
Karthick, Gayathri ORCID logoORCID:
https://orcid.org/0000-0003-1228-7099 and Mapp, Glenford ORCID
logoORCID: https://orcid.org/0000-0002-0539-5852 (2024)
Developing a Secure Service Ecosystem to Implement the
Intelligent Edge Environment for Smart Cities. Future Internet, 16
(9). p. 317.

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/10633/

The version presented here may differ from the published version or version of record. If

you intend to cite from the work you are advised to consult the publisher's version:

https://doi.org/10.3390/fi16090317

Research at York St John (RaY) is an institutional repository. It supports the principles of

open access by making the research outputs of the University available in digital form.

Copyright of the items stored in RaY reside with the authors and/or other copyright

owners. Users may access full text items free of charge, and may download a copy for

private study or non-commercial research. For further reuse terms, see licence terms

governing individual outputs. Institutional Repository Policy Statement

RaY
Research at the University of York St John

For more information please contact RaY at ray@yorksj.ac.uk

https://www.yorksj.ac.uk/ils/repository-policies/
mailto:ray@yorksj.ac.uk

Citation: Karthick, G.; Mapp, G.

Developing a Secure Service

Ecosystem to Implement the

Intelligent Edge Environment for

Smart Cities. Future Internet 2024, 16,

317. https://doi.org/10.3390/

fi16090317

Academic Editors: Dimitrios

Dechouniotis and Ioannis Dimolitsas

Received: 20 July 2024

Revised: 22 August 2024

Accepted: 24 August 2024

Published: 2 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Developing a Secure Service Ecosystem to Implement the
Intelligent Edge Environment for Smart Cities †

Gayathri Karthick 1,* and Glenford Mapp 2,*

1 Department of Data Science and Computer Science, York St John University, Export Building, 1 Clove Cres,
London E14 2BA, UK

2 Faculty of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, UK
* Correspondence: g.karthick@yorksj.ac.uk (G.K.); g.mapp@mdx.ac.uk (G.M.)
† This paper is an extension of Building an Intelligent Edge Environment to Provide Essential Services for

Smart Cities, originally presented at the Workshop on Mobility in Evolving Internet Architecture (MobiArch
2023), Madrid, Spain, 6 October 2023.

Abstract: In the future, smart cities will provide key services including seamless communication,
intelligent transport systems, advanced healthcare platforms, urban and infrastructure management,
and digital services for local and regional government. Therefore, a new service and networking
paradigm, called the Intelligent Edge Environment, has been specified. As a key part of this system,
a new secure service ecosystem must be developed to provide the secure real-time movement of
services on different High-Performance Edge Cloud Systems. This paper explores these issues by
introducing the following mechanisms: a Resource Allocation Algorithm, a Resource Allocation
Secure Protocol and finally a Secure Service Protocol. These systems were integrated into the Basic
Capability System Library and a multithreaded FUSE client connected to the Service Management
Framework. Docker was used as the migration mechanism. A prototype was developed and
implemented using a FUSE-Network Memory System in which the Network Memory Server was
migrated as users moved around. The result shows that this approach was safe and could be used to
develop new applications and services for smart cities.

Keywords: intelligent edge environment; secure service ecosystem; capabilities; FUSE; docker

1. Introduction

Smart cities need to leverage advanced technologies such as Mobile Edge Computing
(MEC), Internet of Things (IoT), AI, Machine Learning (ML), and fast communication
networks, for example 5G/6G, to deliver efficient, sustainable, high-quality services, thus
improving the overall quality of life for their citizens. These technologies can be combined
to produce a new computing and service paradigm, called the Intelligent Edge Environment
(IEE), in which services are run and managed from the edge of the network by default. As
shown in Figure 1, the IEE is composed of these 7 layers: Heterogeneous Networking Layer,
Data Management Layer, the High-Performance Edge Cloud Systems, Service Management
Framework, Microservices Layer, Application Framework Layer, and Application Layer.
The details of the IEE have been explored in [1].

Intelligent Edge Environment Layers

The layers of the IEE are shown in Figure 2 and are briefly described below:

• Layer 1: Heterogeneous Networking Layer (HNL): This layer provides connections
using various wireless technologies such as 4G, 5G, WiFi, and Cellular.

• Layer 2: Data Management Layer (DML): This layer plays a crucial role in handling
vast amounts of data generated by edge devices such as Connected and Autonomous
Vehicles (CAVs) and uses many structures such as blocks, files, databases, and ML
algorithms to manage data.

Future Internet 2024, 16, 317. https://doi.org/10.3390/fi16090317 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16090317
https://doi.org/10.3390/fi16090317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1228-7099
https://orcid.org/0000-0002-0539-5852
https://doi.org/10.3390/fi16090317
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16090317?type=check_update&version=1

Future Internet 2024, 16, 317 2 of 24

• Layer 3: High-Performance Edge Cloud Systems (HPECS): This layer supports various
cloud architectures and cloud types, including private, public, hybrid, and community
clouds (AWS, Hadoop, etc.) using Virtual Machines (VMs) including VMware and
Citrix ecosystems as well as video streaming, augmented and virtual reality, and
autonomous systems.

• Layer 4: Service Management Framework (SMF): This layer manages services and
servers within the system. It offers mobile service support by migrating and replicating
services using various migration techniques such as Docker (containerization), KVM
(virtualization), and Unikernels (specialized single-purpose virtual machines).

• Layer 5: Microservices Layer (MSL): This layer supports microservices and is respon-
sible for independently deployable services. These services should be fast and small
in order to be easily migrated.

• Layer 6: Application Framework Layer (AFL): This layer uses the Microservices
Layer below to provide Applications Frameworks (AFs) to build applications for
different environments such as Mobile Communications, Vehicular Networking, and
IoT Smart Grids.

• Layer 7: Application Layer (AL): This layer allows applications that have been built
using the Application Framework Layer to be installed on the system and made
available to users. Through this layer, users get applications that use all the resources
of the IEE.

Figure 1. Intelligent Edge Environment.

Figure 2. Intelligent Edge Environment layers.

Future Internet 2024, 16, 317 3 of 24

A key part of the IEE is the development of a Secure Service Ecosystem (SSE) in which
services can be securely moved between different commercial Cloud Systems. As shown
in Figure 2, the SSE, therefore, encompasses the three core layers of the IEE which are the
HPECS, SMF, and MSL layers.

This paper explores how to build an SSE and the contributions of the work are
detailed below:

• A new simple Resource Allocation Algorithm (RAA) is developed to enable mobile
services. This algorithm has to be simple and fast.

• A new secure transfer protocol called the Resource Allocation Secure Protocol (RASP)
is detailed. This will involve the use of cryptographic protocol verifiers such as
ProVerif to show that the transfer protocol is safe.

• A secure access control system using capabilities to provide the Authentication, Au-
thorization, Accounting (AAA).

• The development of a new Service Management Framework (SMF) which can be used
to manage applications and services in the IEE.

• These mechanisms are combined to develop a capability-based Secure Service Protocol
(SSP) to provide a complete SSE for the IEE. The SSP is shown to be safe using Proverif.

• The implementation of a prototype SSE system using a Network Memory Server
(NMS) to provide backing storage for a FUSE file system in a vehicular network
is detailed.

