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Heavy metal contamination in water sources poses a significant threat to
environmental and public health, necessitating effective remediation
strategies. Nanomaterial-based approaches have emerged as promising
solutions for heavy metal removal, offering enhanced selectivity, efficiency,
and sustainability compared to traditional methods. This comprehensive
review explores novel nanomaterial-based approaches for heavy metal
remediation, focusing on factors such as selectivity, regeneration, scalability,
and practical considerations. A systematic literature search was conducted using
multiple academic databases, including PubMed, Web of Science, and Scopus, to
identify relevant articles published between 2013 and 2024. The review identifies
several promising nanomaterials, such as graphene oxide, carbon nanotubes, and
metal-organic frameworks, which exhibit high surface areas, tunable surface
chemistries, and excellent adsorption capacities. Surface functionalization with
specific functional groups (e.g., carboxyl, amino, thiol) significantly enhances the
selectivity for target heavy metal ions. Advances in regeneration strategies,
including chemical desorption, electrochemical regeneration, and
photocatalytic regeneration, have improved the reusability and cost-
effectiveness of these materials. Scalability remains a critical challenge, but
recent developments in synthesis methods, such as green synthesis and
continuous-flow synthesis, offer promising solutions for large-scale
production. The stability and longevity of nanomaterials have been improved
through surface modification and the development of hybrid nanocomposites.
Integrating nanomaterials with existing water treatment infrastructure and
combining them with other remediation techniques, such as membrane
filtration and electrochemical methods, can enhance overall treatment
efficiency and feasibility. In conclusion, nanomaterial-based approaches hold
immense promise for revolutionizing heavy metal remediation and advancing
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sustainable water management practices. As future research is geared towards
retrofitting existing treatment plants, it is equally critical to mitigate unintended
environmental and public health consequences associated with the widespread
production and use of nanomaterials, such as their leachability into water systems
and environmental persistence.

KEYWORDS

nanoparticles, heavy metals, wastewater treatment, adsorption mechanisms,
membrane filtration

1 Introduction

The contamination of fresh and marine water sources with
heavy metals is a pressing environmental and public health
concern with profound implications for ecosystems and human
health. This is attributed to the exponential increase in urbanization
and industrial and human activities (Qasem et al., 2021; Hama Aziz
et al., 2023). These toxic pollutants, including lead (Pb), mercury
(Hg), cadmium (Cd), arsenic (As), and chromium (Cr), infiltrate
water bodies through various pathways such as industrial
discharges, mining activities, agricultural runoff, and natural
processes like rock weathering (Qasem et al., 2021). The WHO
reported that about 1 million people lost their lives in 2019 due to
lead exposure and about 140 million people from 70 countries have
been drinking water contaminated with arsenic (WHO, 2022;
WHO 2023).

The non-biodegradable nature of heavy metals facilitates their
persistence and accumulation in the environment. The
repercussions of heavy metal pollution are extensive, affecting
both the human and aquatic ecosystems (Roy et al., 2024).
Aquatic ecosystems suffer from bioaccumulation and
biomagnification of heavy metals, leading to ecological
imbalances and long-term risks (Sharma et al., 2024). In humans,
exposure to heavy metals via contaminated water or food can result
in severe health problems ranging from neurological disorders to

cancer, with vulnerable groups like children and pregnant women
facing heightened risks (Edo et al., 2024). For instance, heavy metal
contamination of surface water sources from persistent industrial
discharge results in the bioaccumulation of these metals in aquatic
organisms like fish, leading to increased morbidity and mortality
among aquatic life. Moreover, consuming these contaminated fish
can pose serious health risks to humans. Thus, evaluating water
sources for metal pollution is critical due to the environmental
persistence of heavy metals and their detrimental impact on flora
and fauna, even at minute concentration levels (Edo et al., 2024).
Table 1 below highlights some heavy metals of public health
concern, their permissible limits, implications, and sources.

Traditional methods for heavy metal remediation, such as
chemical precipitation, coagulation-flocculation, ion exchange,
and membrane filtration, have limitations that impede their
effectiveness (See Table 2). These methods often lack selectivity,
removing essential ions along with heavy metals and generating
toxic byproducts like sludge (Zamora-Ledezma et al., 2021). For
instance, coagulation-flocculation processes result in the production
of significant quantities of chemical sludge and can leave residual
coagulant metals in the treated water (Zinicovscaia, 2016).
Moreover, residual coagulant metals like aluminium are
associated with several issues, including increased turbidity,
reduced disinfection efficiency, decreased hydraulic capacity, and
potential adverse health effects such as Alzheimer’s disease

TABLE 1 Heavy metals of public health concern, their permissible limits, implications, and sources.

