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Highlights 

 AI-driven pollution detection enhances environmental protection. 

 Real-time monitoring facilitates prompt interventions for pollution prevention. 

 Accurate air quality forecasting aids in planning pollution-reducing activities. 

 AI's role in smart cities fosters sustainable urban development. 

 AI algorithms integrate diverse data sources for pollution detection. 
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Abstract 

The application of Artificial Intelligence (AI) in environmental monitoring offers 

accurate disaster forecasts, pollution source detection, and comprehensive air and 

water quality monitoring. This article provides an overview of the value of 

environmental monitoring, the challenges of conventional methods, and potential AI-

based solutions. Several significant AI applications in environmental monitoring are 

highlighted, showcasing their contributions to effective environmental management. 
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AI technologies enhance environmental monitoring by enabling better understanding, 

prediction, and mitigation of environmental risks. However, realizing the full potential 

of AI faces hurdles such as a shortage of specialized AI experts in the environmental 

sector and challenges related to data access, control, and privacy. These issues are 

more pronounced in regions with developing technological infrastructure. The paper 

advocates for proactive data governance measures by governments to protect sensitive 

information. Despite these challenges, the future of AI in environmental monitoring 

remains promising, with advancements in AI algorithms, data collection techniques, 

and computing power expected to further improve accuracy and efficiency in 

pollution monitoring and management. 

 

Keywords: Artificial Intelligence; Environmental monitoring; Pollution detection; 

Disaster prediction; Air and water quality 
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Introduction 

The essential process of environmental monitoring entails the systematic observation, 

measurement, and evaluation of the natural environment and all of its components. 

Monitoring the environment's current condition and identifying any changes that can 

be harmful to the ecosystem or public health is its main goal (Artiola et al., 2004). 

Traditional environmental monitoring techniques include statistical analysis, 

laboratory analysis, and manual sampling (Zhang, 2024). Unfortunately, these 

approaches have limitations, such as high costs, prolonged procedures, and poor 

accuracy. 

The efficiency of conventional environmental monitoring techniques is constrained by 

several issues. The expense of using these procedures is one of the biggest obstacles. 

The costs associated with manual sampling and laboratory analysis are high and 

include skilled employees, equipment, and chemicals (Dressing et al., 2016; Ditria et 

al., 2022). As a result, environmental monitoring programs often have a narrow focus, 

use small sample sizes, and do not provide a comprehensive picture of the state of the 

environment. The time-intensiveness of traditional methods is another significant 

problem (Thomson et al., 2011; Ceccato et al., 2014; Dressing et al., 2016). Decision-

making and emergency response in the case of natural catastrophes or pollution crises 

can be delayed by manual sampling and laboratory analysis, which might take weeks 

or even months to generate results. Additionally, the subjectivity of human 

observation and the potential for human error limit the accuracy of traditional 

environmental monitoring techniques (Hameed et al., 2017; Daniele, 2017). Human 

interpretation required for manual sampling and laboratory analysis can lead to 

inconsistent data collection and processing. 

Furthermore, the utilization of advanced technologies and the presence of adequately 

trained technical personnel necessary for precise environmental monitoring are 

frequently impeded by cost limitations and a scarcity of qualified individuals (Cordier 

et al., 2021). Consequently, achieving regular monitoring becomes an arduous task, 

particularly in regions with limited resources (Li et al., 2020). This is especially 

pronounced in areas lacking technological infrastructure and expertise (Li et al., 

2020). 
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Artificial intelligence (AI) has emerged as a crucial integration in environmental 

monitoring endeavors, seeking to enhance the objectivity of results and improve 

accessibility to regions suffering from limited resources. AI, a subfield of computer 

science, focuses on creating algorithms and computer programs that can perform 

activities like sensing, reasoning, learning, and decision-making that would ordinarily 

require human intellect (Rodgers, 2020; Sarker, 2021a, 2021b). Large data sets can be 

analyzed using AI, which has proven useful for identifying patterns and making 

precise predictions (Duan et al., 2019; UNEP.org, 2022). In environmental 

monitoring, AI has been applied in various areas, including the prediction of natural 

disasters, monitoring air and water quality, and identifying pollutants (Subramaniam 

et al., 2022). Table 1 offers a comparative analysis of AI methods versus traditional 

approaches in terms of accuracy, speed, cost, scalability, data integration, 

maintenance, and environmental impact. It underscores the significant advantages of 

AI in enhancing the efficiency and effectiveness of environmental monitoring while 

highlighting the potential initial costs and the importance of considering long-term 

benefits. 

For instance, AI models such as Convolutional Neural Networks (CNNs) are used for 

image-based environmental monitoring tasks like detecting deforestation and 

identifying wildlife, as seen in the work by Williams et al. (2020). Support Vector 

Machines (SVMs) have been applied to predict harmful algal blooms in lakes, 

demonstrating the model's capability to handle high-dimensional data (Li et al., 2017). 

Recurrent Neural Networks (RNNs) are utilized for time series forecasting, such as 

predicting flood events based on historical rainfall data (Chen et al., 2021). 

In addition, the utilization of advanced technologies and the presence of adequately 

trained technical personnel necessary for precise environmental monitoring are 

frequently impeded by cost limitations and a scarcity of qualified individuals. 

Consequently, the attainment of regular monitoring becomes an arduous task, 

particularly in regions of the world facing resource constraints, particularly in the 

global south. Therefore, in recent years, AI has emerged as a crucial integration in 

environmental monitoring endeavors, seeking to enhance the objectivity of results and 

improve accessibility to regions suffering from limited resources. This narrative 

review aims to comprehensively explore and evaluate the current state of AI 
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technologies implemented in key areas of environmental monitoring, shedding light 

on their efficacy and potential implications for future research and practical 

applications.   

 

Table 1: AI methods versus traditional approaches in environmental monitoring. 

Criteria AI Methods (Specific Model/Tool) Traditional Methods Ref. 

Accuracy 

- Deep Learning Models (e.g., 

Convolutional Neural Networks - 

CNNs): High precision in image and 

pattern recognition. 

- Random Forests: Effective for 

handling large datasets and identifying 

complex patterns. 

- Support Vector Machines (SVM): 

Excellent for classification tasks. 

- Variable accuracy dependent 

on human expertise. 

- Susceptible to human error 

and biases. 

- Often limited by the 

resolution and frequency of 

manual sampling. 

(Masood 

& Ahmad, 

2021; Ullo 

& Sinha, 

2020) 

Speed 

- Real-time Data Processing (e.g., 

TensorFlow, Keras): Immediate 

analysis and anomaly detection.  

- Automated Monitoring Systems 

(e.g., IBM Watson): Faster data 

aggregation and synthesis from 

multiple sources. 

- Time-intensive data 

collection and analysis. 

- Delayed results due to 

lengthy laboratory processes. 

- Slower response time in 

emergency situations. 

(Bibri et 

al., 2024; 

Ranyal et 

al., 2022) 

Cost 

- Initial setup can be expensive 

(equipment, software, training).  

- Long-term operational costs are lower 

due to automation and reduced need for 

human labor. 

- Scalable with decreasing marginal 

costs. 

- High ongoing costs for labor, 

equipment, and consumables.  

- Expensive manual sampling 

and laboratory analyses. 

- Costs increase proportionally 

with the scale of monitoring 

efforts. 

(Asha et 

al., 2022; 

Xiang et 

al., 2021) 

Scalability 

- Cloud-based Platforms (e.g., 

Microsoft Azure, Google Cloud AI): 

Easily scalable to cover large 

geographic areas. 

- Limited scalability due to 

reliance on human labor and 

physical sampling. 

- Expensive and logistically 

(Bibri et 

al., 2024; 

Fascista, 

2022) 
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- Capable of integrating data from 

various sources (e.g., satellites, IoT 

devices). 

challenging to expand 

coverage. 

Data 

Integration 

- Big Data Analytics Tools (e.g., 

Hadoop, Apache Spark): Handle and 

integrate large volumes of diverse data. 

- Capable of continuous monitoring and 

real-time updates. 

- Limited capacity to integrate 

diverse data sources. 

- Manual data entry and slower 

data updates. 

(Boehm et 

al., 2022; 

Shi et al., 

2020) 

Maintenance 

- Requires periodic software updates 

and occasional hardware maintenance. 

- Lower maintenance cost over time. 

- Regular maintenance of 

equipment and calibration. 

- High ongoing costs for 

consumables and 

replacements. 

(Ahmad et 

al., 2021; 

Çınar et 

al., 2020) 

Environmental 

Impact 

- Lower environmental impact due to 

reduced need for physical sampling and 

travel. 

- Energy-efficient Solutions (e.g., AI-

powered sensors): Minimized carbon 

footprint. 

- Higher environmental impact 

from frequent physical 

sampling. 

- Travel and transportation 

increase carbon footprint. 