The rest of this paper is organized as follows: Section 2 reviews the Related Work.
Section 3 details the Simple Resource Allocation Algorithm, while Section 4 explores the
RASP Protocol using ProVerif. In Section 5, a capability system for IEE is investigated, and
in Section 6, the SSP Protocol is proposed and tested using ProVerif. Section 7 covers the
prototype implementation. Finally, Section 8 concludes the paper.

2. Related Work
2.1. Mobile Edge Computing (MEC)

MEC was originally developed as an offloading mechanism to provide more com-
puting resources at the edge of the network. As shown in [2] there has been a lot of work
done in MEC. Two recent projects are EDGELESS [3] and CODECO [4]. EDGELESS is an
ongoing EU project that is developing a secure edge-cloud platform that can dynamically
adjust itself to ensure a high Quality of Service (QoS) for applications. Although the IEE
shares some of these goals, there are significant differences. Unlike EDGELESS, the IEE
will manage and run services at the edge of the network by default to support real-time
applications with very tight requirements for low latency and high bandwidth; thus, in
the IEE there will be no central Cloud platform. The CODECO project is enhancing the
container orchestration platform, Kubernetes, with a cognitive edge-cloud management
framework that provides support for real-time industrial applications. While CODECO
is looking at a software solution to provide real-time support for Kubernetes, the IEE
is committed to providing end-to-end low latency using smart networks, caching, and
prefetching algorithms as well as low-latency data access and processing via fast hardware,
AI and Unikernels.

2.2. Vehicular Networks

The last decade has seen a revolution in transport based on the emergence of Con-
nected and Autonomous Vehicles (CAVs). Several research testbeds have been built [5].
This has spurred more research into Intelligent Transport Systems (ITS) which will result
in smaller journey times, less congestion and a reduction in the number of road accidents.
Vehicular networks pose serious challenges as they require reliable, low latency, high band-
width communication as well as the ability to process data in real-time. These challenges
can only be met by moving data processing and services to the edge of the network.

The convergence of the automotive industry with cognitive computing, forming the
Industrial Cognitive Internet of Vehicles (CIoV), is a rapidly evolving field with significant

Future Internet 2024, 16, 317 4 of 24

implications for the QoS and security in vehicular networks. This convergence is driven by
the increasing impact of social media on automotive services and the need for advanced
edge computing solutions to reduce latency and enhance reliability. As explored by the
author in [6], offloading cognitive computing tasks to the network edge using methods like
88 CQP, which employs Canopy and K-medoids clustering along with a non-dominated
sorting 89 genetic algorithm III, can optimize edge server (ES) quantification and placement,
thereby improving the QoS by 90%.

2.3. Virtualization and Service Management in Future Internet

Cloud Systems are now used by many companies to provide services to their clients.
These systems use virtualisation techniques and enable service migration through Docker,
KVM, LXD, and Unikernels mechanisms. Mobile services therefore are a key requirement
for future networks. The authors in [7,8], investigated the communication dynamics
necessary for seamless connectivity and service migration in vehicular edge environments.
The authors in [9] attempted to address the development of a secure commercial advertising
scheme for vehicular networks. They proposed a scheme called “Business discovery (BUY)”
that presents the concept of the beaconing market using a vehicular network. However,
these endeavours also underscore the need for resource management algorithms and secure
transport mechanisms to enable mobile services for highly mobile networks.

2.4. Research Gap

Though all these efforts are useful and have led to the development of the IEE platform,
new mechanisms and techniques are needed to fully realise this proposed framework. The
most pressing of which is the need to develop a secure service ecosystem to allow services
to be managed and run from the edge of the Internet by default. This includes a simple
and fast resource management algorithm to allow services to migrate using different Edge
Clouds, a secure service transfer mechanism, and providing Authentication, Authorisation,
and Accounting (AAA) for the new environment. This paper addresses these issues.

3. Simple Resource Algorithm

Resource management [10] is the process of distributing available resources, such as
CPU, Memory, Network and Storage, among various tasks in an efficient manner as it helps
to deliver high performance in Cloud infrastructure to achieve a high QoS. Cloud systems
use virtualization to replicate and share resources. Several algorithms are used to manage
this allocation effectively. There are two types of resource algorithms, Static and Dynamic
algorithms. However, when services are moved between Clouds, we must use dynamic
algorithms which must be simple and fast because it is a highly mobile environment. This
algorithm is shown in Figure 3.

The roles in the RAA are specified as follows:

1. Advertising Cloud (CA, CB, CC. . . etc.): Each Cloud Service Provider (CSP) has a
finite set of resources available for services and servers. A Cloud System broadcasts its
available resources (CPU, Memory, Network, and Storage) to the Receiving Servers.

2. Receiving Servers (SA, SB, SC. . . etc.): These servers can choose to migrate their
services to the Advertising Clouds based on their hosting requirements.

3. Resource Allocation Server (RAS): A trusted party responsible for verifying the re-
sources of Advertising Clouds and the hosting requirements of Receiving Servers.
Table 1 shows the information held by the RAS.

The first stage of the RASP protocol uses the Resource Allocation Algorithm (RAA)
for cloud advertisements. Each Cloud System actively advertises its free resources in
each round and uses mathematical formulations to determine if a service can be securely
migrated to an Advertising Cloud (AC). The formulation below demonstrates how Cloud
CB advertises its resources and Receiving Server SA obtains the resources it needs to run
on the AC.

Future Internet 2024, 16, 317 5 of 24

Figure 3. Simple resource allocation design.

Table 1. RAS Table.

Resource Allocation
Server

Adverting Cloud
(CA)

Adverting Cloud
(CB) Adverting Cloud (N)

Receiving Server (SA) CPU, Memory,
Network, and Storage

CPU, Memory,
Network and Storage

CPU, Memory,
Network, and Storage

Receiving Server (SB) CPU, Memory,
Network, and Storage

CPU, Memory,
Network, and Storage

CPU, Memory,
Network, and Storage

Receiving Server (N) CPU, Memory,
Network, and Storage

CPU, Memory,
Network, and Storage

CPU, Memory,
Network, and Storage

3.1. Advertising Cloud Formulation

The variables indicate the number of CPUs, Memory, Storage, and Network resources
respectively. These values help in determining the resource availability and allocation
for secure service migration. At each round, each provider will use the mathematical
formulation below: Step 1 of the RASP protocol and general notations is as follows:

• Stage 1 1. CB→ SA: Advc (CB, ResCB) [CB → SA: Advertising Cloud (CB) sends an ad-
vertisement (Advc) to the Receiving Server (SA), detailing its free resources (ResCB)].

– Maximum Resource of Cloud (MAX_Cm) = [CPU (Cmc), Memory (Cmm), Stor-
age (Cms), Network (Cmn)],

– Allocated Resource of Cloud (ALLOC_Ca) = [CPU (Cac), Memory (Cam), Storage
(Cas), Network (Can)],

– Free Resource of Cloud (FREE_C f) = [CPU (Cfc), Memory (Cfm), Storage (Cfs),
Network (Cfn)]

Cloud CB Formulation Algorithm 1 in detail,

Algorithm 1 Cloud CB Formulation

1: Resources(r) ∈ {Cpu(c), Network(n), Memory(m), and Storage(s)}
2: MAX_Cm (Cmr) = {Cmc, Cmm, Cms, Cmn }
3: ALLOC_Ca (Car) = { Cac, Cam, Cas, Can } &
4: FREE_C f (C f r) = {C f c, C f m, C f s, C f n}
5: C f r←− C f r ∪ Resources(r)
6: If C f r← (Cmr− Car) > 0 then
7: Send Advc of C f r and wait for response;
8: else C f r ≤ ϕ then
9: wait for C f r > 0 ;

10: End if

Future Internet 2024, 16, 317 6 of 24

• Step 1: The resources in consideration are categorized as CPU (c), Network (n),
Memory (m), and Storage (s).