Heavy
metal

Permissible limit
(mg/L)

Sources Human impact References

Potable Non-
potable

Short-term Long-term

Mercury 0.001 0.002 Industrial discharge, mining,
fossil fuel combustion

Neurological disorders,
kidney damage

Cognitive and motor dysfunction,
neurodevelopmental issues

Qasem et al. (2021), Edo
et al. (2024)

Lead 0.01 0.05 Leaded gasoline, industrial
processes, lead pipes

Cognitive impairment,
abdominal pain

Developmental delays,
hypertension, renal impairment

Roy et al. (2024), Sharma
et al. (2024)

Arsenic 0.01 0.1 Agricultural runoff,
industrial discharge, mining

Skin lesions, nausea,
vomiting

Cancer, cardiovascular diseases,
diabetes

Hama Aziz et al. (2023)

Cadmium 0.003 0.01 Battery manufacturing,
metal plating, fertilizers

Gastrointestinal
irritation, vomiting

Bone fractures, renal dysfunction,
cancer

Qasem et al. (2021),
Sharma et al. (2024)

Chromium 0.1 0.5 Industrial processes,
electroplating, leather
tanning

Skin irritation, allergic
reactions

Respiratory issues, lung cancer,
kidney damage

Hama Aziz et al., 2023,
Qasem et al. (2021)

Iron 0.3 1.0 Natural deposits, industrial
waste, corrosion of pipes

Gastrointestinal issues Potential liver damage, diabetes Roy et al. (2024), Edo
et al. (2024)
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(Zinicovscaia, 2016). Additionally, traditional heavy metal
remediation methods can be cost-prohibitive and challenging to
scale up for large-scale water treatment applications (Qasem et al.,
2021; Zamora-Ledezma et al., 2021). For example, carbon-based
adsorbents such as activated carbon are prepared following high
heat and pressure requirements, which are energy and cost-intensive
(Qasem et al., 2021). In response to these challenges, nanomaterial-
based approaches have emerged as promising solutions due to their
unique properties and versatile applications in heavy metal
remediation (Solomon NkoOkina et al., 2024). Table 2
summarizes traditional methods of treating heavy metals in
wastewater and their potential drawbacks.

Nanomaterials offer several advantages for addressing heavy
metal contamination in water sources. Their high surface area-to-
volume ratio, tunable surface chemistry, and enhanced reactivity
make them highly efficient adsorbents and catalysts (Ali et al., 2023).
Recent trends in nanomaterial-based approaches focus on achieving
selective adsorption, regeneration capability, scalability, and
multifunctionality (Yang et al., 2019; Kolluru et al., 2021).
Functionalized nanomaterials with tailored surface properties
exhibit selective adsorption of specific heavy metal ions,
minimizing interference from other ions and enhancing
treatment efficiency (Mensah et al., 2021). Some nanomaterials
are capable of removing toxic metal ions and tiny pollutants
smaller than 300 nm (Baby et al., 2022). Moreover, some
nanomaterials possess inherent regenerative properties or can be
easily regenerated through desorption processes, enabling multiple
cycles of use and reducing operational costs (Mensah et al., 2021).
Some of the commonly explored nanomaterials for heavy metal
remediation in wastewater are zero-valent metals, carbon-based
materials, polymer-based materials, zeolite, magnetic materials,
nanocomposites, and metal oxides (Yang et al., 2019; Ethaib
et al., 2022). In one study, composite hydrogel consisting of gum
tragacanth and graphene oxide (GO) was effectively used to adsorb
65 ppm of the following heavy metal contaminants: Cd (II), Pb (II),
and Ag (I) at 89%, 96.4%, and 85.4% removal efficiency respectively
(Sahraei and Ghaemy, 2017). The GO nanosheets, rich in
hydrophilic hydroxyl and carboxyl functional groups, not only
increased the hydrogel’s water absorption capacity but also
provided multiple active sites for metal ion binding. This
incorporation of GO expanded the hydrogel network structure,

enhancing its ability to swell in aqueous environments and
improving metal ion uptake. In another study, sulfide nanoscale
zero-valent iron (S-NZVI) treated with nitro-functionalized UiO-66
was a reliable adsorbent for radioactive uranium (VI) and had a high
removal rate (895 mg/g) as opposed to S-NZVI (434 mg/g) and
UiO66-NO2 (267 mg/g) (Zhang et al., 2023). The study highlights
that the removal mechanisms for U(VI) include physical adsorption,
electrostatic attraction, and complexation by UiO-66-NO2, while
S-NZVI contributes to uranium reduction and further
complexation. The improved reactivity and smaller particle size
of S-NZVI/UiO-66 result in greater contact with uranium ions,
allowing for more efficient removal across a wide pH range.

While nanomaterials are emerging as a game-changer in the
treatment of heavy metals in wastewater, current research is also
focusing on sustainable production processes and the integration of
these materials into existing treatment facilities (Solomon N. O.
et al., 2024; Poonia et al., 2024; Shingare et al., 2024). Advances in
nanomaterial synthesis techniques and reactor design are facilitating
scalable production and seamless integration into conventional
systems, enabling the efficient removal of heavy metals from
large volumes of water (Khan et al., 2024; Nupur and Nipun,
2024). Moreover, researchers are developing multifunctional
nanomaterials that can simultaneously target multiple
contaminants, including heavy metals, organic pollutants, and
pathogens, thereby addressing the complex nature of water
pollution more comprehensively (Zhang et al., 2019).

Thus, given the persistent challenges associated with heavy
metal contamination, the limitations of traditional remediation
methods, and the emergence of nanomaterials as a potentially
more effective treatment method, this review is essential. It
responds to the urgent need for innovative and sustainable
solutions to combat heavy metal pollution and safeguard water
quality and public health. This review is novel in its comprehensive
examination of recent advances in nanomaterial-based approaches
for heavy metal remediation, specifically focusing on selectivity,
regeneration capabilities, and scalability. The primary objectives are
to provide a thorough overview of the current state-of-the-art in
nanomaterial-based heavy metal remediation, identify key
challenges and opportunities in the field, and propose future
directions for research and development aimed at advancing
sustainable water treatment technologies.