(Ye et al., 

2020) 

 

 

 

AI Models for Environmental Monitoring 

When choosing an AI model for environmental monitoring, it is essential to consider 

factors such as data availability, computational resources, and expertise. Some AI 

models require large amounts of data and computational power to train, while others 

can be trained on smaller datasets with less computational expense (Zhou et al., 

2020). Support Vector Machines (SVMs) are well-suited for handling high-

dimensional data and learning complex relationships between variables (Manikandan 

& Abirami, 2021). SVMs can be used with various data types, including images and 

text. For instance, SVMs have been used effectively for image classification tasks, 

such as detecting deforestation and identifying wildlife (Zagajewski et al., 2021). 

They are also applied in natural language processing to extract information from 
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environmental reports (Meza et al., 2019). Support Vector Regression (SVR), a 

variant of SVM, is used for regression problems in environmental monitoring, 

offering an effective solution for predicting environmental control parameters (Ye et 

al., 2020). 

Decision trees are relatively simple to train and interpret, making them accessible for 

various data types. They are commonly used for tasks like detecting and monitoring 

deforestation, monitoring air quality, and water quality (De Bem et al., 2020; 

Tarazona & Miyasiro-López, 2020). However, decision trees can be prone to 

overfitting, especially when handling complex, noisy data, and may not perform as 

well on image recognition or natural language processing tasks (Buntine, 2020). 

Random forests are an ensemble learning method that combines the predictions of 

multiple decision trees. They are more robust to overfitting than individual decision 

trees and can handle various data types, including images and text (El-Magd et al., 

2022). Random forests are commonly used for image classification, natural language 

processing, and time series forecasting tasks in environmental monitoring. Despite 

their robustness, random forests can be computationally intensive and require 

substantial memory and processing power. 

Convolutional Neural Networks (CNNs) are well-suited for image classification and 

tasks involving spatial data. CNNs can learn complex patterns from images without 

explicit programming, making them ideal for detecting deforestation and identifying 

wildlife (Zhang et al., 2022). However, CNNs can be computationally expensive to 

train and require large amounts of labeled data. Training CNN models can be 

challenging due to the lack of annotated datasets for visual recognition. Pre-training 

models using data from similar domains can mitigate this issue (Ghorbani & 

Behzadan, 2021). 

Recurrent Neural Networks (RNNs) are suitable for tasks involving sequential data, 

such as time series forecasting and natural language processing. RNNs can learn long-

term dependencies in data, making them effective for predicting extreme weather 

events and extracting information from environmental reports (Haq et al., 2022). 

However, RNNs can be computationally expensive to train and require large datasets. 

Advanced models like CDLSTM (Convolutional Deep Long Short-Term Memory) 
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have been developed for more accurate climate change forecasting and groundwater 

storage change modeling. 

Hybrid models combine the strengths of machine learning and deep learning models, 

offering high accuracy and robustness. They are used for environmental monitoring 

tasks that require capturing complex nonlinear interactions between input and output 

variables (Zaresefat & Derakhshani, 2023). While hybrid models can be more 

complex to train and interpret, they provide superior performance for high-stakes 

environmental monitoring tasks. Highly relevant work, such as the development of 

Synthetic Minority Over-sampling Technique with Deep Neural Networks 

(SMOTEDNN) for air pollution forecasting and AQI classification, further 

exemplifies the potential of AI in this field (Zhao et al., 2024). 

Table 2 below presents a variety of AI models used for environmental monitoring. 

Each AI model has its strengths and limitations, making it important to choose the 

right model for the specific task at hand. SVMs and SVR are effective for high-

dimensional data and regression tasks but can be computationally expensive. Decision 

trees are simple and interpretable but prone to overfitting (Costa & Pedreira, 2023; 

Wan et al., 2020). Random forests offer robustness and versatility but require 

significant computational resources (Boateng et al., 2020). CNNs excel in image-

based tasks but need large labeled datasets and substantial computational power. 

RNNs are effective for sequential data but also demand high computational resources 

and advanced models like CDLSTM for complex forecasting tasks (Li et al., 2024; 

Wu et al., 2023). Hybrid models provide the highest accuracy and robustness but are 

complex to train and interpret. 
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Table 2: AI models used for environmental monitoring 

 

AI Model 
Specific Examples/Case 

Studies 
Strengths Limitations 

Ref. 

Support 

Vector 

Machines 

(SVMs) 

Case Study 1: Using SVMs for 

predicting harmful algal 

blooms in lakes.  

 

Case Study 2: Using SVM to 

monitor air quality. 

- Can handle high-dimensional data. 

- Can learn complex relationships 

between variables. 

- Can be used with a variety of data 

types, including images and text. 

- Image classification (e.g. detecting 

deforestation, identifying wildlife).  

- Natural language processing (e.g. 

extracting information from 

environmental reports).  

- Time series forecasting (e.g. predicting 

extreme weather events). 

(Ananias & 

Negri, 2021; 

Castelli et 

al., 2020; 

Leong et al., 

2020) 

Decision Trees 

Case Study 1: Using decision 

trees to predict water quality in 

rivers. 

 

Case Study 2: Using decision 

trees for water quality 

assessments. 

- Relatively simple to train and interpret  

- Can be used with a variety of data 

types. 

- Detecting and monitoring deforestation. 

- Monitoring air quality.  

- Monitoring water quality. 

(Bui et al., 

2020; Nasir 

et al., 2022; 

Nouraki et 

al., 2021) 

Random 

Forests 

Case Study 1: Employing 

random forests to model air 

quality index in urban areas. 

 

Case Study 2: Utilizing random 

forests to predict forest fire 

adequately. 

- Ensemble learning method that 

combines the predictions of multiple 

decision trees 

- More robust to overfitting than 

individual decision trees. 

- Image classification (e.g. detecting 

deforestation, identifying wildlife).  

- Natural language processing (e.g. 

extracting information from 

environmental reports).  

- Time series forecasting (e.g. predicting 

extreme weather events). 

(Alsaber et 

al., 2021; 

DeCastro et 

al., 2022; 

Montorio et 

al., 2020; B. 

T. Pham et 

al., 2020) 

Convolutional 

Neural 

Case Study 1: Using CNNs for 

monitoring coral reef health via 

- Well-suited for image classification and 

other tasks that involve spatial data 

- Image classification (e.g. detecting 

deforestation, identifying wildlife). 

(Burns et al., 

2022; 
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Networks 

(CNNs) 

underwater images.  

Case Study 2: Employing CNN 

to monitor coaster erosion. 

 

- Can learn complex patterns from 

images without the need for explicit 

programming. 

Ghimire et 

al., 2021; 

Scardino et 

al., 2022) 

Recurrent 

Neural 

Networks 

(RNNs) 

Case Study 1: Applying RNNs 

to predict flood events based 

on historical rainfall data. 

 

Case Study 2: Employing RNN 

to predict river flow levels.  

- Well-suited for tasks that involve 

sequential data, such as time series 

forecasting and natural language 

processing 

- Can learn long-term dependencies in 

data. 

- Natural language processing (e.g. 

extracting information from 

environmental reports).  

- Time series forecasting (e.g. predicting 

extreme weather events). 

(Liu et al., 

2020; Ren et 

al., 2020) 

Hybrid Models 

Case Study 1: Combining 

CNNs and RNNs for accurate 

prediction of air pollution 

levels. 

 

Case Study 2:  Urban Heat 

Island Effect Analysis Using 

Combined CNNs and RNNs 

- Combine the strengths of machine 

learning and deep learning models 

- Can be more accurate and robust than 

individual models. 

- Any environmental monitoring task 

where high accuracy and robustness are 

required. 

(Li & Zheng, 

2023; 

Tsokov et al., 

2022; Zhang 

et al., 2022) 
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Principles of AI models 

AI modeling is underpinned by a set of guiding principles that form the bedrock of 

developing intelligent systems (Bommasani et al., 2021; Palakurti & Kolasani, 2024). 

These principles provide a roadmap for the creation of AI models that can tackle 

intricate problems, automate tasks, and make informed decisions. At its core, AI 

modeling relies on the principle of data-driven learning (J. Wang et al., 2022). The 

pivotal role of data in AI modeling cannot be overstated. AI models learn from 

extensive datasets, sifting through data to discern patterns, trends, and relationships. 

For example, in air quality monitoring, AI models analyze data from various sensors 

to predict pollution levels and identify pollution sources, as demonstrated by the 

SMOTEDNN model for air pollution forecasting and AQI classification (Goel et al., 

2024; Haq, 2022). In another case, AI models are used to monitor water quality by 

analyzing parameters such as pH, turbidity, and nitrate levels to predict contamination 

events and ensure safe drinking water (Ahmed et al., 2020; Jayaraman et al., 2024; 

Liu et al., 2019). Machine learning and deep learning algorithms are prominent in this 

regard, as they harness the power of data to make predictions and decisions (Rasool et 

al., 2023; Tabesh, 2022). 