• Step 2–4: These steps define the maximum capacity for each type of resource (Cmr),
current allocation of resources (Car), and the available (free) resources (C f r) in the AC.

• Step 5–10: Condition Check and Advertisement: The condition checks if there are
any free resources (C f r). If there are free resources, the AC sends an advertisement
of these resources and waits for a response. If there are no free resources, the system
waits until resources become available, i.e., when (C f r) is greater than 0.

3.2. Receiving Servers Formulation

Receiving Servers (RS) receive an advertisement from the Advertising Cloud (AC)
and its free resources. A server that needs to use a cloud has variables that detail its
requirements. If the free resources of AC, Cfc, Cfm, Cfs, Cfn are larger than Receiving
Server requirements, it can forward the request to the Resource Allocation Server (RAS)
also known as the Registry (R). The required resources of the server are given by (Req_Res
of SA (SAreqr)). If we assume the requested resources a less than the free resources of the
AC and all requested resources are valid, then and only then, it sends the request to RAS.
Step 2 of the RASP protocol is as follows:

• Stage 2 2. SA→ R : (SA, CB, ResCB)pkR [SA → R: Receiving or Requested Servers
(SA) send a message to the Registry to verify the identity and free resources (Res
freeCB) of the Advertising Cloud, CB].

– Requested Resource of Server (Req_Res of SA (SAreqr)) = {Src, Srm, Sms, Srn}
CPU (Src), Memory (Srm), Storage (Sms), Network (Srn)]

Server SA Formulation Algorithm 2 in detail,

Algorithm 2 Server SA Formulation

1: Resources(r) ∈ {Cpu(c), Network(n), Memory(m), and Storage(s)}
2: Req_Res (SAreqr) = {Src, Srm, Sms, Srn}
3: SAreqr←− SAreqr ∪ Req_Resources
4: If SAreqr > 0 then
5: Search for Resource Migration;
6: If SAreqr← (C f − SAreqr) > 0 then
7: Accept Cf and send a message to RAS;
8: Else ignore the request;
9: End if

• Step 1: The resources CPU, Networks, Memory, Storage are members of resources(r).
• Step 2–3: Server SA′s Requested resources are declared as a set of elements and is

given by SAreqr resources.
• Step 4–5: If the Requested resources are greater than 0, the server can look to migrate

the service to the Advertising Cloud.
• Step 6–9 Condition check before resource Migration: It checks if the AC has sufficient

free resources to meet the Receiving Server’s request. If sufficient resources are
available, then the request is granted, and the details are sent to the RAS for verification
and processing, else Server SA ignores the advertisement.

3.3. Resource Allocation Server

The Resource Allocation Server (RAS) plays a crucial role in the resource allocation pro-
cess. It is a trusted Party responsible for confirming the registration of Cloud Providers and
certifying the capacity of their resources. The RAS ensures that only valid and adequately
resourced Clouds participate in service migrations. Function of RAS in the Algorithm are:

• Registration and Certification: The RAS confirms the registration of Cloud Providers
and certifies the capacity of resources available with the registered Cloud Providers.

Future Internet 2024, 16, 317 7 of 24

• Request Verification: When a request for resources is received from a Receiving
Server (SA), the RAS verifies the resources based on specific criteria before approving
the migration.

Stage 2 of the RASP protocol therefore provides verification and certification. Once it
receives the request from SA requested resources (SAreqr), the RAS verifies the resources
based on the Algorithm below:

• 3. R→ SA: sign((CB, pkC, ResCB), pkS) [R → SA: The Registry approves the adver-
tisement (Advc) and sends a message to the Receiving Servers (SA), detailing the free
resources (ResCB) with its signature].

Server RAS Formulation Algorithm 3 in detail:

Algorithm 3 RAS_CB

1: If C f = Valid Cloud and RAS← (C f > SAreqr) ̸= 0 then
2: Accept and send an authenticated message;
3: Else
4: Reject the request;
5: End if

• Step 1–2 Verify Validity: The RAS server verifies whether the CB is a valid cloud and
if its Cloud resources are greater than the requested resources. If either condition is
false, then it rejects the request and updates Server SA that CB is an invalid cloud.

• Step 2–5 Pass Conditions: If the above conditions pass, then it sends an authenticated
message to SA. This message confirms the approval of the resource migration.

Server RAS Algorithm 4 Formulation in detail,

Algorithm 4 RAS_SA

1: If SAreqr = valid server and RAS← (Cf>SAreqr) ̸= 0 then
2: Accept and send an authenticated message;
3: Else
4: Reject the request;
5: End if

• Step 1–2: RAS server verifies whether it is a valid server and if Cloud resources are
greater than the requested resources which is not equalt 0. If either conditions are
false, then it rejects the request and updates SA that its an invalid Cloud.

• Step 2–5: If the above conditions pass, then it sends an authenticated message to SA.

The RAS is essential for ensuring the integrity and efficiency of resource allocation in
Cloud environments. It validates Cloud Providers, certifies their resources, and manages
requests from Receiving Servers, ensuring only valid and adequately resourced Clouds
participate in service migrations. This multi-step verification process helps maintain a
secure and reliable resource allocation framework.

4. RASP Protocol—An Overview

This protocol has three roles: Server SA on Cloud CA, Cloud CB, and Registry. The
Resource Allocation Security protocol (RASP) is broken into four stages. In the first stage, it
uses the Resource Allocation Algorithm to manage cloud advertisements [11]. In addition,
the proposed protocol was tested by ProVerif. The protocol is shown in Figure 4 as follows:
Stage 1 corresponds to step 1 of the protocol; Stage 2 corresponds to steps 2–7; Stage 3
corresponds to steps 8–11, and finally, Stage 4 corresponds to step 12. The RASP protocol is
followed in exactly the same way as outlined below and shows the steps for Cloud-to-Cloud
migration of services.

Future Internet 2024, 16, 317 8 of 24

Figure 4. Migration between SA to CB.

4.1. General Notations

Table 2 shows the parameters used in the RASP protocol.

Table 2. RASP Table.

