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ABSTRACT Swarm-inspired computing techniques are the best candidates for solving various nonlinear
problems. The current study aims to exploit the swarm intelligence technique known as Particle Swarm
Optimization (PSO) for the numerical investigation of a nonlinear system of latently infected CD4+T cells.
The strength of the Mexican Hat Wavelet (MHW) based unsupervised Feed Forward Artificial Neural
Network (FFANN) is used to solve the nonlinear system of latently infected CD4+T cells. The function
approximation of unsupervised ANN is used to construct the mathematical model of the latently infected
CD4+T cells by defining the error function in the mean square manner. The adjustable parameters called
the unknowns of the network are optimized by using the Particle Swarm Optimization (PSO), Nedler Mead
Simplex Method (NMSM), and their hybrid PSO-NMSM. The PSO applied for the global optimization
of weights aided by the NMSM algorithm for rapid local search. Finally, a Comprehensive Monte Carlo
simulation and statistical analysis of the analytical method, numerical Range Kutta (RK) method, ANN
optimized with Genetic Algorithm (GA) aided with Sequential Quadratic Programming (SQP) known as
GA-SQP, ANN-PSO-SQP and the proposed MHW-HIVFFANN-PSO-NMSM are performed to validate the
effectiveness, stability, convergence, and computational complexity of each scheme. It is observed that the
proposedMHW-FFANN-HIVPSO-NMSM scheme has converged in all classes at 10−6, 10−7, and 10−8 and
solved the nonlinear system of latently infected CD4+ T cells more accurately and effectively. The absolute
error lies in 10−3, 10−4, 10−4, and 10−5 for numerical, ANN-GA-SQP, ANN-PSO-SQP, and proposed
MHW-ANN-PSO-NMSM respectively. Moreover, the proposed scheme is stable for the large number of
independent runs. The values for global statistical indicators’ global mean squared error are lies 8.15E-09,
3.25E-10, 4.15E-09, and 3.15E-10 for class X(t), W(t), Y(t), and V(t) respectively whereas the global mean
absolute deviation lies in range 7.35E-09, 8.50E-10, 2.10E-10 and 7.10E-09.

INDEX TERMS Mathematical modeling, artificial neural network, hybrid optimization, nonlinear system
of latently infected CD4+ T cells, Monte Carlo simulations, ANN-based numerical treatment.

I. INTRODUCTION
HIV is an infectious disease that affects the body’s immune
system by manipulating the body’s liquids and killing the T

The associate editor coordinating the review of this manuscript and

approving it for publication was Qichun Zhang .

cells of the body. The forecasting of HIV is challenging in
the early stage of the disease. In the recent past many math-
ematical models have been proposed to forecast and model
the dynamics of HIV infections [1], [2]. These mathematical
models are nonlinear differential coupled systems and can
be solved by using analytical and numerical solvers. These
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solvers are proven well and solve the nonlinear differential
system accurately and effectively but have many limitations.
For instance, the Analytical and numerical solvers are not
generalized and the computation of these solvers cannot be
paralyzed over the parallel system. The numerical solvers
work on the discretization of the domain under consideration
and assumption to solve complex problems and are not gener-
alized because they cannot be used to solve various problems.
Additionally, these models are computationally complex.

During the last decade, ANN-bas numerical solvers opti-
mized with different global, local, and hybrid-based opti-
mized techniques have gained more attention for solving the
complex nonlinear systems of various problems like medical
viruses, computer viruses, physics, and so forth. In 1998,
Lagaris proposed neural network-based models to solve the
nonlinear problem by converting the boundary value problem
into an optimization problem [3]. The use of an ANN-based
solver has many advantages over the numerical solver, for
instance, the solution of ANN-based solvers is very close to
the analytical solver.

ANN-based solvers provide the generalized solution
of nonlinear problems, the computational complexity of
ANN-based solvers does not increase with the increase in
the sampling points and they can be implemented on parallel
architecture. ANN-based numerical solvers can approximate
any kind of problem directly without any domain knowledge,
an assumption for the solution, and the dataset. The super-
vised ANN solvers have limitations but the unsupervised
ANN-based numerical solvers have proven more promising
in solving the complex problems of engineering, medicine,
and so forth [4], [5], [6]. Many complex systems of science,
engineering, medical viruses, computer viruses, and physics
are presented in the form of non-linear differential systems.
These systems are used to solve real-time complex prob-
lems accurately, ANN-based Numerical solvers are proven
to solve these systems accurately and effectively, moreover,
the ANN-based numerical solvers are fast and can solve the
dynamic system where the input, environment, and condi-
tions are changed in real-time. This makes the ANN-based
numerical solver more effective in solving real-time complex
problems where the conations and data may change over
time [4], [7], [8].

ANN-based solvers are used to solve the nonlinear Lien-
ard differential Model [9], nonlinear complex system of
predator pre-model [10], lane Emden Model [11], [12],
film flow model [13], mass and heat transfer model [14],
short-term hydrothermal coordination [15], large scale sys-
tem [16], Emden-Fowler problem [17], life Cycle Optimiza-
tion problem [18], Flierl equations [19], [20], heat condition
model [14], [21], Singular Periodic boundary problem [22],
prey- Predictive system [10], [23], Smoke Problem [24],
nervous stomach model [25], Engineering problems [26],
Transport system [27], and the medical industry for instance
nonlinear COVID system [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], HIV nonlinear system [38], [39], [40],
the nonlinear system for dengue fever [41], [42], [43], [44],

[45], hepatitis nonlinear system [46], a system of influenza
virus [47], [48], [49], and HBV virus [50].

The unknown of the ANN-based numerical solvers needs
to be optimized for a better solution to the nonlinear system.
The adjustable weights of the ANN-based solvers can be opti-
mized by swarm-based algorithms, bio-inspired algorithms,
local search optimizers, and a Hybrid of these.

The majority of the solvers used bio-inspired GA, Swarm
PSO, and Ant Colony Optimization (ACO) as global opti-
mizers along with the SQP and ASA [16], [18], [20]. The
ANN-based solvers used the Log sigmoid, Morlet Wavelet
(MW), and Mexican Hat Wavelet (MHW) as activation func-
tions [10], [25], [38], [39], [41], [51], [52].

The ANN-based solution optimized with GA-SQP to solve
the nonlinear system of latently infected CD4+ T cells is pre-
sented in [38]. The authors proposed the ANN-based solver
to solve the nonlinear system of latently infected CD4+ T
cells. The proposed model performs well in terms of absolute
error and stability. The built-in log sigmoid has been used
as an activation function. However, the computational com-
plexity and the absolute error of the proposed scheme are not
promising furthermore the stability in terms of Global Mean
Square Error (GMSE) and Global Mean Absolute Deviation
(GMAD) needs to improve.

In the recent past, theMHW-based neural network has been
proven well to solve a variety of nonlinear systems [52]. The
use of PSO with the Nelder Mead Simplex Method to solve
the nonlinear system also needs to be investigated. The use of
MHW-ANN optimized with the PSO-NMSM can be a good
candidate to solve the nonlinear system of latently infected
CD4+ T cells.
In a word, there is a need to investigate alternative

ANN-based numerical solvers to solve the nonlinear system
of latently infected CD4+ T cells. In this work, a Mexi-
can Hat Wavelet Based Single Layer ANN optimized with
PSO-NMSM is proposed to solve the nonlinear system of
latently infected CD4+T cells. The primary contributions of
the study as compared to the findings of the previous studies
are as follows.

