follows.

Given an image I, let fkðIÞ be the activation map for the last CNN layer k for the H-VAE-Coxmodel and self-attention layer k for XAT-

VAE-Coxmodel, and Y be the PI from the output layer. The gradient of Y with respect to fk , denoted as vY
vfk
, captures the importance of

the activations for the estimated PI. These gradients are global-average-pooled to obtain the neuron importance weights ak :

ak =
1

Z

X
i

X
j

vY

vfkij
; (Equation 23)

where Z is the number of pixels in the activation map, and i; j index these pixels. The Grad-CAM heatmap LGrad�CAM is then a

weighted combination of forward activation maps, followed by a ReLU function to only consider features with a positive influence

on the estimation of PI:

LGrad�CAM = ReLU

 X
k

akf
k

!
: (Equation 24)

This heatmap was then overlaid on the original image to show the discriminative regions used by the CNN to estimate the PI. The

resulting heatmaps therefore highlight the important regions contributing to the PI estimation in both models.
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Model tuning and hyperparameter optimisation
To tune the hyperparameters and avoid overfitting, we used a robust hyperparameter optimisation approach. The hyperparameters

identified for our models are the learning rate, dropout rate, L2 regularisation,Kvl,Kcl, and the number of neurons in the Cox regres-

sion component. To train the model, a scheduled learning rate was chosen, with the learning rate decaying exponentially to meet the

global minimum. The Keras tuner’s Bayesian Optimisation was used to select the best hyperparameters for H-VAE-Cox and XAT-

VAE-Cox. Each generated model was trained for 20 epochs during the optimisation or tuning process, with a maximum of three trials

and two executions per trial. Although, in general, 20 epochs are insufficient to generate a well-trained model, they were sufficient in

our case to generate a model for comparison. At the end of the optimisation, the model was built with the optimal hyperparameters

and was then trained for 100 epochs to obtain the most optimised model.

We used the ReLU activation function for the encoder and decoder networks in both the proposed models as it ensured the lowest

reconstruction loss, and we used the tanh activation function in the Cox regression component and linear activation function in the

Cox output layer, as tanh produced the highest C-index compared to the ReLU activation function. The entire hyperparameter tuning

process was performed within a nested cross-validation approach, where the inner loop was used for hyperparameter tuning while

the outer loop validation data was used for validating the tunedmodel. The hyperparameters Capacity max iter, gamma, max capac-

ity, and kld weight, responsible for determining the value of tanh in a b-VAE for both H-VAE-Cox and XAT-VAE-Cox models were set

to 1e5, 1000, 25, and 0.005, respectively, based on previous experiments.119

QUANTIFICATION AND STATISTICAL ANALYSIS

To assess the statistical significance of the C-index for various input combinations, paired and pairwise t-tests were calculated for:

(a) images only, (b) image and clinical data, (c) gene expression data only, (d) gene expression and clinical data (e) integrated features

of images, gene expression and clinical data for H-VAE-Cox, (f) integrated features of images, gene expression and clinical data for

XAT-VAE-Cox, (g) integrated features of images, gene expression and clinical data for DCM, and (h) integrated features of images,

gene expression and clinical data for DeepSurv (Figure 4H).

At a 5% significance level, the adjusted p-value with Bonferroni correction was used to analyze the statistical difference. All the

models were trained five times, using nested cross-validation with five outer loops, and the statistical significance of the C-index

was compared. The integration of imaging, gene expression and clinical data using H-VAE-Cox and XAT-VAE-Cox demonstrated

significant improvement in the survival prediction with p-value <0.05. The average C-index by the H-VAE-Cox and XAT-VAE-Cox

models for three data modalities integration is higher than single and two data modalities, indicating that the integration of imaging,

gene expression and clinical data significantly improves the accuracy of the survival prediction.
e9 Cell Reports Methods 4, 100817, July 15, 2024
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