Notation Explanation

CA, CB, SA and SB Cloud and Server Identities

pkC/skC, pkS/skS, pkR/skR public and private key pairs of Cloud CB,
Server SA & Registry

M_Reqc, M_Trfs, M_Ackc Request for migration, transfers and
acknowledgement

sign Signature/signed by the Registry
aenc Asymmetric Encryption
enc Symmetric Encryption
Ksc Symmetric session key

Ns, Nc Nonce of SA and CB
ResSA, ResCB Requested Resources of SA & CB

1. Stage 1: Advertisement :
Server SA receives advertisements from Cloud CB advertising its resources.
1. CB→ SA: Advc (CB, ResCB)

2. Stage 2: Authentication of SA and CB as well as migration request and response:
Server SA first requests the RAS/Registry to authenticate Cloud CB and its resources.
In Step 3, the Registry (R) authenticates Cloud CB. In Step 4, Server SA sends a
migration request to Cloud CB. In Step 5, Cloud CB sends a request to the Registry to
verify that Server SA’s request for resources is valid. In Step 6, the Registry replies to
Cloud CB. In Step 7, Cloud CB sends the migration response back to Server SA.
2. SA→ R: (SA, CB, ResCB)pkR
3. R→ SA: sign((CB, pkC, ResCB), pkS)
4. SA→ CB: aenc ((Ns, SA, ResSA), pkC)
5. CB→ R: (CB, SA, ResSA)pkR
6. R→ CB: sign((SA, pkS, ResSA), pkC)
7. CB→ SA: aenc((Ns, Nc, CB), pkS)

Future Internet 2024, 16, 317 9 of 24

3. Stage 3: Migration transfer:
In Step 8, Server SA generates the session key (Ksc) to start the migration. In Step 9,
Cloud CB sends the migration initialization request. In Step 10, Server SA performs
the migration transfer. In Step 11, Cloud CB sends an acknowledgment to Server SA.
8. SA→ CB: aenc((Nc, Ksc), pkC)
9. CB→ SA: enc ((M_Reqc, SA), Ksc)
10. SA→ CB: enc ((M_Trfs, ResSA), Ksc)
11. CB→ SA: enc ((M_Ackc), Ksc)

4. Stage 4: Update of New service location to the Registry:
In Step 12, the service on Cloud CB (SB) updates the Registry on its new location. The
new service SB is now running on Cloud CB and informs the Registry that it has been
successfully migrated.
12. SB→ R: aenc((SB, CB), pkR)

4.2. ProVerif an Overview

ProVerif [12] is a formal verification and highly automated tool used for analyzing
the security properties of cryptographic protocols. It employs applied calculus to model
concurrent systems and their interactions. The tool comprehends the protocol’s abstraction,
including how messages are exchanged between parties and the use of cryptographic
primitives such as encryption, decryption, and signatures. ProVerif verifies the service
migration mechanism’s secrecy, authentication, and key exchange. Another strength of
this tool is that it performs symbolic analysis, aiding in understanding attack scenarios.
ProVerif provides attack traces [13] if it finds any violations of a security property.

The output of the Query attacker() query function results as “True”, indicating that the
security property cannot be accessed by the attacker. This validates the attacker’s lack of
knowledge and ensures the secrecy of data authentication between parties or multiple roles
for securely transferring data and authenticated across an unlimited number of sessions
using unbounded data. If the outcome of the attacker() function is “False”, the security
property value is accessible to the attacker. Finally, the result displays any attack trace and
indicates whether the attacker() query returns TRUE or FALSE.

ProVerif Results

The results shown in Table 3 indicate that RASP can preserve the secrecy, authentica-
tion and key exchange of the service migration mechanism.

• Nonces are secured and not derived by the attacker: specific nonces (SNs, SNc,
CNs, CNc) used in the protocol are not derivable by an attacker, ensuring their
confidentiality. Each line indicates that the respective nonce cannot be compromised
(is true).

• Session key: Results confirm that the session key (Ksc) and associated bitstrings (SNk,
CNk) are secure from the attacker. The line “RESULT not attacker_bitstring (SNk []) is
true” with Ksc also specifies the conditions under which this key is secure.

• Private keys: Results confirm that the session key (Ksc) and associated bitstrings (SNk,
CNk) are secure from the attacker. The line “RESULT not attacker_bitstring (CNk []) is
true” with Ksc also specifies the conditions under which this key is secure.

• Authentication: It validates the mutual authentication between SA and CB. The use
of inj-event indicates that the protocol verifies injective correspondence, meaning each
event endSparam (or endCparam) has a matching beginSparam (or beginCparam),
ensuring that both parties authenticate each other correctly.

By using a symmetric session key (Ksc), the requested service is transferred to the new
location CB. This section has explored the development of a new resource allocation and
secure service migration framework that encompasses the computing resources to migrate
services in cloud environments.

Future Internet 2024, 16, 317 10 of 24

Table 3. Query attacker Results

Security Properties Server SA Event Cloud CB Event

Session key True True
Private keys True True

Nonces True True
Event begin True True

Requested resources True -
Advc Resources - False (Not encrypted)

5. Capabilities

Capabilities are critical for system security, providing a robust mechanism for access
control through unforgeable tokens. It plays a crucial role in identifying objects and
their properties within a system. It is essential to manage and protect these capabilities
diligently to prevent unauthorized generation or alteration. Proper management is vital to
maintaining system integrity and security, ensuring that only authorized users can access
specific objects and perform actions according to their assigned capabilities. This careful
oversight helps safeguard the system against potential security breaches and misuse. The
data structure contains two pieces of data and functionality.

• Data: Unique Object Identification and Access Rights.
• Functionality: Capabilities can provide Role-Based Access Control (RBAC) access for

users. Some capabilities are not directly assigned to users; instead, they are assigned to
roles, and roles are then assigned to users. These are known as role-based capabilities.
This structure supports RBAC, ensuring that users have access based on their roles
within an organization.

• IPv6 Address Space and Capability ID System: Utilizes a modified Location/ID split
based on the work of [14]. This enables the creation of a capability ID-based system
for people, applications, and cloud infrastructure.

5.1. Capabilities in the IEE

Intelligent Edge Environment (IEE) capabilities are crucial for secure and efficient
access control. By utilizing role-based capabilities and advanced addressing systems like
IPv6, the IEE can ensure robust access management and resource allocation while main-
taining high levels of security and integrity. The IEE is a dynamic environment where
security challenges are significantly higher than those in traditional computing environ-
ments. Traditional AAA (Authentication, Authorization, and Accounting) mechanisms,
such as using RADIUS servers, are no longer effective solutions in this context. Given the
scalability requirements of large systems, it was decided that AAA should be based on
the subject or user rather than the object. This approach is more scalable and suitable for
modern, complex environments. Consequently, capabilities are used to provide AAA for
the IEE, ensuring that security and access control mechanisms are effective and adaptable
to the unique demands of edge computing [15].

Capabilities Structure

In the Intelligent Edge Environment (IEE), every object and its properties are identified
using capabilities. These capabilities must be carefully managed and protected to prevent
unauthorized creation or modification, and they should be easily revocable. The format of
the capability-based system is shown in Figure 5, and its structure is explained below:

Figure 5. Capability structure.

Future Internet 2024, 16, 317 11 of 24

• Type Field (8 bits): This field specifies the type of object capability being used, such
as users, digital assets, facilities, etc.

• SYS Field (4 bits): This field helps manage capabilities. The four bits within the SYS
field are explained below.

• Property Field (12 bits): This field defines the properties of the object associated with
the capability. It relates to the properties or functions of the object that the capability
refers to.

• Object ID (72 bits): This field uniquely identifies the object in the system. It includes a
EUI-64 identification field to identify the object and an 8-bit netadmin field to manage
the object on a network.

• Random Bit Field (16 bits): This field provides unforgeability and helps uniquely
identify the object. This field is generated after the type field, SYS field, property
field, and Object ID field are created. When proxy certificates are created, a new
random field is generated. This field also allows for easy revocation of capabilities by
simply changing the random field and recomputing the hash field, hence revoking
previous versions.