• The study proposed the Mexican Hat Wavelet-based
Feed Forward Single Layer Artificial Neural Network
(MHW-HIVFFADNN) to solve the nonlinear system of
latently infected CD4+ T cells.

• The adjustable parameters of the neural network are
tuned in a hybridmanner using a swarm-based algorithm
PSO aided with NMSM an inferior local search tech-
nique called PSO-NMSM.

• To validate the accuracy, convergence, and effectiveness
of the proposed scheme, a detailed simulation has been
performed using an analytical approach, numerical tech-
nique (RK), ANN optimized with GA-SQP [38], and
proposed schemes.

• The computational complexity and reliability of the pro-
posed scheme are also analyzed through a large number
of independent runs.
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The rest of the article is summarized as: section II discusses
the mathematical model of CD4+T cells, the mathematical
formulation of ANN with the Mexican hat wavelet func-
tion, the construction of error error-based fitness function,
the optimization procedure, and the performance matri-
ces. Section III narrates the simulation and results while
section IV is based on the detailed discussion of the results.
Section V is based on the concluding remarks and future
work.

II. MATERIALS AND METHODS
A. PROBLEM FORMULATION
HIV nonlinear system of latently infected CD4+ T cells is
presented in [38] and expressed in (1).

dX
dt

= µ − dX − αXV X (0) = I1,

dW
dt

= − (q− 1) αXV − eW − λW W (0) = I2,

dY
dt

= λW − αY + qαXV Y (0) = I3,

dV
dt

= −V + kY V (0) = I4, (1)

In the above equation, the variables X, W, Y, and V are
Susceptible, Infected, Latently, and Infected classes respec-
tively. I1, I2, I3, and I4 are the initial conditions whereas the
constants, α is the infection rate, λ recovery rate, µ UR of the
CD4+T cells, d death ratio for susceptible cells, a death ratio
for the improved cell, e infection rate k is the latent rate and
the q is the elimination rate.

B. MATHEMATICAL FORMULATION OF ANN
The general form of the Differential Neural Network for the
first derivate and nth derivate to formulate the problem is
presented in (2)-(3) [17]. The graphical representation of the
MHW-based ANN to solve the nonlinear differential equa-
tions is presented in (2)-(3) is shown in Figure. 1.

ỹ (x) =

∑n

i=1
(αif (wix+bi) (2)

dnỹ
dxn

=

∑n

i=1
αi
dn

dtn
f (wix + bi) (3)

In the above equations, the parameters α, b, and w are the
adjustable parameters of the single-layer feed-forward net-
work. Whereas f is the activation function. The adjustable
parameters are optimized by using the swarm-based PSO,
local optimizer NMSM, and their hybrid. In this work, the
MHW is used as an activation function the mathematical
formulation of the activation function is expressed in (5).

C. DESIGN OF MHW-HIVFFANN-PSO-NMSM
The neural network formulation of the system of non-linear
differential equations expressed in (1) is represented in (4).
The Graphical representation of the flow of the proposed
framework is shown in Figure. 2.

dX̃
dt

= µ − dX̃ − αX̃ Ṽ , X (0) = I1

FIGURE 1. Graphical representation of the feed forward MHW artificial
neural network.

FIGURE 2. Work flow of the proposed technique.

dW̃
dt

= − (q− 1) αX̃ Ṽ − eW̃ − λW̃ , W (0) = I2,

dỸ
dt

= λW̃ − αỸ + qαX̃ Ṽ , Y (0) = I3,

dṼ
dt

= −Ṽ + kỸ ,V (0) = I4, (4)
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The mathematical representation of theMexican HatWavelet
as an activation function is given by (5).

f (t̃) =
2

√
3
π−

1
4

(
1 − t2

)
e−

t2
2 (5)

By applying (5), (4) becomes

dX̃
dt

=

n∑
i=1

αX̃ i

×

[
2

√
3
π−0.25(1 − (wX̃ it + bX̃ i)

2
)e−0.5(wX̃ it+bX̃ i)

2
]

dW̃
dt

=

∑n

i=1
αW̃ i

×

[
2

√
3
π−0.25(1 − (wW̃ it+bW i)

2
)e−0.5(wW̃ it+bW̃ i)

2
]

dỸ
dt

=

n∑
i=1

αṼ i

×

[
2

√
3
π−0.25(1 − (wỸ it + bY i)

2
)e−0.5(wỸ it+bỸ i)

2
]

dṼ
dt

=

n∑
i=1

αṼ i

×

[
2

√
3
π−0.25(1 − (wṼ it + bṼ i)

2
)e−0.5(wṼ it+bṼ i)

2
]
(6)

The first derivative of the system of the equation is presented
in (7).

dX̃
dt

=

n∑
i=1

[2αX̃ i
2

√
3
π−0.25e−05(bX̃ i+twX̃ i)

2

wX̃ i

×

(
bX̃ i + twX̃ i

)
− αX̃ i

2
√
3
π−0.25e−05(bX̃ i+twX̃ i)

2

.wX̃ i(bX̃ i + twX̃ i)(1 − (bX̃ i + twX̃ i)
2
)]

dW̃
dT

=

∑n

i=1
[2αW̃ i

2
√
3
π−0.25e−05(bW̃ i+twW̃ i)

2

wW̃ i

×

(
bW̃ i + twW̃ i

)
− αW̃ i

2
√
3
π−0.25e−05(bĨ i+twĨ i)

2

.wW̃ i(bW̃ i + twW̃ i)(1 − (bW̃ i + twW̃ i)
2
)]

dỸ
dT

=

n∑
i=1

[2αỸ i
2

√
3
π−0.25e−05(bỸ i+twỸ i)

2

wỸ i

×

(
bỸ i + twỸ i

)
− αỸ i

2
√
3
π−0.25e−05(bỸ i+twỸ i)

2

.wỸ i(bỸ i + twỸ i)(1 − (bỸ i + twỸ i)
2
)]

dṼ
dT

=

∑n

i=1
[2αṼ i

2
√
3
π−0.25e−05(bṼ i+twṼ i)

2

wṼ i

×

(
bṼ i + twṼ i

)
− αṼ i

2
√
3
π−0.25e−05(bṼ i+twṼ i)

2

.wṼ i(bṼ i + twṼ i)(1 − (bṼ i + twṼ i)
2
)] (7)

The mathematical formation of the nonlinear system of
latently infected CD4+T cells of latently infected cells is
presented as follows in (8).[

dX̃
dt

,
dW̃
dt

,
dỸ
dt

,
dṼ
dt

]

=

[∑n

i=1
αX̃ i

[
2

√
3
π−0.25

× (1 − (wX̃ it + bX̃ i)
2
)e−0.5(wX̃ it+bX̃ i)

2
]

,

×

∑n

i=1
αW̃ i

[
2

√
3
π−0.25

× (1 − (wW̃ it + bW i)
2
)e−0.5(wW̃ it+bW̃ i)

2
]

,

×

∑n

i=1
αṼ i

[
2

√
3
π−0.25

× (1 − (wỸ it + bY i)
2
)e−0.5(wỸ it+bỸ i)

2
]