TABLE 2 Conventional methods of heavy metals remediation in wastewater and their drawbacks.

Method Advantages Drawbacks References

Chemical Precipitation Simple, effective for a wide range of metals Generates large volumes of sludge, not
selective

Zamora-Ledezma et al. (2021)

Coagulation-Flocculation Effective for removing colloidal particles Produces chemical sludge, residual
coagulants

Zinicovscaia (2016)

Ion Exchange High removal efficiency, regenerable High operational costs, limited by resin
capacity

Qasem et al. (2021)

Membrane Filtration High efficiency, capable of removing various
contaminants

Membrane fouling, high operational costs Zamora-Ledezma et al. (2021)

Adsorption High surface area, effective for low concentrations High cost of adsorbents, regeneration issues Ali et al. (2023), Ethaib et al. (2022)

Electrochemical
Treatment

Precise control, capable of handling various metals High energy consumption, electrode
degradation

Martínez-Huitle et al. (2018), Feng et al.
(2023)
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2 Nanomaterials for heavy metal
remediation

Nanotechnology has revolutionized the field of environmental
remediation, offering innovative solutions to tackle heavy metal
pollution in water sources. Nanomaterials, with their unique
properties and high surface area-to-volume ratio, have shown
great promise in efficiently removing heavy metals from
contaminated water. Table 3 provides a comprehensive
comparison of the key nanomaterials used for heavy metal
remediation, focusing on their adsorption capacity, selectivity,
regeneration efficiency, and unique characteristics.

Figure 1 below shows various types of nanomaterials utilized
and mechanisms for heavy metal remediation, including
nanoparticles, nanocomposites, and nanostructured materials.

2.1 Nanoparticles

Nanoparticles, owing to their small size and large surface
area, exhibit enhanced reactivity and adsorption capacities,
making them excellent candidates for heavy metal removal
(Sarma et al., 2019; Yu et al., 2021). Several studies have
demonstrated that nanomaterials also possess significant
redox and catalytic properties. The high surface area provides
numerous active sites for interaction with heavy metal ions,
facilitating efficient adsorption and transformation processes.
Additionally, the tunable surface chemistry of nanomaterials
allows for the modification of their properties to target

specific contaminants (Garcia-Segura et al., 2020). This
adaptability enhances their versatility in various environmental
conditions. The potential for functionalization with specific
ligands or coatings further improves their selectivity and
effectiveness in complex environmental matrices. Nanoparticles
are increasingly explored for environmental cleanup and
sustainable water treatment technologies. Based on their
magnetic properties, nanoparticles can be categorized into
magnetic and non-magnetic nanoparticles.

2.1.1 Non-magnetic nanoparticles
Non-magnetic nanoparticles, despite lacking magnetic

properties, play a crucial role in heavy metal remediation due to
their exceptional adsorption and catalytic capabilities. These
nanoparticles often exhibit high surface areas, which provide
numerous active sites for metal ion binding and reduction
processes. Additionally, their tunable surface chemistries allow
for the modification of their surfaces with functional groups or
coatings, enhancing their selectivity for specific contaminants. Non-
magnetic nanoparticles, such as zerovalent iron nanoparticles
(ZVINPs) and silver nanoparticles (AgNPs), are widely studied
for their ability to reduce and adsorb heavy metals from water.
While they may not offer the same ease of separation as magnetic
nanoparticles, non-magnetic nanoparticles make up for this
limitation through their efficient remediation performance and
the ease with which they can be synthesized and functionalized
for specific environmental conditions. Their relatively low cost and
the potential for regeneration also make them highly attractive for
large-scale environmental applications.

TABLE 3 Key performance metrics of various nanomaterials for heavy metal removal.

Nanomaterial Heavy
metals
removed

Adsorption
capacity
(mg/g)

Selectivity Regeneration
efficiency

Special
characteristics

References

Zerovalent Iron
Nanoparticles (ZVINPs)

Pb2⁺, Cd2⁺,
Cr⁶⁺, As³⁺

230–350 High (Pb2⁺) 85%–90% after 3 cycles Redox reactions, low
toxicity

Abdel Salam et al. (2020),
Tarekegn et al. (2021),
Xu et al. (2020)

Silver Nanoparticles
(AgNPs)

Hg2⁺, Pb2⁺, Cr³⁺,
Cr6+ As³⁺, Mn2+

150–270 High (Hg2⁺) 80%–85% after 4 cycles Antimicrobial properties,
surface plasmon resonance

Kumari and Tripathi
(2020), Pradhan et al.
(2019), Zhuang et al.
(2019)

Magnetite (Fe₃O₄)
Nanoparticles

Cr⁶⁺, As³⁺,
Pb2⁺, Cu2+

200–320 High Cu2+ 93%–98.5% after
3 cycles

Superparamagnetic
behavior, easy separation
using a magnet

Pradhan et al. (2019),
Singh et al. (2020)

Graphene Oxide
Nanocomposites

Pb2⁺, Hg2⁺,
Cd2⁺, Cu2+

138–153 High (Pb2⁺) 85%–90% after 5 cycles Large surface area, high
chemical stability

Kong et al. (2020)

Carbon Nanotube
Composites

Cu2⁺, Pb2⁺, Hg2⁺ 146–185 High (Pb2⁺) 90%–95% after 6 cycles High mechanical strength,
excellent electrical
conductivity

Chandrashekhar Nayak
et al. (2020), Wang D.
et al. (2021)

Metal-Organic
Frameworks (MOFs)