• Hash Field (16 bits): This field detects the tampering of capabilities. When a capa-
bility is created, the type field, SYS field, property field, and Object ID field are first
generated, followed by the random bit field. These fields are then used to generate a
SHA-1 hash, which is placed in the Hash Field of the capability.

As shown in Figure 6, the SYS field consists of the following bits:

• Private or P bit: Restricts the list of people holding the capability. With a public
capability, only the capability for the object must be presented, allowing anyone
to hold it without needing the identification of the subject, the person holding the
capability. With a private capability, both the object’s capability and the subject’s
capability must be presented to ensure the subject has the right to invoke the object.

• System or S bit: Indicates whether the object involved was created by the system or
by an application or user. A system capability cannot be modified or deleted by users
or applications.

• Master or M bit: Indicates that the capability was created by a Certificate Authority
(CA). The master capability is usually created when the object is created. If this bit is
not set, it means this is a proxy capability. Proxy capabilities are derived from master
capabilities and cannot be derived from other proxy capabilities.

• Change or C bit: Indicates whether this capability can be changed. If this bit is set,
proxy capabilities can be derived from the master capability. If this bit is not set, the
capability cannot be modified, and proxy capabilities cannot be generated.

Figure 6. Capability structure—SYS FIELD.

By adhering to these principles, Intelligent Edge Environments can maintain a high
level of security and efficiency, ensuring that resources are managed effectively and that
unauthorized access is prevented.

6. The Secure Service Protocol (SSP)

The advancement of highly mobile technologies such as Vehicular Adhoc Networks
(VANETs), MEC, AI, ML, and IoT systems requires multiple interfaces to seamlessly connect
and provide optimal performance for mobile users. As discussed in the Introduction, MEC
facilitates moving services closer, minimizing the need for data processing on remote
servers, reducing delays, and increasing network bandwidth. However, in order to allow

Future Internet 2024, 16, 317 12 of 24

services to run from the edge of the network, it is essential to enable service migration
to support these networks, allowing services to migrate as mobile users move around.
Figure 7 is a visual representation of the change needed. In the old environment, the service
provider had to manage the scaling and migration of services. In the new environment,
these functions are now managed by the Service Management Framework (SMF).

Figure 7. Effect of introducing SMF in the client–server environment.

A new SMF for mobile services has been developed, as shown in Figure 8 and detailed
in [16].

Figure 8. Service Migration Prototype (SMP).

6.1. SMP Layers in Detail

• The Application Layer (AL) is the first layer of the SMF. It runs on the mobile node
and calls the service through the Service Management Layer (SManL). AL provides
the service name, Service ID, and the required QoS of the service it requires such as
delay time, latency, bandwidth, reliability, and security. When a service first registers
with the SMF, it is given a unique ID for identification and a service name which
indicates the type of service being provided, and the resources such as CPU, Memory,
or Storage needed to run the service.

• The Service Management Layer (SManL) is responsible for administering the mobile
service, managing service subscriptions, and overseeing service delivery for the layers
below it. Service subscription includes managing Service-Level Agreements (SLAs)
and billing. Service delivery entails determining how and when services should move

Future Internet 2024, 16, 317 13 of 24

from one location to another. When this layer determines that a service should be
migrated, it forwards this information to the Service Migration Layer (SML).

• The Service Migration Layer (SML) manages migration requests from SManL and
employs RASP to securely execute the migration process. RASP, as described in [17],
utilizes standard migration mechanisms like Docker, KVM, LXD, and Unikernels for
the actual migration. Upon completion, SML informs SManL.

• Service Connection Layer (SCL): This layer monitors the connections between the
mobile node and the server. It reports to the SManL when the mobile node is no longer
available due to handover to another network.

6.2. SSP Protocol—An Overview

Capabilities can be flexibly used to provide AAA in many environments. Furthermore,
by combining capabilities, SMF, and RASP techniques, it is possible to design a Secure
Service Protocol (SSP) that can protect any service. The SSP protcol has been developed to
ensure that the proposed service protocol is secure and can be applied to any service. It is
broken down into five stages to clarify the necessary operations in secure service migration.
The interaction between an application, the Service Management Framework (SMF), and
services supported by the SMF are shown in Table 4 and Figure 9. The SSP protocol is
defined in the same way as the RASP protocol outlined above.

Figure 9. Secure service protocol.

Table 4. General Notations.

Notations Explanation

CMS Cloud Management System

SMF Service Management Framework

APPL Applications

Chosen Server The SMF chooses a server of that service

PK(SMF)/PK(APPL)/PK(SERV) Public key of SMF/APPL/Server

SK(SMF)/SK(APPL)/SK(SERV)/ Private key of SMF/APPL/Server

SESS KEY Session key

Future Internet 2024, 16, 317 14 of 24

Table 4. Cont.

Notations Explanation

NA and NB Nonce of NA and NB

Register Service CMS contacts to Register the Service

Service Details Servers, keys, and running services.

Service Registered The SMF registers the Service

SERV ID Service ID

SERV CAP Service Capability

DEV CAP The Capability for the Device

Request service Request to an appropriate server

USER CAP User capability

CAP SESS Session capability

Service Name Name of the service

Service Version Service Version

IP Client IP address of Client

SERV TIME CAP proxy capability

IP Server IP address of Server

Port Server TCP or UDP Port of Service

Usage request SMF contacts the server

Usage request accepted The Server accepts the request

Request service accepted SMF returns all the server details

Session Start Request Time capability sends start request

Service request The application requests service

Service request done The application gets service

Request Details Details of APPL request

Result Details Details of Chosen Server result

Session End Request The application terminates the session

Session End Req accepted Server terminates session

• Stage 1: Registration of the Service with the SMF: In Stage 1, the Cloud Management
System (CMS) registers the service with the SMF. This involves providing a list of
servers and their public keys that will be running the service. After this, in step 2,
the SMF registers the service and returns the Service ID (SERV ID) and the Service
Capability (SERV CAP). Following this, the CMS initiates the servers to implement
the Service on different machines and passes the Service ID and the Service Capability.

1. CMS→ SMF: (Register Service (Service Details), (PK(SMF)))
2. SMF→ CMS: (Service Registered (Service Details, SERV ID, SERV CAP), (PK(CMS)))

• Stage 2: The Application interacts with the SMF to get a server that implements
the Service: In Stage 2, the Application interacts with the SMF to obtain a server
that provides the service. To utilize a service, an application must request the SMF
to locate a suitable server. In step 3, the Application provides the Device Capability
(DEV CAP), User Capability (USER CAP), Service Name, Service Version, and the
Application’s public key running on the machine. In step 4, the SMF selects a server
for that Service and contacts it using its public key, passing the Client’s DEV CAP,
USER CAP, and IP address. In the subsequent step, the Chosen Server accepts the
request. It generates a timed capability from the service capability, which expires

Future Internet 2024, 16, 317 15 of 24

in 60 s if the Application does not connect to the server. This SERV TIME CAP is a
private proxy capability derived from the Service Capability and cannot be altered;
only the USER CAP and DEV CAP can utilize the capability. The Chosen Server also
provides its IP address and the TCP port of the Service using the public key of the
SMF. In the final step of Stage 2, the SMF returns to the Application with DEV CAP,
USER CAP, timed capability, the Server’s IP address, Service Port number, and public
keys of the Chosen Server, enabling the Application to connect to the server.