Generalization is another cardinal principle of AI modeling. It implies that AI models 

must be able to extend their learning from specific datasets to make predictions or 

decisions in a broader context. This flexibility ensures that AI models can handle new, 

unseen data effectively (Q.-V. Pham et al., 2020; Sarker, 2022). A practical 

application of this principle can be seen in the CDLSTM model, which generalizes 

from historical climate data to forecast future climate changes (Stjelja et al., 2022), 

thereby aiding in environmental monitoring and decision-making. Similarly, in 

wildlife conservation, AI models trained on data from camera traps can generalize to 

detect and track species across different habitats, aiding in the protection of 

endangered species (Curry et al., 2021; Norouzzadeh et al., 2018; Schneider et al., 

2019). Feature engineering is a crucial practice that underscores the need to select 

relevant features or variables from the data. AI models demand meaningful input 

features to make accurate predictions. Feature engineering encompasses data 

preprocessing, feature selection, and transformation to enhance model performance 

(Dong & Liu, 2018). For instance, in water quality monitoring, selecting appropriate 
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features such as pH, turbidity, and dissolved oxygen levels is essential for accurate 

predictions (Chen et al., 2020; Ouma et al., 2020). In agricultural monitoring, features 

like soil moisture, temperature, and crop health indices are engineered to predict yield 

and detect pest infestations (Hassan et al., 2022). 

A delicate balance between model complexity and simplicity is essential. AI models 

must neither be overly complex nor too simplistic. Overly complex models can lead to 

overfitting, where they perform exceptionally well on training data but fail to 

generalize to new data (Kernbach & Staartjes, 2022; Teney et al., 2022). Conversely, 

overly simplistic models may not capture intricate patterns in the data. In practice, 

achieving this balance can be observed in environmental monitoring models that use 

random forests, where ensemble methods help avoid overfitting while maintaining 

robustness in predictions. Similarly, in urban planning, AI models that predict traffic 

flow and congestion must balance complexity and simplicity to provide reliable 

forecasts without overfitting to historical traffic patterns (Kernbach & Staartjes, 2022; 

Sayed et al., 2023). Moreover, AI models should adhere to the principle of continuous 

learning. They should be designed to adapt and evolve over time, learning from new 

data to improve their performance and relevance. For example, AI systems used in 

deforestation monitoring continually learn from satellite images to update their 

models and provide more accurate assessments (Masolele et al., 2021; Yang et al., 

2022). In healthcare, AI models that monitor disease outbreaks evolve with new 

epidemiological data, enhancing their predictive accuracy and response strategies 

(Malik et al., 2021; Zeng et al., 2021). 

Finally, model interpretability is of paramount importance. Understanding how and 

why an AI model reaches a specific decision is vital for user trust and addressing 

ethical concerns (Bedué & Fritzsche, 2022; Omrani et al., 2022). Interpretable models 

are particularly critical in fields such as healthcare and law. In the context of 

environmental monitoring, interpretable models help stakeholders understand the 

factors contributing to pollution, thereby facilitating informed decision-making and 

policy development. For instance, decision trees used in environmental monitoring 

can provide clear, interpretable rules that explain how specific environmental 

conditions lead to certain outcomes (Ryo et al., 2021; D. Wang et al., 2022). 
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Similarly, in energy management, interpretable AI models can help utilities 

understand energy consumption patterns and optimize grid operations. 

Shortcomings of AI Models 

In the realm of AI for environmental monitoring, alongside its numerous advantages, 

there exist several noteworthy shortcomings and challenges that must be recognized 

(Shalu & Singh, 2023). An awareness of these limitations is essential for the 

responsible and informed development of AI models. Data dependency is a prominent 

limitation. AI models rely heavily on the quality and quantity of data. Insufficient or 

biased data can result in poor model performance or algorithmic bias, which may 

perpetuate discrimination. For example, if an AI model for air quality monitoring is 

trained primarily on data from urban areas, it may not perform well in rural settings, 

leading to inaccurate predictions and potentially harmful policy decisions (Almalawi 

et al., 2022; Krupnova et al., 2022; Rowley & Karakuş, 2023). 

Overfitting poses a significant challenge in AI modeling. It occurs when a model 

learns the training data too well, leading to poor generalization to new, unseen data. 

Striking a balance in model complexity is key to mitigating this issue. In practical 

terms, an overfitted model might accurately predict water quality in the specific rivers 

it was trained on but fail to generalize to other rivers with different characteristics 

(Fernández del Castillo et al., 2022; Malek et al., 2022). Interpretability is another 

vexing challenge, particularly in the context of deep learning models. These models 

are often described as "black boxes" due to their lack of transparency (Abdallah et al., 

2020). The ability to comprehend how and why an AI model reaches a particular 

decision is crucial for building user trust, but it remains an ongoing challenge. For 

instance, stakeholders might be reluctant to act on AI-driven deforestation alerts if 

they cannot understand the underlying reasons for the model's predictions (Hodel, 

2023; Osman, 2024). 

Furthermore, resource intensiveness is another constraint. Training and running 

complex AI models demand substantial computational resources, which can be a 

barrier for smaller organizations and developing countries (Dwivedi et al., 2021; Kar 

et al., 2021). This disparity can exacerbate existing inequalities, where only well-

resourced entities can leverage advanced AI technologies effectively. Conversely, 
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ethical concerns are a growing issue in AI development. AI models can inadvertently 

reinforce existing biases present in the training data. Ensuring fairness and addressing 

ethical concerns is a significant challenge, particularly in applications where fairness 

and non-discrimination are paramount (Olaoye, 2024; Singh, 2021). For example, if 

an AI model for disaster response prioritizes areas based on biased historical data, it 

might unfairly neglect vulnerable communities. 

On the other hand, security risks are a real concern. AI models are susceptible to 

adversarial attacks, where small, carefully crafted changes to input data can deceive 

the model (Baniecki & Biecek, 2024; Chakraborty et al., 2021). Ensuring security and 

robustness against such attacks is a pressing concern in AI development (Zhang et al., 

2020). A notable example is the manipulation of AI systems in smart grids, where 

adversarial attacks could disrupt power distribution and cause significant economic 

damage (Nguyen et al., 2020). Lastly, the environmental impact of AI models is 

becoming more evident. Large-scale AI training consumes significant energy 

resources, contributing to environmental concerns (Ahmad et al., 2021). The carbon 

footprint of AI models and the need for more energy-efficient solutions are 

increasingly pressing issues. For instance, training a single large AI model can 

generate as much carbon emissions as five cars over their lifetimes, highlighting the 

need for sustainable AI practices (Nishant et al., 2020; Wu et al., 2022). 

 

Natural disaster prediction 

Natural disasters including hurricanes, earthquakes, and wildfires pose a serious threat 

to property around the world. Natural disasters can have a devastating effect, 

destroying large portions of infrastructure, upsetting the economy, and putting human 

lives in peril (Rongxing, 2021). AI has garnered increasing attention in recent years 

for its potential to foresee natural disasters and lessen their effects. AI-based solutions 

can deliver precise, real-time data on natural disasters, assisting authorities in creating 

efficient response plans and lowering the dangers to public safety (Pyayt et al., 2011; 

Zhang et al., 2021). Natural disasters including earthquakes, tsunamis, and storms 

have been predicted using AI. AI is used to anticipate natural disasters by evaluating 

data from many sources, such as satellite imagery, seismic sensors, and 

meteorological forecasts, to find patterns and estimate the risk that a disaster will 
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occur (Marcin, 2023). AI-based natural disaster prediction can give communities and 

emergency responders early warning, enabling them to plan and act appropriately. 

AI is used to anticipate natural disasters by analyzing data from a variety of sources, 

such as satellite images, weather data, and historical records, to find patterns and 

trends that may point to an imminent natural disaster (Marcin, 2023). The presence of 

smoke, ash, or other signs of a wildfire are examples of minor changes in the 

environment that may signal the beginning of a natural disaster (Sebastian and 

Natalija, 2017). AI algorithms can also learn to recognize changes in temperature, 

humidity, or wind patterns. 

Using AI to predict natural disasters provides a number of advantages over more 

conventional approaches. In the beginning, AI-based systems have the capacity to 

analyze enormous volumes of data from numerous sources, giving an accurate picture 

of the environment in real-time. This enables authorities to plan ahead for potential 

natural disasters and act quickly to address them (Guo et al., 2022). Additionally, 

compared to conventional approaches, AI-based systems can collect and analyze data 

with higher accuracy and precision. This can lower the possibility of mistakes and 

inconsistent results, increasing the accuracy of forecasts for natural disasters. 