Cr6⁺, Pb2⁺, Cd2⁺,
As³⁺, Cu2+

500–600 High (Cd2⁺) 80%–90% after 4 cycles High porosity, tunable
structure

Esrafili et al. (2021), Peng
et al. (2020)

Zeolite Nanoparticles Pb2+, Cd2+, Sr2+,
Cu2+, Zn2+,
Ni2+, Mn2+

250–300 High (Pb2⁺) 75%–85% after
5–10 cycles

Ion-exchange capability,
high surface area

Isawi (2020), Modi and
Bellare (2020)

Titanium Dioxide
(TiO₂) Nanoparticles

Pb2⁺, Cr⁶⁺,
As³⁺, Cd2⁺

150–169 High (Pb2⁺) 80%–98% after 4 cycles Photocatalytic properties,
UV light activation

Irshad et al. (2022),
Nthwane et al. (2023)
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TABLE 4 Innovative mechanisms and materials for heavy metal and emerging pollutant removal from water.

Mechanism Materials Used Significant
Findings

Challenges Potential
Applications

Future
Research
Directions

Adsorption [Ahsan et al. (2019)] Cu-BDC MOFs,
graphene oxide (GrO),
carbon nanotubes
(CNTs) hybrid
nanocomposites

High crystalline
structure, remarkable
adsorption capacity
(182.2 mg/g for Cu-
BDC@GrO and
164.1 mg/g for Cu-
BDC@CNT) towards
Bisphenol A, Freundlich
isotherm model fits best,
pseudo-second order
kinetic model

Ensuring water
stability, managing
secondary waste,
regeneration and
reuse of adsorbents

Industrial wastewater
treatment, organic
pollutant removal from
water

Exploring other
hybrid
nanomaterials;
improving
regeneration and
reuse methods

Jurado-Davila et al.
(2023)

Layered double
hydroxide
(CaMgAl-LDH)

Effective removal of
phosphate in fixed-bed
column. Langmuir
isotherm fits well. Kinetic
coefficient ranges
between 4.52 and
0.81 mL mg−1 min−1

Operational
conditions influence
adsorption efficiency

Water treatment for
phosphate removal

Optimization of
operational
conditions; scaling
up for industrial
applications

Ion Exchange [Zhang et al. (2016),
Kuang et al. (2019),
Shang et al. (2020),
Trakal et al. (2016),
Wu et al. (2021)]

Na-form zeolite, anion
exchange resin

Improved
ammonia–nitrogen
removal efficiency (from
78% to 95%) with resin
pretreatment. High
removal efficiency for
humic acid and dissolved
organic matter. Efficient
regeneration with
alkaline and sodium
chloride

Managing resin and
zeolite regeneration,
operational
complexity

Wastewater treatment,
ammonia–nitrogen
removal

Enhancing
combined resin-
zeolite systems;
exploring other
pre-treatment
strategies

Wang et al. (2017) Chelating agents,
Polyethylenimine-
chitosan (PEI-CS)
biosorbent

Ultra-high adsorption
capacity (146 mg/g for
Cu ions), excellent
selectivity, high
reusability, synthesized
via microfluidic
emulsion, chemical
crosslinking, and
chemical modification

Ensuring mechanical
strength, optimizing
synthesis processes,
scalability

Industrial wastewater
treatment, heavy metal
ion removal from
contaminated water

Enhancing
scalability and
efficiency in large-
scale applications;
exploring new
biosorbent
materials

Precipitation [Siciliano et al. (2020),
Cao et al. (2019),
Shang et al. (2020),
Wang et al. (2018), Wu
et al. (2021), Xiang
et al. (2018)]

Struvite
(MgNH4PO4.6H2O)

Effective removal of
ammonium and
phosphate from
wastewater, production
of a high-purity solid
compound suitable for
fertilizer

Impurities in the
precipitate, scaling up
production for
industrial use

Treatment of
wastewater in various
industries, production
of slow-release
fertilizers

Optimization of
process efficiency;
exploration of low-
cost and
sustainable
reagents

Simeonidis et al.
(2014)

Magnetite
nanoparticles

High removal efficiency
of Cr(VI), maximized at
pH < 6. Complete
removal achieved in
batch and continuous
flow reactors.
Nanoparticles recovered
using magnetic nature

Regeneration and
reuse of
nanoparticles, cost of
magnetic recovery
system

Industrial wastewater
treatment, Cr(VI)
removal from water

Optimization of
magnetic recovery
systems;
enhancing
nanoparticle
regeneration
methods

Redox Reactions [Andrey et al. (2023),
Ganie et al. (2023), Le
et al. (2019), Su et al.
(2024), Wang Y. et al.
(2024), Yuan et al.
(2024)]

Substoichiometric
titanium oxide (Ti4O7)
anodes

High instantaneous
current efficiency (ICE)
of about 40% and over
99% removal efficiency
for benzoic, maleic,
oxalic acids, and
hydroquinone; good
stability after 108 h at
36 mA/cm2

Ensuring long-term
stability, managing
electrode degradation,
high initial setup cost

Oxidation of organic
pollutants in aqueous
solutions, treatment of
industrial wastewater

Exploration of
other contaminant
types; improving
granule size and
pore size
optimization

(Continued on following page)
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2.1.1.1 Zerovalent iron nanoparticles (ZVINPs)
Zerovalent iron nanoparticles (ZVINPs) have garnered

significant attention for their ability to efficiently reduce a wide
range of heavy metal ions through redox reactions. Recent studies
have demonstrated that ZVINPs efficiently adsorb metal ions onto

their surface, followed by electron transfer, resulting in the
formation of insoluble metal oxides or hydroxides (Rodríguez-
Rasero et al., 2024; Moond et al., 2024). The adsorption process
is significantly favored by an increase in temperature (Tang et al.,
2023; Bazarin et al., 2024). ZVINPs can be regenerated through

TABLE 4 (Continued) Innovative mechanisms and materials for heavy metal and emerging pollutant removal from water.