3. APPL→ SMF: (Request service (Service Name, Service Version, DEV CAP, USER
CAP, PK(APPL)), (PK(SMF))

4. SMF Chosen→ Server: (Usage request (DEV CAP, USER CAP, IP Client), (PK(SERV))).
5. Chosen Server→ SMF: SMF (Usage request accepted (DEV CAP, USER CAP,

SERV TIME CAP, IP Server, Port Server), (PK(SMF)))
6. SMF→ APPL: (Request service accepted (DEV CAP, USER CAP, SERV TIME

CAP, IP Server, Port Server, PK(SERV)), (PK(APPL)))

• Stage 3: The Application sets up a secure session with the Server: During Stage 3,
the Application initiates a secure session with the Server by sending a session start
request. This request includes the DEV CAP (device capability), USER CAP (user
capability), SERV ID (server ID), a unique random number called Nonce of A (NA),
the Server’s public key, and the SERV TIME CAP (server time capability). Nonce (NA)
ensures that the session is unique on the Application side. In response, the Server
sends back a session capability (CAP SESS), DEV CAP, USER CAP, NA, NB (another
unique random number for the Server side), and a session key (SESS KEY). The SESS
KEY is a symmetric key used in a single communication session.

7. APPL→ Chosen Server: (Session Start Request (DEV CAP, USER CAP, SERV ID,
SERV TIME CAP, NA)), (PK(SERV)).

8. Chosen Server→ APPL: (Session Start Request Accepted DEV CAP, USER CAP,
CAP SESS, SESS KEY, NA, NB), (PK(APPL)).

• Stage 4: The Application gets service by using the CAP SESS key and encrypts
using the SESS KEY: In Stage 4 of the process, the application uses the CAP SESS
key to access a service and encrypts data using the SESS KEY. The application sends
a service request to the chosen server with the CAP SESS, Nonce (NB), and uses the
SESS KEY. The server responds by sending CAP SESS, NA, and detailed results using
the SESS KEY. NA ensures that the session is unique on the application side.

9. APPL → Chosen Server: (Service Request (CAP SESS, NB, Request Details)
(SESS KEY))

10. Chosen Server→ APPL: (Service Request Done (CAP SESS, NA, Result Details)
(SESS KEY))

• Stage 5: The Application is finished and terminates the session: In Stage 5, the
application terminates the session by sending an end request to the Chosen Server
with CAP SESS, nonce (NB), and the session end indication using the session key. The
server then terminates the session and revokes the CAP SESS capability to prevent
replay attacks.

11. APPL→ Chosen Server: (Session End Request Accepted (CAP SESS, Nonce (A),
Session End)(SESS KEY)).

6.3. ProVerif Results

The SSP protocol was designed using the ProVerif tool, and the results show that the
system is “safe”. In Stage 4, the application gets service by using the capability session key
and encrypts using the Session key to the Chosen server. The query attacker of function to
“Session key” (Ksappl) is TRUE.

The private keys of Cloud Management System (CMS), Service Management Frame-
work (SMF), Application (Appl), and Chosen Server(S) results as True. In Stage 3 and

Future Internet 2024, 16, 317 16 of 24

Stage 4, nonces are used between the chosen Server and the Application to prevent replay
attacks. The output of nonce is “True” from Server sessions. The Cloud Management
System (CMS), which supports a number of services, contacts the SMF to register the
service. We applied the “event begin and end function” to verify whether the sessions
started before the SMF started or not, and the result is “True”. In the same way, the event
begin and end functions are used to verify the server sessions.

Table 5 shows that the SSP protocol is working fine. The results from ProVerif are
displayed in Figure A1 in the Appendix A. Hence, this is a more secure mechanism for
capability-based services.

Table 5. QUERY ATTACKER Results using ProVerif

Security Properties CMF SMF SERVER APPL

Private Keys True True True True

Session Key - - True True

Nonces - - True -

Event Begin() True - - -

Event end() True - - -

inj-event begin() - - True -

inj-event-end() - - True -

6.4. Queries for Private Keys

Queries for Private keys of Application, Cloud Management System, Service Man-
agement Framework and Server : query attacker(sksmf); query attacker(skcms); query at-
tacker(skappl); query attacker(skS);

• RESULT not attacker_skey(sksmf[]) is true.
• RESULT not attacker_skey(skcms[]) is true.
• RESULT not attacker_skey(skappl[]) is true.
• RESULT not attacker_skey(skS[]) is true.

6.4.1. Queries for nonces

Queries for nonce between Server and application: query attacker(SERVERNA); at-
tacker(SERVERNB); attacker(APPLNB); attacker(APPLNA):

• RESULT not attacker_bitstring_(SERVERNA[]) is true.
• RESULT not attacker_bitstring_(SERVERNB[]) is true.

6.4.2. Queries for Symmetric key

Queries for Symmetric key : query attacker(Ksappl); query attacker(SERVERk)

• RESULT not attacker_key (Ksappl[m7 = v_10131,m4 = v_10132,!1 = v_10133]) is true.
• RESULT not attacker_bitstring (SERVERk[[]) is true.

6.4.3. Queries for authentication of Server event and CMS event

Queries for Symmetric key : query attacker(Ksappl); query attacker(SERVERk)

• RESULT inj-event(endSERVERparam(x_24696))→
inj-event(beginSERVERparam(x_24696)) is true.

• RESULT inj-event(endCMSparam(x_38772))→
inj-event(beginCMSparam(x_38772)) is true.

• RESULT event(endCMSparam(x_42655))→
event(beginCMSparam(x_42655)) is true.

Future Internet 2024, 16, 317 17 of 24

7. Prototype Implementation

Using new mechanisms such as Capabilities, and a new Service Management Frame-
work, this research has proposed a new Secure Service Protocol, which can be used to
protect any service. The protocol has been verified using ProVerif. In this section, we
explore the building of a prototype system.

7.1. Basic Capability System Library (BCSL)

We developed our prototype system using the Basic Capability System Library (BCSL)
as our foundation. This library, depicted in Figure 10, is part of the Base Layer of the
Implementation Framework. It supports the creation of users, devices, and services and
allows servers to be added to services. Each component has its capability, which is used
to access other objects, such as files. Services are created and registered with the Service
Management Layer (SManL). The BCSL created by the ALERT Team of Middlesex Univer-
sity, London, is a primary system that makes users, devices, services, and servers. These
types are identified as CAP USER, CAP DEVICE, and CAP SERVICE as their Capability
types, respectively.

The middle layer is responsible for enhancement, tuning, mapping layers, and updates
while the top layer focuses on system implementation. In this layer, our primary goal is to
improve the Service Management Framework (SMF), so that it can securely replicate and
migrate services.

Figure 10. Basic Capability System Library (BCSL).

7.2. Make Fuxfs Multithreaded

The FUSE and NMS servers store and manage the system’s data. The NMS provides
networked block storage. When a client moves to another network, the NMS is migrated
to the new network to improve performance. In this scenario, the client is referred to
as “fuxfs”, and the server is called “fuxfs server”, and they communicate using normal
communication protocols.