Inevitably, AI-based systems can offer unique solutions for various natural disaster 

locales and types. AI algorithms can create tailored interventions, such as evacuations, 

warning systems, or disaster relief activities, to lower the risks and impact of these 

disasters by evaluating data from certain areas and types of natural disasters 

(Chowdhury and Sadek, 2012). 

There are numerous uses for AI-based natural disaster prediction across various 

sectors. Emergency management is one of the key uses. AI systems are able to assess 

data on natural catastrophes and create specialized plans for emergency responses 

such as evacuations, search and rescue operations, and disaster relief (Jeff, 2020). 

Planning and managing urban areas is another application. In order to lower the risks 

and effects of natural disasters, AI algorithms can analyze data on disasters and create 

specialized solutions for urban planning and design. For instance, AI algorithms can 

suggest modifications to zoning regulations, infrastructure development, and 

construction regulations to lower the likelihood of flooding, earthquakes, or wildfires. 

The prediction of natural disasters using AI is also useful for risk management and 

insurance (Jeff, 2020). AI algorithms can create specialized insurance policies and 
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risk management plans to lower the costs and effects of natural disasters by analyzing 

data on risk factors and disasters (Dailey and Mamane, 2021; Eling et al., 2022). 

Notwithstanding the advantages of AI-based natural disaster prediction, a number of 

issues need to be resolved in order to assure its successful application. The quality of 

the data used for analysis represents one of the major obstacles. For AI systems to 

make precise predictions and choices, they need accurate and trustworthy data. 

Inadequate data quality can result in inaccurate predictions and choices, which could 

have a negative impact on property and public safety (Cortès et al., 2000; Wei, 2021; 

Krupnova et al., 2022; Marcin, 2023). The availability of data presents another 

difficulty. It is challenging to create precise and trustworthy AI-based prediction 

systems because there are many regions of the world with insufficient data on natural 

disasters. In addition to technological constraints, political and economic issues can 

also have an impact on the availability of data. Finally, it is important to think about 

the ethical implications of AI-based natural disaster prediction. The use of AI to 

anticipate natural disasters raises concerns regarding privacy, data ownership, and the 

possibility of data exploitation. To ensure the ethical use of AI for predicting natural 

disasters, ethical regulations and guidelines must be developed (Coeckelbergh, 2021; 

Saheb, 2022; Marcin, 2023). Table 3 shows a number of instances where AI was 

employed in the prediction of natural disasters. 
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Table 3: Summary of previous studies employing AI for the prediction of different types of natural disaster 

Disaster 

Type 

References Location Model Data Source / 

Study Area 

Result Obtained Recommendation 

 

 

 

Wildfire 

 

 

 

Jaafari et 

al., 2019 

 

 

 

Iran 

Adaptive Neuro-Fizzy 

Inference System (ANFIS) 

Genetic Algorithm (GA) 

Particles Swarm Optimization  

 (PSO) 

Shuffled Frog Leaping 

Algorithm (SFLA) 

Imperialist Competitive 

Algorithms (ICA)  

Minudasht 

(Hyrcanian 

ecoregion) 

Compared to 

previous studies, all 

hybrid models used 

improved wildfire 

prediction accuracy 

by 18%. 

Hybrid/Complex 

model are more 

effective to predict 

the disaster than 

simple single 

models. 

 

 

 

Forest Fire 

 

 

 

Piao et al., 

2022 

 

 

 

 

Korea 

 

Classification and Regression 

Tree (CART) 

Random Forest (RF) 

Boosted Regression Tree 

(BRT) 

 

 

Gangwon-do 

region  

Slope has a 

substantial impact 

on forest fire 

occurrence. RF and 

BRT gave excellent 

prediction accuracy  

Further study will 

relate forest fire 

with other disaster 

and proper 

evaluation of the 

influencing factors. 

 

 

 

Earthquake 

 

 

 

Marhain et 

al., 2021 

 

 

 

Malaysia 

Random Forest 

Boosted Decision Tree 

Regression (BDTR) 

Support Vector Machine 

Regression 

Terengganu 

(East Coast of 

Peninsular) 

BDTR gave the best 

performance in 

acceleration and 

depth compared to 

the other algorithms 

models utilized  

Selection of 

algorithms can be 

conducted on 

diverse sample area 

to obtain a better 

accuracy for the 

prediction. 
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Earthquake 

 

 

 

Oktarina et 

al., 2020 

 

 

 

Indonesia 

 

Artificial Neural Network 

(ANN) 

 

 

 

DIBI (Data & 

Information 

Disaster in 

Indonesia) 

ANN provide output 

of prediction close to 

the actual data value 

with 0.47% error.  

There is a need to 

advance ANN 

model in other to 

give  a detailed 

inter-link between 

the input and output 

variables. 

 

 

 

Forest Fire 

 

 

 

Li et al., 

2020 

 

 

 

China 

 

Support Vector Machine 

(SVM) 

Backpropagation Neural 

Network (BPNN) 

 

 

 

Guangxi 

Zhuang 

Autonomous 

region 

Meteorological 

factors such as 

sunshine, 

temperature, 

humidity etc. are 

cause of fires in the 

region. The BPNN 

provide more 

prediction accuracy 

than SVM. 

The obtained result 

can serve as a 

reference point for 

future modelling. 

 

 

 

Earthquake 

 

 

 

Essam et 

al., 2021 

 

 

 

Malaysia 

 

 

Artificial Neural Network 

(ANN) 

Random Forest 

 

 

Terengganu, 

Malaysian 

Meteorologica

l Department 

The ANN model 

showed a good 

prediction result of 

the earthquake 

acceleration, 

velocity and depth. 

There is a need to 

restructure the ANN 

model with 

advanced algorithm 

in further research 

to prove it 

competency for 

earthquake 

prediction.  
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Earthquake 

 

 

 

Majhi et al., 

2019 

 

 

 

USA 

Functional Link Artificial 

Neural Network (FLANN) 

Least Square Optimization 

Levenberg-Marquardt 

Backpropagation 

Heuristics and Meta-Heuristics 

Optimization 

U.S. 

Geological 

Survey, 

Kaggle 

The FLANN model 

gave the best root 

mean square error 

value which denote 

better exploration 

and exploitation 

capability 

More research 

which focus on the 

seismological and 

geophysical factors 

that lead to 

earthquakes should 

be conducted. 
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Air quality monitoring 

A significant environmental issue that impacts quality of life, economic growth, and 

public health is air pollution. Both locally and globally, air pollution negatively 

affects health, contributing to serious conditions like cancer, cardiovascular disease, 

and respiratory ailments (Ghorani-Azam, 2016; Manisalidis, 2020). To address this 

issue, there has been increased interest in using AI for air quality monitoring. Systems 

powered by AI can deliver precise, real-time data on air quality, assisting authorities 

in creating efficient policies and interventions to minimize air pollution. AI-based 

recommendations can guide responses when air quality is hampered, ensuring timely 

actions to protect public health. Machine learning algorithms analyze data from 

various sources, including air quality sensors, satellite imaging, and weather data, to 

provide real-time information on air quality (Duke University, 2021; Tongshu Z et al., 

2021). These algorithms can identify pollution sources, estimate pollution levels, and 

recommend actions to minimize air pollution by learning to recognize patterns and 

trends in the data. 

In recent times, commonly employed AI algorithms for air quality analysis and 

prediction include Artificial Neural Networks (ANN), Deep Neural Networks (DNN), 

Support Vector Machines (SVM), and Fuzzy Logic. However, the choice of AI model 

largely depends on the required information and the nature of air pollutants in the 

area. For example, a systematic review by Masood & Ahmad (2021) classified AI-

based air pollution forecasting tools considering factors such as performance, input 

parameters, and the relative frequency of application of AI techniques. They 

concluded that the best-performing tool for AI-based environmental monitoring is the 

DNN. On the other hand, Dobrea et al. (2020) compared other AI-oriented 

techniques/models for air pollutants and suggested Support Vector Regression (SVR) 

and Autoregressive Integrated Moving Average (ARIMA) as the best-performing 

techniques for time series analysis of Particulate Matter (PM) with a diameter <10m 

and diameter <2.5m. It is important to note that PM is considered in the study as it 

significantly affects health. 

Another study by Subramaniam et al. (2022) suggested that hybrid models have better 

performance for environmental monitoring policy and decision-making. Hybrid 

models combine the properties/advantages of two AI algorithms or methodologies to 

make informed decisions about future implications of air pollutants. This has also 

                  



 22 

been confirmed by Fu, et al. (2023), who found that hybrid AI models are more 

dependable for air quality forecasting. 

AI for air quality monitoring offers several advantages over conventional techniques. 