Mechanism Materials Used Significant
Findings

Challenges Potential
Applications

Future
Research
Directions

Montenegro-Ayo et al.
(2023)

Boron-doped diamond
(BDD) anode

High efficiency in
degrading ciprofloxacin
(CIP) via electrochemical
oxidation, influenced by
pH and current density.
Faster degradation in
sulfate and chloride
mediums

Effectiveness reduced
in carbonate medium,
tap water, and
synthetic urine;
presence of humic
acid lowers
degradation rate

Treatment of
wastewater containing
emerging pollutants,
particularly
pharmaceuticals

Exploring different
electrode
materials;
enhancing the
reactor design for
scalability

FIGURE 1
Overview of nanomaterials and their mechanisms for heavy metal remediation in water sources.
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simple treatments such as pH adjustment or chemical reduction,
which enhances their reusability and cost-effectiveness (Thomas
et al., 2017). Due to their relatively low toxicity compared to other
nanomaterials, ZVINPs present a safer option for environmental
applications. However, ongoing research is addressing their
environmental and health impacts while optimizing their
performance and scalability for large-scale remediation projects
(Naveed et al., 2023; Xu et al., 2020).

2.1.1.2 Silver nanoparticles (AgNPs)
Silver nanoparticles (AgNPs) possess inherent antimicrobial

properties and have emerged as effective adsorbents for heavy
metal ions (Egbewole et al., 2022). Recent research has shown
that AgNPs efficiently remove toxic metals such as mercury,
cadmium, and copper from contaminated water sources
(Sudarman et al., 2023). AgNPs also catalyze the reduction of
heavy metal ions into less toxic forms, further enhancing
remediation efficiency. However, concerns regarding the potential
environmental impact of AgNPs, particularly their ecotoxicity and
long-term stability, have been raised (Noga et al., 2023). Further
investigations are required to ensure the safe and sustainable use of
AgNPs in environmental applications.

2.1.2 Magnetic nanoparticles
Magnetic nanoparticles, such as magnetite (Fe3O4) and

maghemite (γ-Fe2O3), offer distinct advantages due to their
magnetic properties, which enable easy separation and recovery
from water using external magnetic fields (de Oliveira et al., 2020;
Zeng et al., 2020; Borji et al., 2020). Functionalized magnetic
nanoparticles have been explored for the selective removal of
heavy metal ions through surface modification with chelating
agents or ligands. These modifications improve the specificity
and binding affinity toward target heavy metals (Shao et al.,
2020; Pardo et al., 2021), making magnetic nanoparticles suitable
for large-scale water treatment applications. Their magnetic
properties facilitate rapid and efficient contaminant removal, and
their regeneration and reuse reduce operational costs. Moreover,
integrating magnetic nanoparticles with other nanomaterials
enhances adsorption capacity and recyclability, further improving
their performance in heavy metal remediation.

2.2 Nanocomposites

Nanocomposites, composed of two or more distinct
components at the nanoscale, offer synergistic properties for
enhanced heavy metal removal. Compared to single-component
systems, two distinct components at the nanoscale level offer
synergistic properties that significantly enhance heavy metal
removal (Singh and Bhateria, 2021). By incorporating the unique
properties of each constituent nanomaterials, superior stability,
adsorption capacities (Baig et al., 2021), and improved selectivity
towards specific contaminants can be reached. This combination of
properties allows for more efficient and effective remediation
processes compared to single-component systems. Moreover, the
possibility of tunability in the design of nanocomposites can be
optimally repurposed for various environmental conditions.
(Darwish et al., 2022; Hassan et al., 2021). This tunability is a

versatile tool in the fight against heavy metal pollution. As research
in this field progresses, the development of novel nanocomposite
materials will provide highly extensive sustainable, and high-
performance water treatment technologies. In this study, we will
delve a little into the recent study of nanocomposites and their
applications to remediate heavy metals from the environment. Some
such nanocomposites include graphene nanocomposites, metal-
organic frameworks (MOFs), and carbon nanotube composites.

2.2.1 Graphene-based nanocomposites
Due to their low cost, well-defined pore-forming mechanisms,

and excellent magnetic properties that facilitate magnetic
separation, graphene-based nanocomposites have emerged as a
viable option for heavy metal remediation (Donga et al., 2021;
Goyat et al., 2022). These materials have attracted significant
interest because of their high surface area, exceptional
mechanical strength, and chemical stability. Recent advancements
in graphene-based materials have also demonstrated their potential
as antifouling agents (Su and Hu, 2021), thanks to their excellent
antibacterial properties, leading to the development of novel
adsorbents for heavy metal removal. Graphene oxide (GO) and
reduced graphene oxide (rGO) composites functionalized with
various functional groups exhibit excellent adsorption capacities
for heavy metal ions (Jahan et al., 2022), including cadmium, lead,
and nickel. The unique structure of graphene-based nanocomposites
enables rapid and selective removal of contaminants from aqueous
solutions (Malhotra and Jain, 2021; Pena-Pereira et al., 2021),
offering potential solutions to mitigate heavy metal pollution.