,

×

∑n

i=1
αṼ i

[
2

√
3
π−0.25

× (1 − (wṼ it + bṼ i)
2
)e−0.5(wṼ it+bṼ i)

2
]]

(8)

The unknowns of the designed Feed Forward single-layer
unsupervised neural network are presented as follows

Weight [wX , αX , bX ] =

∑10

m=0
[wiX , αiX , biX ] (9)

Weight [wW , αW , bW ] =

∑10

m=0
[wiW , αiW , biW ] (10)

Weight [wY , αY , bY ] =

∑10

m=0
[wiY , αiY , biV ] (11)

Weight [wY , αY , bY ] =

∑10

m=0
[wiY , αiY , biV ] (12)

The unknown vector W can be presented as

W = [WX ,WW ,WY ,WV ] (13)

The parameters of the (13) are expressed as

WX = [wX , αX , bX ],WW = [wW , αW , bW ],WY

= [wY , αY , bY ] ,WV = [wV , αV , bV ] (14)

The FFANN-based formulation of the nonlinear system of
latently infected CD4+ T cells along with the error-based
mean fitness function of the system is as follows.

dX̃
dt

− µ + dX̃ + αX̃ Ṽ = 0 X (0) = I1,

dW̃
dt

+ (q− 1) αX̃ Ṽ + eW̃ + λW̃ = 0 W (0) = I2,

dỸ
dt

− λW̃ + αỸ − qαX̃ Ṽ = 0 Y (0) = I3,

dṼ
dt

+ Ṽ − kỸ = 0 V (0) = I4, (15)

103122 VOLUME 12, 2024



F. M. Riaz et al.: Numerical Treatment of Non-Linear System for Latently Infected CD4+T Cells

D. CONSTRUCTION OF FITNESS FUNCTION
The fitness function of the proposed scheme is developed
in an unsupervised manner by using the error function. The
mathematical formulation of the fitness function with the
constraints of the fitness function is presented in (16)-(21).

(ϵX )2 =
1

N + 1

∑N

m=0

[
dX̃
dt

− µ + dX̃ + αX̃ Ṽ = 0

]2

(16)

(ϵW )2 =
1

N + 1

∑N

m=0

×

[
dW̃
dt

+ (q− 1) αX̃ Ṽ + eW̃ + λW̃ = 0

]2

(17)

(ϵY )2 =
1

N + 1

∑N

m=0

[
dỸ
dt

− λW̃ + αỸ − qαX̃ Ṽ = 0

]2

(18)

(ϵV )2 =
1

N + 1

∑N

m=0

[
dṼ
dt

+ Ṽ − kỸ = 0

]2

(19)

(ϵ)2 =
1
4

[(
X̃0 − I1

)2
+

(
W̃0 − I2

)2
+

(
Ỹ0 − I3

)2
+

(
Ṽ0 − I4

)2]
(20)

ϵXWYV =

(
1

N + 1

∑N

m=0

[
dX̃
dt

− µ + dX̃ + αX̃Ṽ = 0

]2

+
1

N + 1

∑N

m=0

×

[
dW̃
dt

+ (q − 1) αX̃Ṽ + eW̃ + λW̃ = 0

]2

+
1

N + 1

∑N

m=0

×

[
dỸ
dt

− λW̃ + αỸ − qαX̃Ṽ = 0

]2

+
1

N + 1

∑N

m=0

[
dṼ
dt

+ Ṽ − kỸ = 0

]2

+
1
4

[(
X̃0 − I1

)2
+

(
W̃0 − I2

)2
+

(
Ỹ0 − I3

)2
+

(
Ṽ0 − I4

)2]]
(21)

E. OPTIMIZATION
PSO is a global optimizer algorithm that is based on the
natural behavior of objects like birds flocking and the
community-based social relation of humans.

The core concept of the PSO is the position and velocity
of the particles like the weights of the neural network, birds

Algorithm 1 Proposed Hybrid PSO-NMSM
Step 1: Initialization of the Particles
Create a primary swarm as a set of arbitrarily dispersed
particles using constrained real values. These values should
have better search space to be spared. A candidate solution
has been assigned to each particle of the unknown parameters
of the MHW-HIVFFANN-PSO-NMSM.
P = [α1, α2, α3 . . .αn, b1, b2, b3 . . . bn, w1, w2, w3. . . , wn]

Step 2: Formulation of Fitness Evaluation Function and eval-
uation
The fitness evaluation function has been formulated using
Eq.16 and its fitness value is calculated for each particle
while the velocity and position updating have been carried
by the standard equations of the PSO algorithm available in
the literature.
Step 3: Termination criteria
Terminate the execution of PSO if any one of the following
conditions fulfills

• Predefined fitness value achieved
• A maximum number of iterations are executed
• Tolcon = 10−12

If termination criteria meet then go to step 6 else continue.
Step 4: Ranking
Updated the global and local best particles of the swarm and
ranked them according to the maximum fitness
Step 5: Renewal of particle by updating the velocity and
position
Updated velocity and position of the particles using Eq.22.
Repeat steps 2 to 5 until the total number of flights is com-
pleted
Step 6: Refinement using the Nelder Mead Simplex Method
Fine-tuning of the results obtained from the PSO is performed
using the Nelder Mead Simplex, in this regard the best par-
ticles obtained for PSO are given to the local optimizer as a
starting point.
Step 7: Data storage for statistical analysis

• Store the weights of the best particle of the network
• Store the best fitness values
• Store the execution Time

in the flock in the individuals in the social community. For
each iteration, the velocity of the particles is updated by using
the position of the particle called pi and the position of the
particles with each particle of the population called the pg.
During the last few decades, the use of the PSO has been
promising to solve optimization problems. PSO has been used
as an optimization method in a variety of applications [53],
[54], [55], [56].

PSO has many advantages over the other global optimiza-
tion algorithms for instance, in contrast to the GA the PSO
is less complex for function evaluation because the PSO
does not use additional operations like a crossover, selection
operator, etc.
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TABLE 1. Parameters setting for proposed PSO-NMSM.

The major disadvantage of the SPO is it is stuck in global
optima and unable to give the best local solution to the prob-
lem. To solve the constraint optimization problems, Nelder
Mead’s simplex algorithm is a local search optimization
algorithm and was found to be promising in different appli-
cations. The working and application of the Nelder Mean
Simplex Method minimization have been found in [57] and
[58]. The major disadvantage of the NMSM is it struck in
local optima and is unable to give the best global solution.
The mutual strength of the PSO and NMSM algorithm is used
to optimize the unknown design parameters of the proposed
neural network to solve the coupled nonlinear HIV infection
model of Latently Infected cells. The hybrid PSO-NMSM
is presented in algorithm 1. The parameters used by hybrid
PSO-NMSM are tabulated in Table 1.

For reliability, repeat steps 1 to 6 for a sufficiently large
number of independent runs to get the results for a compre-
hensive statistical analysis.

F. PERFORMANCE INDICES
To check the reliability of the proposed scheme, the results
have been analyzed by using different performance indi-
cators, for instance, Absolute Error (AE), Global Mean
Absolute Error (GMAE),Mean Squared Error (MSE), Global
Mean Squared Error (GMSE), Mean Absolute Deviation in
term of Absolute Error (MAD), and Global Mean Absolute
Deviation (GMAD). The equation of the AE, MSE, GMSE,
MAD, and GMAD is shown in (22)-(26).