AI-based systems can analyze enormous volumes of data from numerous sources and 

present a comprehensive picture of air quality in real-time, enabling officials to make 

informed decisions and act quickly to reduce air pollution (Chowdhury and Sadek, 

2012). AI systems can also collect and analyze data with higher accuracy and 

precision compared to conventional approaches, reducing the possibility of errors and 

inconsistencies in air quality data. Furthermore, AI algorithms can provide tailored 

solutions for various pollution sources and regions. By analyzing data from specific 

places and sources, AI can offer customized air pollution solutions, such as regulating 

traffic flow, streamlining industrial processes, or altering urban planning (Ortega-

Fernández, 2020; Subramaniam, 2022). 

AI-based recommendations can play a critical role in air quality monitoring by 

providing actionable insights to mitigate pollution(Alloghani, 2023; Neo et al., 2023). 

For example, AI algorithms can recommend changes in traffic patterns during peak 

pollution hours to reduce emissions, suggest optimal times for industrial operations to 

minimize environmental impact, and identify green zones where pollution levels are 

within safe limits (Boukerche et al., 2020; Degas et al., 2022). These 

recommendations help authorities implement timely interventions, ensuring that air 

quality remains within acceptable limits and public health is protected. 

There are several applications for AI-based air quality monitoring across various 

industries. Urban management and planning are key applications where AI algorithms 

analyze data on air quality, traffic patterns, and urban development to create 

specialized solutions for reducing air pollution in urban areas (Nandini & Fathima, 

2019; K Delavar et al., 2019; Jasim et al., 2020). For example, AI can recommend 

changes to traffic flow patterns to reduce congestion and air pollution or 

modifications to urban planning to improve air circulation and lower exposure to 

pollutants. In industrial operations, AI algorithms can analyze emissions data and 

suggest modifications to lower pollution levels, such as adopting more eco-friendly 

materials and energy sources or optimizing production processes to minimize waste 

and emissions (Alpan & Sekeroglu, 2020). Public health can also benefit from AI-

based air quality monitoring. By evaluating data on air quality and health outcomes, 

AI algorithms can identify at-risk groups and create tailored interventions to promote 
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public health (Masood & Ahmad, 2021; Subramaniam et al., 2022). For instance, AI 

systems can recommend changes to public transit routes to lessen vulnerable groups' 

exposure to contaminants. Table 4 provides a summary of past studies where AI was 

employed for air quality monitoring. 

                  



 24 

Table 4: Summary of previous studies for the prediction of air quality monitoring using AI 

Research Aim References Location Model Data Source / 

Study Area 

Result Obtained Recommendation 

To evaluate 

waste-to-energy 

(WTE) capacity 

and flue gas 

pollutants using 

AI-learning-

based algorithms 

 

 

 

Ma et al., 

2022 

 

 

 

China 

 

 

 

ANN 

 

Continuous 

Emission 

Monitoring System 

(CEMS) 

 

Supervisory 

Emission 

Monitoring System 

(SEMS) 

With mean square errors 

ranging from 0.003 to 

0.19 within the model 

validation constraints, 

artificial neural network 

models were developed 

to forecast WTE capacity 

and FGP EIs at the city 

level. 

This offers 

information and 

model support for 

developing suitable 

WTE strategies and a 

pollutant emission 

control strategy in 

various economic 

regions. 

 

To predict O3, 

PM2.5, NOx, and 

CO 

concentrations at 

NCT Delhi 

 

 

Krishan et 

al., 2019 

 

 

India 

 

 

Long Short-

term 

Memory 

(LSTM) 

 

National Capital 

Territory (NCT), 

Delhi 

The Nash- Sutcliffe 

Efficiency (NSE) value 

range (0.86-0.94) found 

obtained in the 

investigation 

demonstrates that the 

LSTM models utilized in 

the study are suitable for 

forecasting air pollution 

concentrations. 

Due to data 

availability, the study 

consider one station; 

as a result, the 

LSTM's capacity to 

capture spatial 

correlation was not 

examined.  
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Pollutant and 

particle levels 

prediction, as 

well as the air 

quality index 

(AQI). 

 

 

 

Castelli et 

al., 2020 

 

 

Californi

a 

 

 

Support 

Vector 

Regression 

(SVR) 

 

US, Environmental 

and Protection 

Agency 

 

A 94.1% accuracy rate 

was attained in modelling 

pollutant concentrations 

such O3, CO, and SO2.  

There is a need to 

improve SVR 

forecasting 

capabilities, look at 

its use, and compare 

it to other algorithms. 

To determine the 

pollutants 

present 

concentration 

level, which will 

be helpful for 

Real Time 

Correction 

(RTC) 

 

 

 

 

Amuthadev

i et al., 

2021 

 

 

 

India 

 

ANN, 

Neuro-Fuzzy 

Regression, 

Deep 

Learning 

Long Short-

term 

Memory 

(DL-LSTM) 

 

 

 

 

Metrological 

website 

 

In the study, lower error 

rates and greater 

correlation with test data 

make DL-LSTM 

effective for analysing 

and forecasting air 

pollutants with 24h 

window. 

 

Data can be divided 

into hourly-based and 

weakly-based bases 

for future research to 

provide a variety of 

fresh findings. 

To scale up the 

deployment of 

AirBeam, a 

smartphone-

based particle 

counter, to 

measure and 

simulate street-

level urban air 

quality 

 

 

Lim et al., 

2019 

 

 

South 

Korea 

 

Linear 

Regression 

(LR) 

Random 

Forest (RF) 

Stacked 

Ensemble 

(SE) 

 

 

 

Seoul routes 

R
2
 values of 0.63, 0.73 

and 0.80 were obtained 

respectively. The SE R
2
 

values suggest designs 

using mobile sampling in 

conjunction with 

numerous inexpensive air 

quality monitors that 

could be used to 

characterize urban street-

level air quality with high 

The approach taken 

by the research and 

methodology may be 

places without 

established air 

monitoring networks, 

such as developing 

nations. 
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spatial resolution. 
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Water quality monitoring 

Human survival depends on water, and the quality of that water is crucial for 

maintaining public health and safety. However, several factors, including pollution, 

climate change, and population increase, threaten water quality (Ahmed et al., 2020). 

Conventional methods of water quality monitoring rely on labor-intensive, expensive, 

and scope-restrictive manual sampling and laboratory analysis. Furthermore, 

achieving a reliable prediction through conventional methods requires lengthy 

processing times and large computational efforts, often associated with human error 

(Hameed et al., 2017). A promising approach to overcoming these limitations and 

supplying precise, real-time water quality monitoring is AI (Pappu et al., 2017). 

Machine learning algorithms examine data from various sources, including weather 

data, historical records, and water quality sensors, to find patterns and trends that may 

suggest changes in water quality (Marcin, 2023). AI algorithms can be trained to 

recognize minute changes in water quality, such as variations in temperature, pH, 

dissolved oxygen levels, and the presence of pollutants, which may indicate pollution 

or other abnormalities in water quality. 

Various studies on water quality using specific AI techniques have proposed artificial 

neural networks (ANNs) as highly effective with high-performance accuracy in 

determining different water quality variables in an aquatic environment over a 

particular period, often referred to as the Water Quality Index (WQI) (Hameed et al., 

2017; Gaya et al., 2020). A similar study by Wang et al. (2019) described how future 

changes in water quality can be accurately predicted, emphasizing understanding the 

characteristics and point sources of water pollutants. The Long Short-Term Memory 

(LSTM) AI model was employed and indicated that water quality is affected in 

different ways and characterized by various point sources of pollutants in the water 

body. Aldhyani et al. (2020) suggested an artificial neural network model, specifically 

the nonlinear autoregressive neural network (NARNET) and LSTM, which are 

advanced AI algorithms for predicting water quality index and classification, and 

promising AI tools for water management. 

The use of AI to assess water quality has several advantages over conventional 

techniques (Chen, 2020). AI-based systems can continuously and instantly monitor 

water quality, enabling authorities to immediately identify and address problems with 

                  



 28 

water quality. This can mitigate the dangers that water contamination poses to public 

health and the environment (Aldhyani, 2020; Chen, 2020). Moreover, AI-based 

systems can analyze enormous amounts of data from numerous sources, providing a 

comprehensive picture of changes in water quality (Chowdhury and Sadek, 2012). 

This capability aids in identifying trends and patterns in water quality, forecasting 

future issues, and developing targeted interventions to address these problems (Wu, 

2019; Liu, P. 2019). AI-based recommendations can also guide timely actions to 

mitigate water quality issues. For instance, AI can suggest optimal times for water 

treatment interventions or recommend specific pollutant control measures based on 

real-time data (Nova, 2023; Rajitha et al., 2024). AI algorithms can create targeted 

interventions, such as treatment plans or pollution prevention methods, to lower the 

risks and impacts of these issues by analyzing data from specific regions and types of 

water quality problems (Khan, 2016; Wagle, 2020; Zhu, 2022). 

Monitoring water quality with AI has several applications across various industries. 