2.2.2 Metal-organic frameworks (MOFs)
Metal-organic frameworks (MOFs) are porous materials

composed of metal ions or clusters coordinated with organic
ligands, offering high surface areas and tunable pore structures.
Recent research has demonstrated the applicability of MOFs as
efficient adsorbents for heavy metal removal due to their
photocatalytic reduction properties (Li et al., 2021). The modular
nature of MOFs allows for precise control over their pore size and
surface chemistry, enabling selective adsorption of specific heavy
metal ions. MOFs can be functionalized with various active sites to
enhance their adsorption capacities and catalytic activities (Hou
et al., 2022). This adaptability makes them promising candidates for
tailored environmental remediation strategies, addressing diverse
and complex contamination scenarios. Furthermore, the
incorporation of functional groups or post-synthetic
modifications enhances the adsorption capacity and stability of
MOFs, making them promising candidates for water purification.

2.2.3 Carbon nanotube composites
Carbon nanotubes (CNTs) possess extraordinary mechanical

strength, electrical conductivity, and large surface area (Nurazzi
et al., 2021; Zhang H. et al., 2020), making them ideal candidates for
heavy metal remediation applications. Recent studies have
investigated the use of CNT-based composites for the removal of
heavy metal ions from aqueous solutions (Akhter et al., 2023; Aslam
et al., 2022). Functionalization of CNTs with various organic or
inorganic materials enhances their adsorption capacity and
selectivity towards specific heavy metal contaminants. Through
coprecipitation with certain metal oxides such as iron and
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zirconium, they are modified for excellent removal of chromium,
mercury, lead, arsenic, etc. From water (by CBN et al., 2020).
Additionally, the unique one-dimensional structure of CNTs
facilitates the diffusion of metal ions into the internal pore spaces
(Dey et al., 2024; Luo et al., 2022), leading to rapid adsorption
kinetics and high removal efficiency.

2.3 Nanostructured materials

Nanostructured materials, including nanofibers, nanosponges,
and nanocages, offer unique architectures for efficient heavy metal
removal. These structures facilitate greater interaction with
molecules of the pollutants. Their porous and adaptable designs
allow for the incorporation of functional groups that improve
selectivity and adsorption capacity. Additionally, the adaptability
of these nanostructures enables their application in various
environmental conditions, making them highly effective for
diverse heavy metal remediation efforts. Some of these
nanostructured materials are classified as nanofibers, nano-
sponges, and nanocages.

2.3.1 Nanofibers
Nanofibers, characterized by their high aspect ratio and

interconnected porous structure, provide large surface areas for
the adsorption and filtration of heavy metal ions. Recent
advancements in electrospinning techniques have enabled the
fabrication of nanofiber-based membranes with precise control of
the membrane characteristics tailored for water purification (Liao
et al., 2018). Functionalization of nanofibers with specific ligands or
nanoparticles enhances their adsorption capacity and selectivity (El-
Aswar et al., 2022), making them effective adsorbents for heavy
metal removal from aqueous solutions. These functionalized
nanofibers exhibit improved mechanical strength and stability,
ensuring long-term durability in filtration systems. The ability to
integrate multiple functional groups within nanofibers further
broadens their application (Zamel and Khan, 2021), providing
the avenue for the concurrent removal of various contaminants.
This makes nanofiber-based membranes a promising solution for
advanced water treatment technologies.

2.3.2 Nanosponges
Nanosponges are porous materials composed of interconnected

networks of nanoparticles or nanofibers, offering high surface area
and porosity for adsorption applications. Recent research has
demonstrated the feasibility of nanosponge-based materials for
heavy metal remediation (Iravani and Varma, 2022). The sponge-
like structure of nanosponges enables rapid diffusion of heavy metal
ions into the interior pores, where they are effectively sequestered
through chemical interactions or physical adsorption. Furthermore,
the flexibility in the design and synthesis of nanosponges allows for
the customization of their properties to meet specific application
requirements (Goyal et al., 2023).

2.3.3 Nanocages
Nanocages are hollow nanostructures with well-defined cavities

and porous walls, offering unique confinement effects and high
surface areas for the adsorption of heavy metal ions. Recent studies

have explored the use of nanocages derived from various materials,
including metal oxides, carbon-based materials, and polymers, for
heavy metal removal. The tunable pore size and surface chemistry of
nanocages enable selective adsorption of specific heavy metal
contaminants, making them promising candidates for water
purification applications (Ahmed et al., 2023).

3 Mechanisms of heavy metal removal

Heavy metal removal from water sources involves various
mechanisms, each with its advantages and limitations. These
mechanisms include adsorption, precipitation, ion exchange,
membrane filtration, and electrochemical methods (Figure 2),
each suited to specific types of contaminants and environmental
conditions (Li et al., 2022; Peng and Guo, 2020; Singh et al., 2021).
The mechanisms of heavy metal removal continue to evolve with
advancements in materials science, process engineering, and
environmental biotechnology. Innovations such as nanomaterials,
bio-based adsorbents, and hybrid systems are pushing the
boundaries of efficiency and selectivity (Rajendran et al., 2022).
By harnessing the synergistic effects of advanced materials,
innovative process technologies, and sustainable practices,
researchers and engineers can develop efficient, cost-effective, and
environmentally friendly solutions for mitigating heavy metal
pollution and safeguarding water quality for future generations.
These integrated approaches are crucial for safeguarding water
quality for future generations and ensuring compliance with
stringent environmental regulations. Table 4 provides a
comprehensive comparison of the key nanomaterials used for
heavy metal remediation, focusing on their adsorption capacity,
selectivity, regeneration efficiency, and unique characteristics.