E =

∑n
K=1

∣∣∣Q0 − Q̃0
∣∣∣

K
(22)

MSE =

√√√√∑n
K=1

∣∣∣Q0 − Q̃0
∣∣∣

K
(23)

GMSE =

∑100

i=1

∑n
K=1

∣∣∣Q0 − Q̃0
∣∣∣

K

 (24)

MAD =

∑n
K=1

∣∣∣Q0 − Q̃0
∣∣∣

K
(25)

TABLE 2. Parameter setting for nonlinear system of latently infected
CD4+ T cells [38].

GMAD =

∑100

i=1

∑n
K=1

∣∣∣Q0 − Q̃0
∣∣∣

K

 (26)

where Q can be represented as X, W, Y, and V respectively.
The study also investigated the MET to check the computa-
tional complexity of the proposed scheme over the existing,
ANN-GASQP, ANN-PSO-SQP, PSO, and NAMS optimizer

III. SIMULATIONS AND RESULTS
This section discussed the solution of the nonlinear system
of latently infected CD4+ T cells presented in (1). The
performance of the proposed hybrid MHW-HIV FFADNN-
PSO-NMSM is analyzed by using the comparative analysis of
the results with the results presented in [38] and the solution
of PSO-SQP. To validate the accuracy, precision, and relia-
bility of the proposed scheme, an inclusive statistical analysis
has also been performed in this section.

The reference solution of the nonlinear system of latently
infected CD4+ T cells using (1) with parameter values
presented in Table 2 for RK solver, ANN-based solution
presented in [38], ANN-based PSO-SQP solver and proposed
scheme are obtained for the input values with range 0-1 and
step function of 0.1. The results of the proposed MHW-
HIVFFADNN-PSO-NMSM are analyzed with RK based
solver, ANN-based solver presented in [38], and ANN-PSO-
SQP solver in terms of Absolute Error (AE).

To solve the nonlinear system presented in (1), the weights
of the proposed MHW-ANN are optimized with PSO-
NMSM. The best weights are gained with the 100 number
of independent runs while using the 10 number of neu-
rons. Figure 3 depicts the best weights gained by Particle
Swarm Optimization (PSO), Nelder Mead Simplex Method
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FIGURE 3. Best weights gained by (a) PSO, (b) Nelder mead simplex
method and (c) Proposed PSO-NMSM.

(NMSM), and hybrid (PSO-NMSM). These weights are used
to calculate the approximate solution of the system-based
latently infected CD4+ T cells.
The obtained results of MSE for PSO, NMSM, and

PSO-NMSM are plotted in Figure 4 while Figure 5 shows the
best Mean Absolute Deviation (MAD) values in terms AE for
PSO, NMSM, and PSO-NMSM. These values are obtained
by Eq. (24) and Eq. (26). It is evident that the MSE values lies
in the range of 6.50 E-07 to 8.30 E-04, 6.30 E-06 to 7.50 E-04
and 7.20 E-09 to 3.60 E-06 for PSO, NMSM and hybrid PSO-
NMSM respectively. The values of MAD are in the range

FIGURE 4. Mean square error values (a) PSO, NMSM (b) Proposed
PSO-NMSM.

6.25 E-06 to 8.15 E-04, 9.50 E-06 to 6.30 E-04, 7.20 E-11
to 9.10 E-06.

To check the accuracy of the proposed scheme, the solution
of the system presented in (1) having the classes X(t), W(t),
Y(t), and V(t) for numerical solution and X̃(t), W̃(t), Ỹ(t)
and Ṽ(t) for ANN-based solutions is also presented. The
system presented in (27) is used to approximate the solution
of the nonlinear HIV infection model of Latently Infected
CD4+ T cells. One can conclude that GA-SQP, PSO-SQP
with log sigmoid, and the proposed MHW-HIVFFADNN-
PSO-NMSM solved the system accurately. it has also been
observed that the proposed MHW-PSO-NMSM outperforms
in terms of Absolute Error (AE).

ϵXWYV

=

(
1
11

∑N

m=0

[
dX̃
dt

− (0.4) + d(0.01) + (0.04)X̃Ṽ

]2

+
1
11

∑N

m=0

[
dW̃
dt

+ ((0.08) − 1) (0.04)X̃ Ṽ + (0.1)W̃

+(0.3)W̃
]2

+
1
11

∑N

m=0

[
dỸ
dt

− (0.3)W̃ + (0.04)Ỹ

−(0.08)(0.04)X̃Ṽ
]2

+
1
11

∑N

m=0
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FIGURE 5. Mean average deviation values (a) PSO, NMSM (b) Proposed
PSO-NMSM.

×

[
dṼ
dt

+ Ṽ − (0.6)Ỹ = 0

]2

+
1
4

[(
X̃0 − 7

)2
+

(
W̃0 − 2

)2
+

(
Ỹ0 − 1

)2
+

(
Ṽ0 − 3

)2]]
(27)

The solution of the nonlinear system, based on Latently
Infected CD4+ T cells is plotted in Figure 6 while Figure 7
depicts the AE of numerical, ANNGA-SQP, ANN PSO-SQP,
and proposed MHW-HIV FFADNN-PSO-NMSM solvers.

To validate the robustness of the proposed scheme, the
solution of the non-linear system of Latently Infected CD4+
T cells is also evaluated through the different parameter
values of the system. The system presented in (28) is used
to evaluate the solution for the second case. The values for
case 2 have been tabulated in Table 2. It is evident that the
results are consistent and overlap with the analytical solution.

ϵXWYV

=

(
1
11

∑N

m=0

[
dX̃
dt

− (0.5) + d(0.02) + (0.05)X̃Ṽ

]2

+
1
11

∑N

m=0

[
dW̃
dt

+ ((0.09) − 1) (0.05)X̃Ṽ
FIGURE 6. Solutions for analytical, numerical, GA-SQP, and Proposed
PSO-NASM (a) X̃(t), (b) W̃(t), (c) Ỹ(t), (d) Ṽ(t) for case 1.
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+(0.3)W̃ + (0.4)W̃
]2

+
1
11

∑N

m=0

[
dỸ
dt

− (0.4)W̃

+(0.05)Ỹ − (0.09)(0.05)X̃Ṽ
]2

+
1
11

∑N

m=0

[
dṼ
dt

+ Ṽ

−(0.7)Ỹ = 0
]2

+
1
4

[(
X̃0 − 8

)2
+

(
W̃0 − 4

)2
+

(
Ỹ0 − 3

)2
+

(
Ṽ0 − 5

)2]]
(28)

The solution for X̃(t), W̃(t), W̃(t), and Ṽ(t) along with the
absolute error are shown in Figures 8 and Figure 9.

The AE for case 2 for the solution of the nonlinear coupled
system of latently infected cells is shown in Figure 9.

It can be observed that the minimum AE values lie in the
range E-04, E -05, and E -06 for numerical solvers, ANNGA-
SQP, PSO-SQP, and proposed MHW-HIVFFADNN-PSO-
NMSM for classes X̃(t), W̃(t), W̃(t) and Ṽ(t) respectively. The
convergence analysis of the PSO, NMSM, GA-SQP, PSO-
SQP, and the proposed PSO-NMSMhas also been performed.
Results for fitness values and MSE are presented in Table. 4.
It is evident that the GA-SQP, PSO-SQP, and PSO-NMSM
converged in all cases for the values 10−6, 10−7, and 10−8

for fitness values and 10−7, 10−9, and 10−11 for MSE values.
However, the convergence of the proposed PSO-NMSM is
much better than the GA-SQP and PSO-SQP due to the high
computational complexity of the GA and SQP algorithms.
PSO with the Nelder Mead Simplex method converged fast
in all cases.