Water management and treatment is one of the key applications. AI algorithms can 

assess data on water quality and provide specialized solutions for water treatment and 

management, such as filtration systems or chemical treatment strategies, to reduce the 

risks and effects of water quality problems. Agriculture and food production also 

benefit from AI-based water quality monitoring. AI algorithms can assess water 

quality data and create specialized irrigation and crop management strategies to 

mitigate water quality issues. For example, irrigation schedules can be optimized, and 

crops that are less susceptible to water pollution can be chosen. Environmental 

preservation and conservation can also benefit from AI-based water quality 

monitoring. AI algorithms can create specialized solutions for pollution control and 

habitat protection to save aquatic ecosystems and biodiversity by analyzing data on 

water quality and environmental conditions (Wagle, 2020; Zhu, 2022). 

Several studies have investigated the application of AI in surface water quality 

monitoring and other water quality monitoring tasks. AI models have been employed 

for various tasks, including parameter prediction, anomaly detection, and classifying 

water samples. One study, for instance, used deep learning models to forecast water 

quality variables such as pH, temperature, and dissolved oxygen. Another study 

categorized water samples according to their quality using a decision tree algorithm. 
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Many AI models, including deep learning, decision trees, support vector machines, 

and artificial neural networks, have been utilized in these studies (Ahmed et al., 2019; 

Aldhyani, 2020). Depending on the purpose and the type of model used, different 

input parameters are applied. For example, some studies have utilized chemical 

factors like dissolved oxygen, biochemical oxygen demand, and total nitrogen, while 

others have employed physical measures like temperature, pH, and turbidity (El-

Chaghaby et al., 2020; Lokman et al., 2021). Common metrics used in these studies 

include accuracy, sensitivity, specificity, and area under the curve, though they vary 

depending on the task. Data collected through various techniques, including manual 

sampling and remote sensing, have been used in studies conducted at different sites, 

including rivers, lakes, and reservoirs (Deng et al., 2020). These reviewed studies 

indicate that AI models can provide precise and effective solutions for monitoring 

water quality, with some models achieving higher accuracy than conventional 

techniques (Ortega-Fernández, 2020; Subramaniam, 2022). 

The key contributions of prior studies include the development of new AI models for 

water quality monitoring, the comparison of AI models with conventional approaches, 

and the identification of challenges and opportunities for future research. Issues such 

as the lack of standards in data collection and processing and the limited availability 

of high-quality data need to be resolved. Future studies should focus on creating more 

robust AI models capable of handling multiple data sources and delivering precise 

forecasts for a variety of water quality indicators. Table 5 provides a summary of 

instances where AI was employed for water quality monitoring. 
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Table 5: Summary of previous studies for the prediction of water quality monitoring using AI 

Research Aim References Location Model Data Source / 

Study Area 

Result Obtained Recommendation 

 

Identification 

of the 

characteristics 

and origin of 

trace pollutant  

 

 

Wang et al., 

2019 

 

 

China 

 

Cross Section 

Apiori 

Long Short Term 

Memory Network 

(LSTM) 

 

 

Shandong 

Province 

LSTM algorithm gave a 

high prediction accuracy 

and traced the major 

industrial point sources of 

pollutant that will affect 

water in the future. 

This study will 

improve the ability to 

control pollutant 

discharge and 

improve the water 

quality. 

 

To create 

forecasting 

models that 

foresee 

changes in 

water level   

 

 

Zakari et al, 

2021 

 

 

Malaysia 

 

Adaptive Neuro-

Fuzzy Inference 

System (ANFIS) 

Multi-layer 

Perceptron Neural 

Network (MLP-

NN) 

 

 

 

Historical 

data from 

Muda river, 

Kedah state. 

The two models are useful 

for the prediction of 

changes in water level. 

Though, MLP-NN 

performed better in the 

running time. 

To avoid and mitigate 

the effect of flooding, 

the  MLP-NN model 

is promising  

 

 

Evaluate the 

groundwater 

potential using 

the hybrid 

model 

 

 

 

Nguyen et 

al., 2020 

 

 

 

Vietnam 

 

 

 

Artificial Neural 

Network (ANN) 

RealAda Boost 

(RAB) 

 

 

 

DakNong 

Province 

The RAB model improved 

the ANN performance and 

the hybrid model 

RABANN can be 

modified for groundwater 

potential mapping. 

This help in 

addressing the 

population's water 

borne disease-related 

health issues by 

enhancing the 

region's groundwater 

quality. 
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This research 

focuses on the 

application of 

the ANN 

technique for 

the weekly 

forecasting of 

groundwater 

levels 

 

 

 

Mohanty et 

al., 2015 

 

 

 

India 

 

 

 

ANN 

 

 

 

Mahanadi, 

Delta of 

Odisha 

The study of the modeling 

results showed reasonably 

accurate predictions or 

forecasts of groundwater 

levels, however the 

accuracy of the 

predictions was found to 

decline with increasing 

lead times. 

The ANN model 

should be modified 

by conducting 

sensitivity analysis 

and a longer time 

frame for prediction 

analysis. 

Prediction of 

monthly 

rainfall at 

meteorological 

stations using 

ANN and 

ANFIS models 

 

 

Abebe and 

Endalie, 2023 

 

 

 

Ethiopia 

 

 

ANN 

ANFIS 

 

 

Ethiopia 

Meteorologica

l Stations 

 

In every evaluation 

criteria across all testing 

stations, the ANFIS model 

performs better than the 

ANN model. 

 

 

ANFIS can be used 

for predicting 

monthly rainfall. 

To forecast the 

need for 

potassium 

permanganate 

in a drinking 

water 

treatment 

facility that 

uses water 

 

 

 

Godo et al., 

2019 

 

 

 

Spain 

 

 

 

ANN 

 

 

 

Liobregat 

River, Abrera 

 

In terms of replicative, 

predictive, and structural 

performance, the model 

delivered good results 

which proved the 

effectiveness of ANN 

model. 

 

To enhance and speed 

up the decision-

making process for 

plant managers and 

operators, this can be 

integrated into an 

environmental 

decision support 

system that can be fed 

by online data. 
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To evaluate the 

water quality 

for drinking 

using AI-

learning-based 

algorithms. 

 

 

 

 

Panigrahi et 

al., 2023 

 

 

 

India and 

Vietnam  

 

Logistics 

Regression 

Support Vector 

Machine 

Decision Tree 

AdaBoost 

XGBoost 

 

 

Odisha, India 

and  

Northern 

Delta, 

Vietnam 

 

According to prediction 

findings, Adaboost, 

XGBoost, and the 

Polynomial SVM model 

correctly identified the 

Water Quality Classes 

with 92% and 98% 

accuracy, respectively. 

 

By using them on 

comparable datasets 

gathered from 

different nations, 

machine learning 

models' performance 

can also be evaluated 

by expanding the 

scope of the task 
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Soil Monitoring 

The application of AI in soil monitoring represents a significant advancement in 

agricultural management, environmental conservation, and land-use planning 

(Abdulraheem et al., 2023). Traditional soil monitoring methods, which involve 

manual sampling and laboratory analysis, are often time-consuming, labor-intensive, 

and limited in scope. AI, however, offers innovative solutions that enhance accuracy, 

efficiency, and scalability, revolutionizing how soil health is monitored and managed 

(Fuentes-Peñailillo et al., 2024; Jeffrey & Bommu, 2024; Sharma et al., 2023). 

Machine learning algorithms such as Random Forests and Decision Trees have proven 

to be particularly effective in handling complex datasets with numerous variables. 

These algorithms predict soil properties like moisture content, nutrient levels, and pH 

by analyzing large volumes of data from various sources (Folorunso et al., 2023; John 

et al., 2020). For instance, the use of Random Forests in the study of soil organic 

carbon stocks has shown improved accuracy compared to traditional statistical 

methods (Wang et al., 2020). Support Vector Machines (SVM) are employed for soil 

classification tasks, helping categorize soil types based on physical and chemical 

properties. These machine learning techniques enable more precise soil health 

assessments and informed decision-making in soil management (Padarian et al., 

2020). 

Deep learning models also play a crucial role in soil monitoring. Convolutional 

Neural Networks (CNNs) are used for image-based soil analysis. By processing 

images from satellites or drones, CNNs can identify patterns related to soil health, 

erosion, and contamination (Feizizadeh et al., 2021; Hosseini et al., 2023). For 

example, drones equipped with multispectral and hyperspectral cameras capture high-

resolution images of the soil, and AI algorithms process these images to assess soil 

health and detect issues such as nutrient deficiencies or pest infestations. Recurrent 

Neural Networks (RNNs) are utilized for time-series analysis of soil data, predicting 

changes in soil properties over time based on historical data (Bai et al., 2022; Park et 

al., 2023). These deep learning models offer advanced predictive capabilities that 

enhance the proactive management of soil health. 