7.3. The NMS Server

The NMS server is a simple program that provides networked block storage; so should
be easy to migrate between networks. This NMS server is working with the FUSE system.
Hence this executable was called the Fuxfs_server.

Future Internet 2024, 16, 317 18 of 24

7.4. The FUSE Client

This is the client side of the FUSE code and runs on the mobile node. The executable
was called “Fuxfs” and interacts with the Fuxfs_server to manage and store data.

7.5. NMS Part of FUSE as a Service

This framework can be used to implement microservices in vehicular environments.
Microservices are faster to migrate and hence can be used to maintain QoS in these networks.
As our first use case, we consider a FUSE file system that is a user space file system
commonly employed in the Linux environment. The setup, which is shown in Figure 11,
provides a storage platform for mobile users as the NMS provides block network storage to
FUSE clients which run on mobile phones. If a mobile user moves to another network then
the NMS is migrated in order to achieve better performance. In order to test the Service
Management Framework, the NMS will be migrated from one cloud server to another. In
this paper, we show how to implement the NMS in the Docker’s private repository and
migrate it to a new location. We installed Docker on a Linux Ubuntu 20.04 machine and set
up a private repository to store our services. This allows us to use computing resources for
migrating to cloud environments.

Figure 11. Implementation scenario: FUSE architecture with NMS.

7.6. Requirements Table

Table 6 explains the requirements for the prototype implementation to do a
successful migration.

Table 6. Requirements table for Prototype.

Name Details

Docker private repository Secure Migration
NMS Microservices
RASP Migration Protocol
SMF Service Management Framework

Fuse Client Uses NMS as Backing Store
Capabilities Users, Devices, Service, Servers

Future Internet 2024, 16, 317 19 of 24

7.7. Make Fuxfs Multithreaded

In order to develop the prototype, it was decided to make the client (i.e., the fuxfs
program) multithreaded. One thread called SMF_THREAD was used to manage the
interaction with the SMF as shown in Figure 12. In this prototype, the FUSE client was
used to tell the SMF to migrate the service.

Figure 12. Fuxfs Multithread.

7.8. SMF Commands

The SMF was developed to manage services and migrate and replicate services in a
secure environment. To check secure migration on the Service Management Framework
(SMF), we developed C programs on the Ubuntu 20.04 platform. We used a private
Docker [18] repository to migrate our service and tested them in our local environment.
The SMF provides the following functions:

• Register Service: The function allows the service to be registered with the SMF. It
collects information on the service, including the service name, the description of
the service, the version of the service (i.e., 0 is the latest version), the TCP/UDP port
number, and the service capability. Once the service has been successfully registered
with the SMF, the SMF generates the global_id. The local_id is generated by the CMS.

• Register User: This function helps the new user register with the SMF. It collects infor-
mation about the user, including the first name, surname, role, rank, and specialisation,
as well as the capability of the user to register. Once the user has been successfully
registered with the SMF, the SMF will generate their global user ID.

• Register Device: This register device function allows the devices to register with SMF.
To register a device, the name of the device, the first name and surname of the device
owner, and the device capability are also collected once the device is registered. Each
device will have a unique local device ID and a global device ID.

• Add Server: This function helps a server be added to the required service. It also collects
details about the server, including the server global ID given by the NMS, the server’s
name, the server location using its IPv4 address, and the server’s maximum load.

• Request Service: Once a service is registered with the SMF, the service can be re-
quested by users who want to use it. Servers should provide this service to the
requesting applications. This function allows an application to request service. After
the application sends a service request to SManL, SManL will provide the necessary
parameters for the application to contact the server that runs the requested service.

• Migrate Service: This function allows the services to migrate to the required servers.
It also collects details about the global service ID, the global user ID, and the global
device ID and will set up the migration using Docker container technology. Once the
migration is successful, a successful result will be returned to the caller.

Future Internet 2024, 16, 317 20 of 24

7.9. FUSE Server Migration Using Docker

In the source code compilation, using the command prompt, compile the Fuse server
(fuxfs_server.c). The next step is to run Docker, build the Docker image and check the built
image. To secure the service migration, we have created a private repository in Docker for
the migration. As we know that the SMF supports the following functions: Register the
service, register the user, register the device, add a server, request and migrate the service.
It was compiled and executed using the below commands to start the functions. Figure A2
in the Appendix A shows that the SMF has successfully started.

• Compile command: gcc -o smf smf.c
• Run command: ./smf

7.9.1. Fuxfs Server Start-Up from Dockers Private Repository

After the SMF started, the Source code of “Fuxfs_server.c” compiled and was executed
as shown in Figure A3 in the Appendix A, which highlights that the Fuxfs server was
started from the Docker Repository.

• Compile command: gcc -o Fuxfs server Fuxfs server.c
• Run command: ./Fuxfs server 0.0.0.0.
• docker run command: gayuinfy/gkprivate:v1

This Fuxfs server derives from Docker private container, we used the docker run
command:gayuinfy/gkprivate:v1 and the container ID:ff0fa32d3036 as shown in Figure A4
in the Appendix A.

7.9.2. Fuxfs Client Start-Up

After the Fuse server, the fuse client (Fuxfs.c) was compiled and executed as shown in
Figure A5 in the Appendix A.

• Compile command : gcc -Wall fuxfs.c ‘pkg-config fuse –cflags –libs‘ -o fuxfs -w -lpthread
• Run command: ./fuxfs /tmp/fuse 0.0.0.0

7.9.3. NMS Service Added

The NMS is an example of block storage service, registered with the SMF. The “Add
server” command from SMF allows servers to be added including Server name, type, Server
IP address, TCP and UDP port details has shown in Figure A6 in the Appendix A.

Once the service was successfully added to the server, the service was requested by the
FUSE client using the SMF command Request service. The FUSE client then requested that
the NMS was migrated to a different machine. The service is then successfully migrated
as shown in Figure A7 in the Appendix A. Figure A8 in the Appendix A shows all the
components of the working prototype.

8. Conclusions and Future Work

This research has focused on the development of the Secure Service Ecosystem (SSE)
to implement the Intelligent Edge Environment for smart cities. This effort looked at three
layers of the IEE and developed key mechanisms to help implement the SSE including
a new Resource Allocation Algorithm, a new Resource Allocation Secure Protocol and
finally a new Secure Service Protocol. Using these mechanisms along with capabilities,
ProVerif was used to show that this system was safe. The SSE was then used to support a
FUSE-NMS system in which the NMS was migrated as the users moved around.

Though the prototype demonstrated was basic, it showed that it was possible to build
an SSE that could be used to develop new services for smart cities. We therefore believe
that this approach will allow services for smart cities to be developed and deployed in a
much shorter time frame as these services will be automatically managed by the Service
Management Framework not by the developers of the service.

Future Internet 2024, 16, 317 21 of 24

For future work, we need to explore how we use this architecture to support a number
of microserivces for the vehicular environment including vehicle health monitoring and
remote navigation and control systems.

Author Contributions: Formal analysis, algorithms, and software implementation, G.K.; protocols,
BCSL, and software implementation, G.M. writing, review, and editing, G.K. and G.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Acknowledgments: The authors would like to thank Florian Kammueller and Mahdi Aiash for their
help and guidance during this effort. We would also like to thank the Department for Transport (DfT)
for funding the Middlesex Connected Vehicle testbed which was the motivational starting point for
this research.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Figure A1. SSP protocols results.