To validate the precision and accuracy of the proposed
scheme, statistical investigation in terms of mean, median,
and Standard deviation was also made. The results are tab-
ulated in Table 3a, Table 3b, Table 3c, and Table 3d. Results
show that the ANN-GA-SQP, PSO-SQP, and proposed
MHW-HIVFFADNN-PSO-NMSM are consistent, precise,
and accurate.

To confirm the global convergence and reliability of the
proposed scheme, Global performance operator GMAD and
GMSE for 100 independent runs are also examined. The
values of the proposed MHW-HIV FFADNN-PSO-NMSM
outperform the PSO and NMSM. The GMSE values are in
the range 8.15E-09, 3.25E-10, 4.15E-09, and 3.15E-10 for
X̃(t), W̃(t), Ỹ(t), and Ṽ(t) classes respectively. Whereas the
GMAD for the proposed scheme lies in the range 7.35E-09,
8.50E-10, 2.10E-10, and 7.10E-09.

IV. DISCUSSIONS
This section deals with a detailed discussion of the results
carried out in the previous section. This discussion includes
theMean Absolute Error, computational time analysis, global
mean Absolute error, and global mean Average deviation.

The accuracy of the proposed scheme along with the con-
vergence analysis has been carried out by measuring the
values of MAE and fitness values for the large number of
independent runs. The convergence analysis has been verified
through different convergence measures. For 100 runs the

FIGURE 7. Absolute error (a) Numerical, (b) ANN-GA-SQP, and
(c) PSO-NMSM.

proposed schemes converge on 10−6,10−7, 10−8, for fitness
values and 10−7, 10−9,10−11 for the MSE values. The results
of fitness values and the MAE are tabulated in Table 4. From

VOLUME 12, 2024 103127



F. M. Riaz et al.: Numerical Treatment of Non-Linear System for Latently Infected CD4+T Cells

FIGURE 8. Solutions for analytical, numerical, GA-SQP, and Proposed
PSO-NASM (a) X̃(t), (b) W̃(t), (c) Ỹ(t), (d) Ṽ(t) for case 2.

FIGURE 9. Absolute error (a) Numerical, (b) ANN-GA-SQP, and
(c) PSO-NMSM for case 2.
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TABLE 3. A) Statistical analysis of the proposed MHW-HIV
FFADNN-PSO-NMSM for class X̃(t), B) Statistical analysis of the proposed
MHW-HIV FFADNN-PSO-NMSM for class W̃(t), C) Statistical analysis of the
proposed MHW-HIV FFADNN-PSO-NMSM for class Ỹ(), D) Statistical
analysis of the proposed MHW-HIV FFADNN-PSO-NMSM for class Ṽ(t).

Table 4 it can be observed that the GA-SQP, PSO-SQP, and
the proposed PSO-NMSMhave amaximum convergence rate

TABLE 4. Convergence analysis with fitness values and MSE values with
different levels.

for the conditions given. The proposed scheme converges
with all classes and gives the most accurate solution.

The fitness functions ϵXWYV given in (17)-(21) are also
examined for the 100 number of independent runs. By using
the meeting conditions 10−7, 10−9,10−11 the results are tab-
ulated in Table 4. It can be seen that the proposed hybrid
PSO-NMSMscheme is consistent and converges in all classes
to solve the nonlinear system of latently infected cells of
CD4+ T, while the low convergence rate has been observed
for PSO and NMSM and is unable to meet the required
fitness.

The global statistical indicators, for instance, GMSE, and
GMAD have also been examined through the 100 indepen-
dent runs. The obtained results of GMSE and GMAD along
with the STD are tabulated in Table 5. It is found that the
values of the proposed MHW-HIV FFADNN optimized with
the hybrid PSO-NMSM are best to obtain the solution and
results are stable for a large number of runs. The Results of
the proposed schemes are very close to the reference and the
numerical solution with 6 decimal points. it is evident of the
good agreement of the proposed scheme.

The computational complexity of the proposed (MHW-
HIV FFADNN-PSO-NMSM) scheme has been analyzed
through the average execution time. The complexity of the
algorithm has been calculated for 100 liberated runs of
the proposed scheme for X̃(t), W̃(t), Ỹ(t), and Ṽ(t) classes
respectively. The results are evidence that the computational

VOLUME 12, 2024 103129



F. M. Riaz et al.: Numerical Treatment of Non-Linear System for Latently Infected CD4+T Cells

TABLE 5. Comparison through Global Performance Indicators GMSE and
GMAD.

TABLE 6. Computational complexity of the PSO, NMSM, ANN-GA-SQP,
and MHW-HIV FFADNN-PSO-NMSM.

complexity of the proposed MHW-HIV FFADNN-PSO-
NMSM is greater than the PSO and NMSM However, the
proposed scheme has less computational complexity than the
ANN-GA-SQP and PSO-SQP. The proposed scheme out-
performs the ANN-GA-SQP and ANN PSO-SQP regarding
computational complexity. The values for MET in minutes
are tabulated in Table 6. The computations are carried out
on HP Folio 9480 m, with an Intel (R) processor with
RAM 8 GB, an I7 processor, an SSD drive, and MATLAB
version 2020a.

V. CONCLUSION
This work presented a consistent, precise, and accurate
ANN-based neuroheuristic method optimized with PSO,
NMSM, and hybrid PSO-NMSM to solve the nonlinear sys-
tem of latently infected CD4+ T cells. The weights of the
proposed ANN-based solvers have been optimized with PSO
and NMSM in a hybrid manner. Comparison of the pro-
posed MHW-HIVFFADNN-PSO-NMSM with the analytical
solution, numerical solution of the ANN-GA-SQP solution,
ANN-PSO-SQP solution, and proposed solutions shows that
the proposed scheme solves the system accurately and effec-
tively for all classes, the results of the proposed scheme in
terms of absolute error are E-06 for both cases which are
better than the numerical solver which has absolute error E
-04 and the ANN-based solver with absolute error E-06. The
accuracy, convergence, and reliability of the proposed scheme
were validated through a large number of independent runs.
A comprehensive statistical analysis has also been performed.

it is evident that the proposed scheme gives consistent con-
vergence, and constant results for all cases of the nonlinear
system of latently infected cells of theHIVmodel. TheGlobal
Mean Square Error (GMSE) of the proposed scheme is 8.15E-
09 while the GMSE of the ANN solver based on GA-SQP,
PSO-SQP and the PSO are 8.25E-08 and 2.25E-04 for class
X̃(t) while 3.25E-10, 9.72E-08, 8.25E-05, 4.15E-09, 8.25E-
08, 2.25E-05, 3.15E-10, 8.15E-08, 7.25E-05 for W̃(t), Ỹ(t),
and Ṽ(t) respectively. The computational complexity of the
proposed scheme is 20.20 minutes which is high as compared
to the PSO with an execution time of 4.25 minutes and
NMSM with 5.15 minutes however, shows less complexity
as compared with the ANN-GA-SQP and PSO-SQP whose
execution time was 35.24 and 35.58 minutes. This is due to
the hybrid nature of the proposed scheme. Nevertheless, the
performance of the proposed scheme is better than the PSO
and NMSM.