The integration of IoT and smart sensors further amplifies the capabilities of AI in soil 

monitoring (Rajak et al., 2023). IoT-enabled smart sensors deployed in the field 

continuously monitor soil conditions, including moisture levels, temperature, and 

nutrient content. These sensors collect real-time data, which AI algorithms analyze to 
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provide actionable insights. Specific examples include platforms like the Arable Mark 

2, an IoT device that integrates weather, soil, and crop data to give comprehensive 

insights into field conditions (Alahmad et al., 2023). Additionally, platforms such as 

the John Deere Operations Center leverage AI to integrate sensor data and provide 

real-time recommendations for soil management practices (Ahmad et al., 2023; 

Nichols et al., 2022). 

The benefits of AI in soil monitoring are substantial. AI-powered sensors and IoT 

devices enable continuous, real-time monitoring of soil conditions, allowing farmers 

and land managers to make timely decisions based on current soil health data 

(Fuentes-Peñailillo et al., 2024; Reddy et al., 2024). The precision of AI algorithms 

significantly reduces human error, leading to more accurate predictions of soil 

properties. The scalability of AI solutions allows for comprehensive soil health 

assessments across large agricultural areas or regions, which is particularly beneficial 

for large-scale farming operations (Chaterji et al., 2020). AI models' predictive 

insights enable proactive soil management, such as adjusting irrigation schedules, 

optimizing fertilizer application (Elshaikh et al., 2024; Hassan et al., 2022; 

Veeramanju, 2024), and implementing erosion control measures, enhancing the 

sustainability and productivity of agricultural practices (Ruiz et al., 2023; Sachithra & 

Subhashini, 2023). 

Despite these advantages, the application of AI in soil monitoring faces challenges. 

The effectiveness of AI models heavily relies on the quality and availability of soil 

data (Grunwald, 2022). Inaccurate or incomplete data can lead to unreliable 

predictions, highlighting the need for robust data collection methods. Additionally, the 

integration of AI technologies requires significant initial investments in infrastructure 

and training (Aldoseri et al., 2023; Whang et al., 2023). However, the long-term 

operational costs are generally lower than traditional methods due to automation and 

reduced need for manual labor. Addressing these challenges will be crucial for fully 

realizing AI's potential in soil monitoring and ensuring its widespread adoption. 

Overall, AI's application in soil monitoring exemplifies how advanced technologies 

can transform traditional agricultural and environmental practices. By leveraging 

machine learning, deep learning, and IoT technologies, AI provides precise, real-time, 

and scalable solutions for monitoring soil health (Fuentes-Peñailillo et al., 2024; 

Shaikh et al., 2022). As the technology continues to evolve, it promises to offer even 
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greater insights and efficiencies, contributing to more sustainable and productive land 

management practices (Lakshmi & Corbett, 2020; Nishant et al., 2020). 

 

Human Monitoring and Epidemiological Investigation of Environmental 

Pollutants 

The application of AI in human monitoring and epidemiological investigations related 

to environmental pollutants has shown remarkable promise, offering precise, timely, 

and actionable insights into the effects of pollutants on human health (Akinosho, 

2024; Rane et al., 2024). These advanced technologies facilitate more effective 

interventions and inform policy decisions, significantly enhancing public health 

outcomes (Wallace et al., 2020). 

AI-powered models are instrumental in predicting disease outbreaks related to 

environmental pollution by analyzing extensive datasets that include air and water 

quality measurements, meteorological data, and health records (Adefemi et al., 2023). 

Machine learning algorithms, such as Random Forests and Gradient Boosting 

Machines, have been employed to predict respiratory and cardiovascular diseases 

caused by air pollution (Kothandaraman et al., 2022; Ravindra et al., 2023). For 

instance, IBM Watson Health has been utilized in various healthcare settings to 

analyze environmental data and predict health risks, providing early warnings to 

healthcare providers and the public (Azzi et al., 2020; Computing). These early 

warning systems enable timely interventions that can prevent disease outbreaks and 

reduce the burden on healthcare systems. 

Moreover, AI tools play a crucial role in assessing human exposure to environmental 

pollutants and analyzing their health impacts. Deep learning models, such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), can 

process vast amounts of data from wearable sensors, satellite imagery, and medical 

records to estimate individual exposure levels and correlate them with health 

outcomes (Eskandari et al., 2021; Ghosh & Kumar, 2022). The Air Quality Egg 

project, for example, integrates IoT sensors and AI algorithms to monitor air quality 

in real-time, offering personalized exposure assessments and health recommendations 

(Omidvarborna et al., 2021; Tanveer et al., 2024). This level of granular analysis 

helps identify vulnerable populations and inform targeted public health interventions. 

Epidemiological surveillance has also been significantly enhanced by AI through the 

automation of data collection and analysis processes (Agbehadji et al., 2020; Zeng et 
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al., 2021). This automation makes it possible to detect patterns and trends that might 

be overlooked by traditional methods. Natural Language Processing (NLP) algorithms 

can analyze unstructured data from social media, health forums, and news articles to 

identify potential outbreaks linked to environmental pollution (Al-Garadi et al., 2022; 

Baclic et al., 2020). Tools like HealthMap utilize NLP and machine learning to track 

disease outbreaks globally, providing real-time surveillance and early detection of 

environmental health threats (Choubey & Naman, 2020; Gupta & Katarya, 2020; Jia 

et al., 2020; Kamel Boulos & Geraghty, 2020). This capability enables rapid response 

and containment measures, mitigating the impact of pollutants on public health. 

In addition to real-time monitoring and surveillance, AI-powered predictive analytics 

can inform policy and decision-making by forecasting the long-term health impacts of 

environmental pollutants (Chauhan et al., 2024; Fan et al., 2023). By integrating 

historical data on pollution levels, health outcomes, and demographic information, AI 

models can simulate various scenarios and predict future health trends (Masood & 

Ahmad, 2021). This predictive capability is invaluable for policymakers designing 

regulations and interventions to reduce pollution and protect public health. The 

European Air Quality Portal, for example, uses AI to assess the impact of policy 

measures on air quality and public health (Kaginalkar et al., 2021; Rovira et al., 

2020), providing evidence-based recommendations for regulatory actions. 

AI-driven health monitoring systems can also provide real-time alerts to individuals 

about their exposure to harmful environmental pollutants (Popescu et al., 2024). 

Wearable devices equipped with AI algorithms can continuously monitor 

physiological parameters such as heart rate, respiratory rate, and skin temperature, 

correlating these with environmental data to detect early signs of health deterioration 

due to pollution exposure (Natarajan et al., 2020; van Goor et al., 2022). Devices like 

Fitbit and Apple Watch have integrated AI capabilities to offer health insights and 

alerts based on environmental conditions, enabling users to take preventive actions to 

safeguard their health (Mirmomeni et al., 2021; Yoon et al., 2020). 

Despite the numerous benefits, the application of AI in human monitoring and 

epidemiological investigations faces several challenges and ethical considerations. 

Data privacy and security are paramount, as the collection and analysis of personal 

health and environmental data involve sensitive information (Gabriel, 2023). Ensuring 

robust data protection measures and transparent data usage policies is essential to 

maintaining public trust. Additionally, the risk of algorithmic bias must be mitigated 
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by using diverse and representative datasets in model training. Establishing ethical 

frameworks and guidelines to govern the use of AI in public health is crucial, 

balancing the benefits of technology with the protection of individual rights. 

 

Benefits of AI-based environmental monitoring  

When compared to conventional methods, using AI for environmental monitoring has 

a number of advantages. First, AI-based environmental monitoring systems have the 

capacity to evaluate enormous volumes of data from numerous sources, giving an 

accurate picture of the state of the environment in real time (Zhang et al., 2021). This 

enables authorities to decide wisely and act quickly to protect both the 

environment and the general population. Furthermore, by automating the processes of 

data collection and analysis, AI-based environmental monitoring systems can lower 

the cost of monitoring programs (Chang, 2019; Himeur et al., 2022). This can save 

significant resources and allow environmental monitoring programs to grow in 

scope and scale. With less chance of errors and inconsistencies, AI-based 

environmental monitoring systems can collect and analyze data with better accuracy 

and precision than conventional approaches. 

Notwithstanding the advantages of AI-based environmental monitoring, a number of 

issues need to be resolved in order to assure its successful adoption. The quality of the 

data used for analysis represents one of the major obstacles. For AI systems to make 

precise predictions and choices, they need accurate and trustworthy data (Hameed et 

al., 2017). Inadequate data quality can result in inaccurate predictions and judgments, 

which can have a negative impact on the environment and public health. The 

availability of data presents another difficulty. It is challenging to construct precise 

and trustworthy AI-based monitoring systems since many regions of the world lack 

adequate data on environmental factors. In addition to technological constraints, 

political and economic issues can also have an impact on the availability of data. The 

ethical implications of AI-based environmental monitoring must also be taken into 

account. The application of AI for environmental monitoring raises concerns 

regarding data ownership, privacy, and the possibility of data misuse. To ensure the 

ethical use of AI for environmental monitoring, ethical standards, and regulations 

must be developed. 