3.1 Adsorption

Adsorption involves the attachment of heavy metal ions onto the
surface of solid adsorbents, forming a monolayer or multilayer
adsorption layer (Khulbe and Matsuura, 2018). The process relies
on the affinity between the surface functional groups of the
adsorbent and the heavy metal ions in the solution. Recent
studies have focused on enhancing the adsorption capacity and
selectivity of adsorbents through the use of novel materials and
surface modifications. Nanomaterials, such as graphene oxide,
carbon nanotubes, and metal-organic frameworks (MOFs),
exhibit high surface area and tunable surface chemistry, making
them effective adsorbents for heavy metal removal (Ahsan et al.,
2020; Das et al., 2021). Surface functionalization with specific
functional groups, such as carboxyl, amino, or thiol groups,
enhances the adsorption affinity towards target heavy metal ions
(Ahmad et al., 2020; Zeng et al., 2022). Additionally, hybrid
materials combining different types of nanomaterials or
incorporating metal nanoparticles demonstrate synergistic effects,
leading to improved adsorption capacities and kinetics.
Advancements in adsorption mechanisms also include the
development of continuous-flow adsorption systems such as
fixed-bed columns and membrane adsorbers, for practical
applications (Aydına et al., 2021; Taka et al., 2021). These
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systems enable efficient removal of heavy metals from large volumes
of water and offer advantages in terms of scalability and cost-
effectiveness.

3.2 Ion exchange

Ion exchange involves the replacement of ions in solution with
ions attached to a solid phase, typically an ion exchange resin or zeolite
(Rathi et al., 2021; Ray, 2023). The process relies on the affinity
between the ions in the solution and the functional groups on the
surface of the ion exchange material. Recent trends in ion exchange
mechanisms focus on improving the selectivity and regeneration
capabilities of ion exchange materials. Functionalization of ion
exchange resins with specific ligands or chelating agents enables
selective removal of target heavy metal ions based on their charge
and coordination chemistry (Quintas et al., 2021). Additionally, the
regeneration of spent ion exchange materials through elution or
desorption processes enables their reuse and reduces operational
costs. Integration of ion exchange processes with other treatment
methods, such asmembrane filtration and adsorption (Peng andGuo,
2020; Vieira et al., 2020), enhances treatment efficiency, and offers
synergistic effects. Moreover, advancements in process engineering,

including continuous-flow ion exchange reactors and in-line
monitoring techniques, enable precise control over ion exchange
reactions and facilitate scale-up for industrial applications.

3.3 Precipitation

Precipitation involves the chemical reaction between heavy
metal ions and precipitating agents to form insoluble precipitates,
which can then be separated from the solution (Pillai and Thombre,
2024; Zhang et al., 2023). The process relies on the solubility product
of the metal precipitate and the pH and temperature conditions of
the solution. Recent trends in precipitation mechanisms focus on
enhancing the efficiency and selectivity of precipitation reactions
while minimizing the generation of secondary wastes. Advanced
precipitation methods, such as co-precipitation and hydrothermal
synthesis (Gholamrezaei et al., 2019), enable the synthesis of highly
crystalline and uniform precipitates with controlled morphologies
and compositions. The use of novel precipitating agents, including
natural polymers, biodegradable chelating agents, and green
chemistry reagents, reduces the environmental impact of
precipitation processes and enhances the sustainability of heavy
metal removal systems. Moreover, recent advancements in process

FIGURE 2
Classifications of the mechanisms of heavy metals removal.
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engineering, such as continuous-flow precipitation reactors and in-
line monitoring techniques, enable precise control over precipitation
reactions and facilitate scale-up for industrial applications.

3.4 Redox reactions

Redox reactions involve the transfer of electrons between
chemical species, leading to the transformation of heavy metal
ions into less toxic or insoluble forms (Xu et al., 2022). The
process relies on the redox potential of the metal ions and the
reducing or oxidizing agents present in the solution (Gulcin and
Alwasel, 2022). Recent trends in redox reactions for heavy metal
removal focus on developing sustainable and energy-efficient
processes with minimal environmental impact. Electrochemical
methods, such as electrocoagulation, electrooxidation, and
electrochemical reduction, offer selective and precise control over
redox reactions, enabling the removal of specific heavy metal
contaminants from complex water matrices (Feng et al., 2023;
Martínez-Huitle et al., 2018; Yasri and Gunasekaran, 2017).
Advanced electrode materials, including carbon-based electrodes,
metal oxide nanoparticles, and conductive polymers, exhibit
enhanced electrochemical activity and stability, leading to
improved treatment efficiency and durability of electrochemical
reactors. Integration of renewable energy sources, such as solar
and wind power, into electrochemical systems reduces the carbon
footprint and energy consumption of heavy metal removal processes
(Ganiyu and Martinez-Huitle, 2020; Klemeš et al., 2019;
Zahmatkesh et al., 2022).