In the future different alternative schemes, for instance,
ASA, ACO, GA along NMSM shall investigated. Further-
more, it will be interesting to use the proposed scheme
to solve the non-linear system related to computer viruses,
COVID-19, Dengue Fever, and other physical systems.

REFERENCES
[1] A. S. Perelson, D. E. Kirschner, and R. De Boer, ‘‘Dynamics of HIV

infection of CD4+T cells,’’Math. Biosciences, vol. 114, no. 1, pp. 81–125,
Mar. 1993.

[2] N. Ali and G. Zaman, ‘‘Asymptotic behavior of HIV-1 epidemic model
with infinite distributed intracellular delays,’’ SpringerPlus, vol. 5, no. 1,
pp. 1–13, Dec. 2016.

[3] I. E. Lagaris, A. Likas, and D. I. Fotiadis, ‘‘Artificial neural networks for
solving ordinary and partial differential equations,’’ IEEE Trans. Neural
Netw., vol. 9, no. 5, pp. 987–1000, Jun. 1998.

[4] N. Yadav, A. Yadav, and M. Kumar, An Introduction to Neural Network
Methods for Differential Equations. Cham, Switzerland: Springer, 2015.

[5] A. Amirkhani, A. Khosravian, M. Masih-Tehrani, and H. Kashiani,
‘‘Robust semantic segmentation with multi-teacher knowledge distilla-
tion,’’ IEEE Access, vol. 9, pp. 119049–119066, 2021.

[6] H. Nasiriyan-Rad, A. Amirkhani, A. Naimi, and K. Mohammadi, ‘‘Learn-
ing fuzzy cognitive map with PSO algorithm for grading celiac disease,’’
in Proc. 23rd Iranian Conf. Biomed. Eng. 1st Int. Iranian Conf. Biomed.
Eng., Nov. 2016, pp. 341–346.

[7] H. Zhou, Y. Li, Q. Zhang, H. Xu, and Y. Su, ‘‘Soft-sensing of effluent total
phosphorus using adaptive recurrent fuzzy neural network with gustafson-
kessel clustering,’’Expert Syst. Appl., vol. 203, Oct. 2022, Art. no. 117589.

[8] H. Zhou, Y. Zhang, W. Duan, and H. Zhao, ‘‘Nonlinear systems modelling
based on self-organizing fuzzy neural network with hierarchical pruning
scheme,’’ Appl. Soft Comput., vol. 95, Oct. 2020, Art. no. 106516.

[9] L. Yan, Z. Sabir, E. Ilhan, M. Asif Zahoor Raja, W. Gao, and H. Mehmet
Baskonus, ‘‘Design of a computational heuristic to solve the nonlinear lien-
ard differential model,’’ Comput. Model. Eng. Sci., vol. 136, pp. 201–221,
Jul. 2023.

[10] M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed, and Y. G. Sanchez,
‘‘Design of intelligent computing solver with Morlet wavelet neural net-
works for nonlinear predator–prey model,’’ Appl. Soft Comput., vol. 134,
Feb. 2023, Art. no. 109975.

[11] Z. Sabir, M. A. Z. Raja, M. R. Ali, and R. Sadat, ‘‘An advance
computational intelligent approach to solve the third kind of nonlinear pan-
tograph Lane–Emden differential system,’’Evolving Syst., vol. 1, pp. 1–20,
Oct. 2022.

[12] W. Adel, Z. Sabir, H. Rezazadeh, and A. Aldurayhim, ‘‘Application of
a novel collocation approach for simulating a class of nonlinear third-
order Lane–Emden model,’’ Math. Problems Eng., vol. 2022, pp. 1–16,
Jun. 2022.

103130 VOLUME 12, 2024



F. M. Riaz et al.: Numerical Treatment of Non-Linear System for Latently Infected CD4+T Cells

[13] M. A. Z. Raja, J. A. Khan, and T. Haroon, ‘‘Stochastic numerical treatment
for thin film flow of third grade fluid using unsupervised neural networks,’’
J. Taiwan Inst. Chem. Engineers, vol. 48, pp. 26–39, Mar. 2015.

[14] T. Botmart, Z. Sabir, M. A. Z. Raja, W. Weera, R. Sadat, and M. R. Ali,
‘‘Stochastic procedures to solve the nonlinear mass and heat transfer model
of Williamson nanofluid past over a stretching sheet,’’ Ann. Nucl. Energy,
vol. 181, Feb. 2023, Art. no. 109564.

[15] F. A. Chaudhry, M. Amin, M. Iqbal, R. D. Khan, and J. A. Khan, ‘‘A novel
chaotic differential evolution hybridized with quadratic programming for
short-term hydrothermal coordination,’’ Neural Comput. Appl., vol. 30,
no. 11, pp. 3533–3544, Dec. 2018.

[16] A. J. Joshy, R. Dunn, M. Sperry, V. E. Gandarillas, and J. T. Hwang, ‘‘An
SQP algorithm based on a hybrid architecture for accelerating optimiza-
tion of large-scale systems,’’ in Proc. AIAA Aviation Forum, Jun. 2023,
pp. 42–63.

[17] J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, and A. M. Wazwaz,
‘‘Nature-inspired computing approach for solving non-linear singular
Emden–Fowler problem arising in electromagnetic theory,’’ Connection
Sci., vol. 27, no. 4, pp. 377–396, Oct. 2015.

[18] Q. Nguyen, M. Onur, and F. O. Alpak, ‘‘Nonlinearly constrained life-cycle
production optimization using sequential quadratic programming (SQP)
with stochastic simplex approximated gradients (StoSAG),’’ in Proc. SPE
Reservoir Simul. Conf., Mar. 2023, pp. 1–28.

[19] M. A. Z. Raja, J. A. Khan, A. Zameer, N. A. Khan, and M. A. Manzar,
‘‘Numerical treatment of nonlinear singular flierl–petviashivili systems
using neural networks models,’’ Neural Comput. Appl., vol. 31, no. 7,
pp. 2371–2394, Jul. 2019.

[20] M. A. Z. Raja, J. A. Khan, N. I. Chaudhary, and E. Shivanian, ‘‘Reliable
numerical treatment of nonlinear singular flierl–petviashivili equations
for unbounded domain using ANN, GAs, and SQP,’’ Appl. Soft Comput.,
vol. 38, pp. 617–636, Jan. 2016.

[21] M. A. Z. Raja, M. Umar, Z. Sabir, J. A. Khan, and D. Baleanu, ‘‘A new
stochastic computing paradigm for the dynamics of nonlinear singular heat
conduction model of the human head,’’ Eur. Phys. J. Plus, vol. 133, no. 9,
pp. 1–21, Sep. 2018.

[22] Z. Sabir, D. Baleanu, M. R. Ali, and R. Sadat, ‘‘A novel computing
stochastic algorithm to solve the nonlinear singular periodic boundary
value problems,’’ Int. J. Comput. Math., vol. 99, no. 10, pp. 2091–2104,
Oct. 2022.