 

Potential environmental impact of AI models in environmental monitoring 
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While the benefits of AI models in environmental monitoring are significant, it is 

essential to look out for unintended environmental consequences. AI technologies, 

particularly those involving extensive computational processes, can have considerable 

environmental footprints that must be carefully managed to ensure overall 

sustainability. One of the primary concerns is the substantial energy consumption 

associated with training and operating AI models (Bloomfield et al., 2021). Data 

centres that support AI computations consume vast amounts of electricity, often 

sourced from non-renewable energy (Rostirolla et al., 2022). This high energy usage 

can lead to increased carbon emissions, counteracting the positive impacts that AI 

applications might have in monitoring and mitigating environmental issues. Recent 

reports from major tech companies underscore this issue. Google's efforts to reduce its 

climate footprint are being undermined by its increasing reliance on energy-intensive 

data centres to power its new AI products (Dan Milmo, 2024). According to Google’s 

annual environmental report, its greenhouse gas emissions have surged by 48% over 

the past five years, with electricity consumption by data centres and supply chain 

emissions being primary contributors (Google, 2024). In 2023 alone, Google's 

emissions rose by 13% compared to the previous year, reaching 14.3 million metric 

tons of CO2e, up from 9.7 million metric tons in 2019. Similarly, Microsoft's 2024 

environmental report highlighted a substantial increase in greenhouse gas emissions, 

particularly Scope 3 emissions, which grew by over 30% due to the expansion of data 

centres and increased consumption of hardware components necessary for their AI 

research (Microsoft, 2024). Although Microsoft managed to reduce its Scope 1 and 2 

emissions by 6.3% compared to 2020, the rise in Scope 3 emissions emphasizes the 

environmental challenges posed by AI infrastructure. 

Moreover, the hardware used in AI, including servers and data storage systems, 

requires manufacturing processes that often involve the extraction of rare earth 

elements (REE) and other non-renewable resources (Gundeti et al., 2023). For 

example, rare minerals like Erbium, Holmium, Terbium, Gadolinium, Lanthanum, 

and Europium are vital in the manufacturing of optical fibre, capacitors, HD drives, 

and semiconductors, among other materials (Leal Filho et al., 2023). The associated 

extraction and processing phases can lead to environmental degradation, especially at 

end-of-life (landfilling, incineration, and open dumping), resulting. into ecological 

damage, soil and water pollution, and increased carbon footprints (Balaram, 2019). 

During extraction, the machinery used generates significant dust, emissions, and 
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wastes (such as radioactive elements and other heavy metals), which could easily 

dissipate, leading to long-term environmental damage (Willenbacher, 2022). For 

example, it was estimated that 63,000 m³ of sulfuric and hydrofluoric acid residues 

and 1.4 tons of radioactive waste were generated from refining one ton of REE oxide 

in China (Willenbacher, 2022). This has resulted in a push for eco-friendly 

approaches for mineral extraction and processing, as well as discouraging single use 

of extracted metals (Nwaila et al., 2022).  

In conclusion, while AI models offer significant advancements in environmental 

monitoring, their potential environmental impacts must be diligently managed. Future 

research and policy-making should focus on creating frameworks that ensure the 

sustainable use of AI technologies, maximizing their benefits while minimizing their 

ecological footprints. 

 

Limitations and Future Scope 

While the application of AI in environmental monitoring has demonstrated significant 

potential, several limitations must be addressed to realize its full benefits. One 

prominent limitation is the dependency on high-quality and extensive datasets 

(Olawade et al., 2024a). AI models require large volumes of accurate and 

representative data to train effectively, and the availability of such data can be a 

significant constraint. Additionally, data biases can result in skewed predictions and 

perpetuate existing inequalities, underscoring the need for careful data curation and 

preprocessing. 

Overfitting is another critical challenge, where models perform exceptionally well on 

training data but fail to generalize to new, unseen data. Balancing model complexity 

to avoid overfitting while still capturing intricate patterns in the data is an ongoing 

challenge in AI development. Furthermore, the interpretability of AI models, 

especially deep learning models, remains a vexing issue (Olawade et al., 2024b). 

These models often operate as "black boxes," making it difficult to understand and 

trust their decisions, which is particularly crucial in high-stakes fields like 

environmental monitoring. 

Resource intensiveness is another constraint, as training and deploying sophisticated 

AI models demand substantial computational resources. This requirement can be a 

barrier for smaller organizations and developing countries, limiting their ability to 

leverage AI technologies effectively. Ethical concerns also pose significant 
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challenges, with AI models potentially reinforcing biases present in training data 

(Olawade et al., 2023). Ensuring fairness and addressing ethical implications is 

crucial, especially in applications where equitable outcomes are essential. 

Security risks, including susceptibility to adversarial attacks, where small, carefully 

crafted changes to input data can deceive the model, are a growing concern. Ensuring 

the robustness and security of AI models against such attacks is imperative. 

Additionally, the environmental impact of large-scale AI training, which consumes 

significant energy resources and contributes to carbon emissions, is becoming 

increasingly evident. Developing more energy-efficient AI solutions is necessary to 

mitigate this impact. 

Despite these challenges, the future scope of AI in environmental monitoring is 

promising. Advancements in AI algorithms, improved data collection techniques, and 

increased computational power are expected to enhance the accuracy and efficiency of 

AI models. Future research should focus on developing robust AI models that can 

handle diverse and complex environmental data, improving model interpretability, 

and addressing ethical and security concerns. Collaborative efforts between 

researchers, policymakers, and industry stakeholders will be essential to foster 

responsible innovation and ensure the equitable application of AI in environmental 

monitoring. 

 

Strength of this review 

This study provides a comprehensive overview of the principles, applications, and 

limitations of AI models in environmental monitoring, distinguishing itself from other 

review studies through several key merits. First, it offers a detailed comparative 

analysis of various AI models, highlighting their specific applications, strengths, and 

limitations in environmental monitoring. This detailed comparison provides valuable 

insights for selecting the appropriate AI model for specific tasks, a feature not always 

covered in other reviews. 

Second, the study integrates practical examples and case studies to illustrate the 

application of AI principles, making the discussion more concrete and engaging. This 

approach enhances the relevance and applicability of the theoretical concepts 

discussed, providing readers with a clearer understanding of how AI technologies are 

implemented in real-world environmental monitoring scenarios. 
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Third, the study addresses both technological and ethical challenges comprehensively, 

emphasizing the importance of responsible AI development. By discussing issues 

such as data dependency, overfitting, interpretability, and security risks, alongside 

ethical considerations, this review provides a holistic perspective on the challenges 

and opportunities in the field. 

Lastly, the study outlines a clear future scope for AI in environmental monitoring, 

identifying key areas for future research and development. This forward-looking 

perspective encourages ongoing innovation and collaboration among researchers, 

policymakers, and industry stakeholders to enhance the effectiveness and equity of AI 

applications in environmental monitoring. 

In summary, this study stands out by offering a thorough and practical examination of 

AI in environmental monitoring, addressing both current applications and future 

directions, and providing a balanced discussion of technological and ethical 

considerations. These merits make it a valuable resource for academics, practitioners, 

and policymakers interested in the responsible application of AI in environmental 

monitoring. 

 

Conclusion 

In conclusion, the integration of AI in environmental monitoring offers transformative 

benefits across various domains, including soil, water, and air quality monitoring, 

traffic management, and carbon footprint tracking. These advancements contribute 

significantly to environmental protection, public health, and sustainable development. 

AI's capability to provide precise predictions and real-time monitoring enhances the 

efficiency and effectiveness of environmental management practices. However, it is 

crucial to acknowledge the potential drawbacks associated with the deployment of AI 

technologies. One significant concern is the substantial energy burden imposed by 

data centres and the supply chain, leading to increased greenhouse gas emissions. 

Additionally, the extraction of resources, such as REEs for AI hardware, results in 

considerable environmental degradation, including habitat destruction, soil and water 

pollution, and toxic waste generation. 

The shortage of skilled professionals in the environmental sector, particularly in the 

global south, poses another challenge to fully harnessing AI's potential. Data access, 

control, and privacy issues must be addressed to prevent the misuse of AI systems for 

personal gain, such as market manipulation or disaster prediction exploitation. Robust 
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data governance frameworks are essential to mitigate these risks and ensure equitable 

and ethical use of AI technologies. Despite these challenges, the future of AI in 

environmental monitoring is promising. For future research, there is a critical need to 

focus on the ethical implications and environmental impact quantification of AI 

technologies. Developing standardized methods to assess the environmental footprint 

of AI systems and exploring the ethical dimensions of their deployment will ensure 

responsible and sustainable use. 
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