Figure A2. SMF running successfully.

Future Internet 2024, 16, 317 22 of 24

Figure A3. Fuxfs server start-up.

Figure A4. Fuxfs server start-up from Docker’s private repository.

Figure A5. Fuxfs client start-up.

Future Internet 2024, 16, 317 23 of 24

Figure A6. A Server is added to the NMS Service.

Figure A7. NMS service migrated.

Figure A8. SMF (top left), FUSE Client (bottom left), NMS (top right), and Docker Status
(bottom right): NMS running at a different location using the SMF.

Future Internet 2024, 16, 317 24 of 24

References
1. Gayathri, K.; Glenford, M.; Jon, C. Building an Intelligent Edge Environment to Provide Essential Services for Smart Cities. In

Proceedings of the MobiArch ’23, Madrid , Spain, 6 October 2023; pp. 13–18. [CrossRef]
2. Pavel, M.; Zdenek, B. Mobile edge computing: A survey on architecture and computational offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
3. Edgeless: Cognitive Edge-Cloud with Serverless Computing. Available online: https://edgeless-project.eu/ (accessed on 18

July 2024).
4. CODECO: A Novel Edge-Cloud Orchestration Framework, Focusing on Data-Compute-Network. Available online:

https://he-codeco.eu/ (accessed on 18 July 2024).
5. Paranthaman, V.V.; Ghosh, A.; Mapp, G.; Iniovosa, V.; Shah, P.; Nguyen, H.X.; Gemikonakli, O.; Rahman, S. Building a Prototype

VANET Testbed to Explore Communication Dynamics in Highly Mobile Environments. In Testbeds and Research Infrastructures for
the Development of Networks and Communities. TridentCom 2016; Guo, S., Wei, G., Xiang, Y., Lin, X., Lorenz, P., Eds.; Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2017;
Volume 177. [CrossRef]

6. Xiaolong, X.; Bowen, S.; Xiaochun, Y.; Mohammad, R.; Khosravi, H. Edge Server Quantification and Placement for Offloading
Social Media Services in Industrial Cognitive IoV. IEEE Trans. Ind. Inform. 2021, 17, 2910–2918. [CrossRef]

7. Onyekachukwu, A.E.; Gayathri, K.; Glenford, M.; Ramona, T. Exploring the Provision of Reliable Network Storage in Highly
Mobile Environments. In Proceedings of the 2020 13th International Conference on Communications (COMM), Bucharest,
Romania, 18–20 June 2020; pp. 255–260. [CrossRef]

8. Chen, S.; Zhou, M. Evolving container to unikernel for edge computing and applications in process industry. Processes 2021,
9, 351. [CrossRef]

9. Kifayat, U.; Luz, M.S.; Joao, B.R.; Edson, D.M. A lightweight beaconing-based commercial services advertisement protocol for
vehicular ad hoc network. In Proceedings of the International Conference on Ad-Hoc Networks and Wireless, Lille, France,
4–6 July 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 279–293.

10. Jennings, B.; Stadler, R. Resource management in clouds: Survey and research challenges. J. Netw. Syst. Manag. 2015, 23, 567–619.
[CrossRef]

11. Karthick, G.; Mapp, G.; Kammueller, F.; Aiash, M. Formalization and Analysis of a Resource Allocation Security Protocol
for Secure Service Migration. In Proceedings of the IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), Zurich, Switzerland, 17–20 December 2018; pp. 207–212. [CrossRef]

12. ProVerif: Cryptographic Protocol Verifier in the Formal Model. Available online: https://bblanche.gitlabpages.inria.fr/proverif/
(accessed on 18 July 2024).

13. Blanchet, B. Modeling and Verifying Security Protocols with the Applied pi Calculus and Proverif. Found. Trends® Priv. Secur.
2016, 1, 148. Available online: https://ieeexplore.ieee.org/document/8186937 (accessed on 18 July 2024).

14. Mapp, G.; Aiash, M.; Guardia, H.C.; Crowcroft, J. Exploring Multi-homing Issues in Heterogeneous Environments. In Proceedings
of the 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications, Singapore,
22–25 March 2011; pp. 690–695. [CrossRef]

15. Vithanwattana, N.; Karthick, G.; Mapp, G.; George, C.; Samuels, A. Securing future healthcare environments in a post-COVID-19
world: Moving from frameworks to prototypes. J. Reliab. Intell. Environ. 2022, 8, 299–315. [CrossRef] [PubMed] [PubMed Central]

16. Jose, R.; Onyekachukwu, A.E.; Gayathri, K.; Ramona,T.; Glenford, M. A New Service Management Framework for Vehicular
Networks. In Proceedings of the 2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
Paris, France, 24–27 February 2020; pp. 162–164. [CrossRef]

17. Karthick, G.; Mapp, G.; Kammueller, F.; Aiash, M. Modeling and verifying a resource allocation algorithm for secure service
migration for commercial cloud systems. Comput. Intell. 2022, 38, 811–828. [CrossRef]

18. Docker: Containerize Your Applications. Available online: https://www.docker.com/ (accessed on 18 July 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3615587.3615987
http://dx.doi.org/10.1109/COMST.2017.2682318
https://edgeless-project.eu/
https://he-codeco.eu/
http://dx.doi.org/10.1007/978-3-319-49580-4_8
http://dx.doi.org/10.1109/TII.2020.2987994
http://dx.doi.org/10.1109/COMM48946.2020.9142033
http://dx.doi.org/10.3390/pr9020351
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1109/UCC-Companion.2018.00058
https://bblanche.gitlabpages.inria.fr/proverif/
https://ieeexplore.ieee.org/document/8186937
http://dx.doi.org/10.1109/WAINA.2011.140
http://dx.doi.org/10.1007/s40860-022-00180-7
http://www.ncbi.nlm.nih.gov/pubmed/35967078
http://www.ncbi.nlm.nih.gov/pubmed/PMC9362615
http://dx.doi.org/10.1109/ICIN48450.2020.9059441
http://dx.doi.org/10.1111/coin.12421
https://www.docker.com/

	Introduction
	Related Work
	Mobile Edge Computing (MEC)
	Vehicular Networks
	Virtualization and Service Management in Future Internet
	Research Gap

	Simple Resource Algorithm
	Advertising Cloud Formulation
	Receiving Servers Formulation
	Resource Allocation Server

	RASP Protocol—An Overview
	General Notations
	ProVerif an Overview

	Capabilities
	Capabilities in the IEE

	The Secure Service Protocol (SSP)
	SMP Layers in Detail
	SSP Protocol—An Overview
	ProVerif Results
	Queries for Private Keys
	Queries for nonces
	 Queries for Symmetric key
	 Queries for authentication of Server event and CMS event

	Prototype Implementation
	Basic Capability System Library (BCSL)
	Make Fuxfs Multithreaded
	The NMS Server
	The FUSE Client
	NMS Part of FUSE as a Service
	Requirements Table
	Make Fuxfs Multithreaded
	SMF Commands
	FUSE Server Migration Using Docker
	Fuxfs Server Start-Up from Dockers Private Repository
	Fuxfs Client Start-Up
	NMS Service Added

	Conclusions and Future Work
	Appendix A
	References