[23] Z. Sabir, T. Botmart, M. A. Z. Raja, and W. Weera, ‘‘An advanced
computing scheme for the numerical investigations of an infection-based
fractional-order nonlinear prey-predator system,’’PLoSOne, vol. 17, no. 3,
2022, Art. no. e026506.

[24] Z. Sabir,M.A. Z. Raja, A. S. Alnahdi,M. B. Jeelani, andM.A.Abdelkawy,
‘‘Numerical investigations of the nonlinear smoke model using the gud-
ermannian neural networks,’’ Math. Biosciences Eng., vol. 19, no. 1,
pp. 351–370, 2022.

[25] Z. Sabir, M. A. Z. Raja, S. R. Mahmoud, M. Balubaid, A. Algarni,
A. H. Alghtani, A. A. Aly, and D.-N. Le, ‘‘A novel design of Morlet
wavelet to solve the dynamics of nervous stomach nonlinear model,’’ Int.
J. Comput. Intell. Syst., vol. 15, no. 1, p. 4, Jan. 2022.

[26] Z. Sabir, M. A. Z. Raja, M. Shoaib, R. Sadat, and M. R. Ali, ‘‘A novel
design of a sixth-order nonlinear modeling for solving engineering phe-
nomena based on neuro intelligence algorithm,’’ Eng. Comput., vol. 39,
no. 3, pp. 1807–1822, Jun. 2023.

[27] Z. Sabir, T. Saeed, J. L. G. Guirao, J. M. Sánchez, and A. Valverde, ‘‘A
swarmingMeyerwavelet computing approach to solve the transport system
of goods,’’ Axioms, vol. 12, no. 5, p. 456, May 2023.

[28] S. Suantai, Z. Sabir, M. A. Z. Raja, and W. Cholamjiak, ‘‘Swarming
computational procedures for the coronavirus-based mathematical SEIR-
NDC model,’’ J. Math., vol. 2022, pp. 1–18, Oct. 2022.

[29] Z. Sabir, M. A. Z. Raja, S. E. Alhazmi, M. Gupta, A. Arbi, and I. A. Baba,
‘‘Applications of artificial neural network to solve the nonlinear COVID-
19 mathematical model based on the dynamics of SIQ,’’ J. Taibah Univ.
Sci., vol. 16, no. 1, pp. 874–884, Dec. 2022.

[30] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, and Y. G. Sánchez,
‘‘A stochastic intelligent computing with neuro-evolution heuristics for
nonlinear SITR system of novel COVID-19 dynamics,’’ Symmetry, vol. 12,
no. 10, p. 1628, Oct. 2020.

[31] M. Umar, Z. Sabir, M. A. Z. Raja, S. Javeed, H. Ahmad, S. K. Elagen, and
A. Khames, ‘‘Numerical investigations throughANNs for solving COVID-
19 model,’’ Int. J. Environ. Res. Public Health, vol. 18, no. 22, p. 12192,
Nov. 2021.

[32] M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed, and Y. Guerrero-
Sanchez, ‘‘Integrated neuro-swarm heuristic with interior-point for non-
linear SITR model for dynamics of novel COVID-19,’’ Alexandria Eng. J.,
vol. 60, no. 3, pp. 2811–2824, Jun. 2021.

[33] Y. G. Sánchez, Z. Sabir, and J. L. G. Guirao, ‘‘Design of a nonlinear Sier-
pinski iterated function system (IFS) fractal model based on the dynamics
of a novel coronavirus (COVID-19),’’ Fractals, vol. 28, no. 8, Dec. 2020,
Art. no. 2040026.

[34] Z. Sabir, M. A. Z. Raja, H. M. Baskonus, and A. Ciancio, ‘‘Numerical
performance using the neural networks to solve the nonlinear biological
quarantined based COVID-19 model,’’ Atti della Accademia Peloritana
Dei Pericolanti-Classe Di Scienze Fisiche, Matematiche E Naturali, vol. 1,
no. 1, p. 10, 2023.

[35] A. Elsonbaty, Z. Sabir, R. Ramaswamy, andW. Adel, ‘‘Dynamical analysis
of a novel discrete fractional SiTrS model for COVID-19,’’ Fractals,
vol. 29, no. 8, Dec. 2021, Art. no. 2140035.

[36] T. Botmart, Z. Sabir, S. Javeed, R. A. Sandoval Nuñez,W.Weera,M. R.Ali,
and R. Sadat, ‘‘Artificial neural network-based heuristic to solve COVID-
19 model including government strategies and individual responses,’’
Informat. Med. Unlocked, vol. 32, Jun. 2022, Art. no. 101028.

[37] A. N. Akkilic, Z. Sabir, M. A. Z. Raja, and H. Bulut, ‘‘Numerical treatment
on the new fractional-order SIDARTHE COVID-19 pandemic differential
model via neural networks,’’ Eur. Phys. J. Plus, vol. 137, no. 3, p. 334,
Mar. 2022.

[38] M. Umar, Z. Sabir, M. A. Z. Raja, H. M. Baskonus, S.-W. Yao, and
E. Ilhan, ‘‘A novel study of Morlet neural networks to solve the nonlinear
HIV infection system of latently infected cells,’’ Results Phys., vol. 25,
Jun. 2021, Art. no. 104235.

[39] Z. Sabir, M. Umar, M. A. Z. Raja, H. M. Baskonus, and W. Gao, ‘‘Design-
ing of Morlet wavelet as a neural network for a novel prevention category
in the HIV system,’’ Int. J. Biomathematics, vol. 15, no. 4, May 2022,
Art. no. 2250012.

[40] Z. Sabir, M. Umar, M. Asif Zahoor Raja, and D. Baleanu, ‘‘Numerical
solutions of a novel designed prevention class in theHIV nonlinearmodel,’’
Comput. Model. Eng. Sci., vol. 129, no. 1, pp. 227–251, 2021.

[41] M.Umar, Z. Sabir,M.A. Zahoor Raja, K. S. Al-Basyouni, S. R. Mahmoud,
and Y. G. Sánchez, ‘‘An advance computing numerical heuristic of
nonlinear SIR dengue fever system using the Morlet wavelet kernel,’’
J. Healthcare Eng., vol. 2022, pp. 1–14, Jan. 2022.

[42] M. Umar, Z. Sabir, M. A. Z. Raja, and Y. G. Sánchez, ‘‘A stochastic
numerical computing heuristic of SIR nonlinear model based on dengue
fever,’’ Results Phys., vol. 19, Dec. 2020, Art. no. 103585.

[43] M. Umar, M. A. Z. Raja, Z. Sabir, and Q. Al-Mdallal, ‘‘A computational
framework to solve the nonlinear dengue fever SIR system,’’ Comput.
Methods Biomechanics Biomed. Eng., vol. 25, no. 16, pp. 1821–1834,
Dec. 2022.

[44] Z. Sabir, M. A. Z. Raja, S. Javeed, and Y. Guerrero-Sánchez, ‘‘Numerical
investigations of a fractional nonlinear denguemodel using artificial neural
networks,’’ Fractals, vol. 30, no. 10, pp. 1–12, Dec. 2022.

[45] P. Junsawang, S. Zuhra, Z. Sabir, M. A. Z. Raja, M. Shoaib, T. Botmart,
and W. Weera, ‘‘Numerical simulations of vaccination and Wolbachia on
dengue transmission dynamics in the nonlinear model,’’ IEEE Access,
vol. 10, pp. 31116–31144, 2022.

[46] M. Umar, Z. Sabir, M. A. Z. Raja, H. M. Baskonus, M. R. Ali, and
N. A. Shah, ‘‘Heuristic computing with sequential quadratic programming
for solving a nonlinear hepatitis B virus model,’’ Math. Comput. Simul.,
vol. 212, pp. 234–248, Oct. 2023.

[47] Z. Sabir, S. Ben Said, and Q. Al-Mdallal, ‘‘A fractional order numerical
study for the influenza disease mathematical model,’’ Alexandria Eng. J.,
vol. 65, pp. 615–626, Feb. 2023.

[48] Z. Sabir, T. Botmart, M. A. Z. Raja, W. Weera, R. Sadat, M. R. Ali,
A. A. Alsulami, and A. Alghamdi, ‘‘Artificial neural network scheme to
solve the nonlinear influenza disease model,’’ Biomed. Signal Process.
Control, vol. 75, May 2022, Art. no. 103594.

[49] S. Noinang, Z. Sabir, G. Cieza Altamirano, M. A. Z. Raja,
M. J. Sachez-Chero, M.-V. Seminario-Morales, W.Weera, and T. Botmart,
‘‘Swarming computational techniques for the influenza disease system,’’
Comput., Mater. Continua, vol. 73, no. 3, pp. 4851–4868, 2022.

[50] S. Noinang, Z. Sabir, M. Asif Zahoor Raja, S. Salahshour, W. Weera,
and T. Botmart, ‘‘Numerical procedure for fractional HBV infection with
impact of antibody immune,’’ Comput., Mater. Continua, vol. 74, no. 2,
pp. 2575–2588, 2023.

VOLUME 12, 2024 103131



F. M. Riaz et al.: Numerical Treatment of Non-Linear System for Latently Infected CD4+T Cells

[51] Z. Sabir, D. Baleanu, M. A. Z. Raja, A. S. Alshomrani, and E. Hincal,
‘‘Computational performances of Morlet wavelet neural network for
solving a nonlinear dynamic based on the mathematical model of the
affection of Layla and Majnun,’’ Fractals, vol. 31, no. 2, Jan. 2023,
Art. no. 2340016.

[52] Z. Masood, K. Majeed, R. Samar, and M. A. Z. Raja, ‘‘Design of Mexican
hat wavelet neural networks for solving bratu type nonlinear systems,’’
Neurocomputing, vol. 221, pp. 1–14, Jan. 2017.

[53] A. G. Gad, ‘‘Particle swarm optimization algorithm and its applications:
A systematic review,’’ Arch. Comput. Methods Eng., vol. 29, no. 5,
pp. 2531–2561, Aug. 2022.

[54] M. Jain, V. Saihjpal, N. Singh, and S. B. Singh, ‘‘An overview of variants
and advancements of PSO algorithm,’’ Appl. Sci., vol. 12, no. 17, p. 8392,
Aug. 2022.

[55] E. García-Gonzalo and J. L. Fernández-Martínez, ‘‘A brief historical
review of particle swarm optimization (PSO),’’ J. Bioinf. Intell. Control,
vol. 1, no. 1, pp. 3–16, Jun. 2012.

[56] S. G. Andrab, A. Hekmat, and Z. B. Yusop, ‘‘A review: Evolutionary
computations (GA and PSO) in geotechnical engineering,’’Comput. Water,
Energy, Environ. Eng., vol. 6, no. 2, pp. 154–179, 2017.

[57] N. Pham, ‘‘Improved Nelder Mead’s simplex method and applications,’’
2012.

[58] D. M. Olsson and L. S. Nelson, ‘‘The Nelder-Mead simplex procedure for
function minimization,’’ Technometrics, vol. 17, no. 1, p. 45, Feb. 1975.

FARHAD MUHAMMAD RIAZ is currently pur-
suing the Ph.D. degree in computer science with
HITEC University, Taxila, Pakistan. He is also a
Lecturer in computer science with the National
University of Modern Languages, Islamabad. His
research interests include mathematical modeling,
neural network modeling, cognitive computing,
ANN-based numerical approximation, and deep
learning.

SHAFIQ AHMAD received the Ph.D. degree from
RMITUniversity, Melbourne, Australia. He is cur-
rently an Associate Professor with the Industrial
Engineering Department, College of Engineer-
ing, King Saud University, Riyadh, Saudi Arabia.
He has more than two decades of working experi-
ence both in industry and academia in Australia,
Europe, and Asia. He has published a research
book and several research articles in international
journals and refereed conferences. His research

interests include smart manufacturing, the IIoT, data analytics, multivariate
statistical quality control, process monitoring and performance analysis,
operations research models, and bibliometric network analysis. He is also
a certified practitioner in the Six Sigma business improvement model.

JUNIAD ALI KHAN received the Ph.D. degree
in electronic engineering majoring in modeling of
neural networks for non-linear systems from Inter-
national Islamic University, Islamabad, in 2011.
Currently, he is the Dean of the Faculty of Sciences
and the Chair of the Department of Computer Sci-
ence, HITEC University, Taxila, Pakistan. He has
published more than 70 articles in various reputed
relevant journals. His research interests include
non-linear system modeling, cognitive computa-

tion, deep neural networks, and fuzzy systems. His recent projects involve
applications of fuzzy DNN in earth observation and seismic analysis.

SAUD ALTAF received the master’s degree in
computer science from Iqra University, Islamabad,
Pakistan, in 2007, and the Ph.D. degree in com-
puter science from Auckland University of Tech-
nology (AUT), New Zealand, in 2015. He is
currently a Professor with National Skills Uni-
versity, Islamabad. He is the author of a number
of research publications in international impact
factor journals or conference proceedings. His
research interests include wireless sensor net-

works, biomedical signal and image processing, security of cyber-physical
systems (CPS), gesture recognition, through-the-wall radar imaging and
sensing, visible light communication, the Internet of Things (IoT), artificial
intelligence, and data mining.

ZIA UR REHMAN received the master’s degree
in computer science from Muhammad Ali Jinnah
University, Islamabad, Pakistan, in 2008, and
the Ph.D. degree from the University Institute
of Information Technology (UIIT), Pir Mehr
Ali Shah Arid Agriculture University (PMAS—
AAR), Rawalpindi, Pakistan, in 2023. He is cur-
rently an Assistant Professor with the Department
of Computer Science, National University ofMod-
ern Languages (NUML). His major research inter-

ests include security issues in health monitoring aspects of cyber-physical
systems (CPS), AI, the Internet of Things (IoT), and wireless sensor
networks.

SHUAIB KARIM MEMON received the Ph.D.
degree in computer science from Auckland Uni-
versity of Technology, New Zealand. He is cur-
rently a Senior Lecturer with York St John
University, U.K. He has more than 23 years of
teaching and industry experience. He was a Lec-
turer, a Senior Lecturer, and an Assistant Professor
at a number of reputable universities and private
training establishments and have actively involved
in the process of teaching, assessment develop-

ment, moderation, research, training, and curriculum development. He is
the New Zealand Qualification Authority’s Certified Adult Trainer, a Skilled
Assessor, an Expert Moderator, and an Assessment Designer.

103132 VOLUME 12, 2024