4 Potential synergistic effect of
nanomaterials combined with other
remediation techniques

Emerging research on the environmental applications of
nanomaterials has highlighted their potential to inspire the field of
contaminant removal through synergy with existing remediation
techniques. Traditionally, remediation methods such as adsorption,
filtration, and electrochemical processes operate independently, each
with its own limitations regarding efficiency, selectivity, and
operational cost. However, the unique properties of nanomaterials,
including tunable surface chemistry, high reactivity, and nanoscale
porosity, provide a new dimension for enhancing these
conventional techniques. In this section we will highlight the
concepts—nanomaterial-catalyzed cascade remediation, a hybrid
strategy that leverages the cooperative interaction between
nanomaterials and existing techniques, forming a chain of processes
that cumulatively magnify the overall contaminant removal efficiency.

4.1 Nanomaterial-driven cascade
adsorption-electrochemical treatment

Unlike traditional adsorption techniques, which are limited by
saturation and slow kinetic rates, nanomaterial-driven cascade
systems propose a new mechanism where adsorption is not
an endpoint but a trigger for secondary electrochemical reactions

(Y. Zhang et al., 2023). For instance, zero-valent iron nanoparticles
(ZVINPs) serve as a starting point by reducing heavy metal ions, such
as Pb2⁺ and As³⁺, and simultaneously generating electrons that
catalyze subsequent redox reactions in an electrochemical process
(Silva-Calpa et al., 2020; Tarekegn et al., 2021; Yang et al., 2021). This
cascading system ensures that once the adsorptive sites of the
nanomaterials are saturated, electrochemical reduction and
oxidation cycles are initiated, allowing continuous heavy metal
transformation and immobilization, thus enhancing overall efficiency.

4.2 Photocatalytic-electromagnetic hybrid
remediation using functional nanoparticles

The concept of coupling photocatalytic nanomaterials, such as
TiO₂ nanoparticles, with electromagnetic fields opens up new
avenues for intensifying contaminant degradation. In this hybrid
approach, UV-activated TiO₂ nanoparticles generate reactive
oxygen species (ROS) capable of breaking down organic
pollutants (Park et al., 2021; Sun et al., 2020). However, instead
of limiting the process to the photocatalytic activity alone, the
addition of a low-frequency electromagnetic field enhances
nanoparticle dispersion and accelerates the electron transfer
processes involved in pollutant degradation (Cai et al., 2019;
Rawat et al., 2021). This strategy increases the reaction rate and
extends the lifetime of ROS, effectively expanding the scope of
contaminants that can be addressed, including both heavy metals
and organic pollutants.

4.3 Nanomaterial-enhanced phytomining:
Harnessing biological synergy

Another concept emerging in environmental remediation is
nanomaterial-enhanced phytomining, where engineered
nanomaterials are combined with hyperaccumulating plants to
extract valuable metals from contaminated environments (Li
et al., 2020; Tognacchini et al., 2019). Traditional
phytoremediation is often hindered by the slow uptake of metals
and limited bioavailability (Khalid et al., 2021). By introducing
metal-seeking nanoparticles, such as functionalized carbon
nanotubes or metal-organic frameworks (MOFs), to the root
zone of these plants, the uptake of metals such as nickel,
cadmium, and zinc is greatly amplified (Doria-Manzur et al.,
2022; Rossi et al., 2019). These nanoparticles enhance the
bioavailability of metals by chelating them into soluble forms
that are more easily transported through the plant’s vascular
system, ultimately resulting in higher metal yields. This
synergistic approach not only cleanses contaminated soils but
also offers a novel method for recovering valuable metals,
providing a sustainable alternative to traditional mining processes.

4.4 Dynamic self-regenerating systems with
nanocomposites and microbial consortia

A pioneering concept is the design of dynamic self-regenerating
systems, in which nanomaterials and microbial consortia work

Frontiers in Nanotechnology frontiersin.org10

Olawade et al. 10.3389/fnano.2024.1466721

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1466721


together to sustain long-term contaminant degradation without
requiring external inputs (Fu et al., 2021; Xia et al., 2023). For
example, magnetic nanoparticles (MNPs) can be combined with
microbial biofilms capable of biodegrading organic pollutants (Liu
et al., 2022; Zhu et al., 2020). The MNPs serve two primary
functions: first, they adsorb heavy metals, preventing them from
inhibiting microbial activity; second, they act as catalysts that
regenerate the microbial degradation capacity by facilitating
electron transfer between the bacteria and the contaminants. This
interaction sets up a dynamic feedback loop where contaminants are
continuously broken down and the system regenerates itself,
maintaining efficiency over extended operational periods.

4.5 Nanoparticle-enhanced thermal
remediation for heavy metal recovery

Thermal remediation methods, such as soil heating, have
traditionally been used for organic pollutant removal but are less
effective for heavy metal immobilization. A novel approach involves
using thermally activated nanoparticles, such as aluminum oxide
(Al₂O₃) or zirconium oxide (ZrO₂), which, when heated, change
their surface chemistry to selectively bind and sequester heavy
metals like lead and mercury (Allwin Mabes Raj et al., 2022; Fan
et al., 2020; Guo et al., 2021; Huang et al., 2021). This nanoparticle-
enhanced thermal remediation technique leverages the temperature-
induced phase transformation in the nanoparticles, enhancing their
adsorptive capacities and providing an innovative method for metal
recovery during remediation processes (Al-Najar et al., 2021;
Williams and Peterson, 2021).

4.6 Nanomaterial-enabled
electrohydrodynamic remediation

Another concept is the nanomaterial-enabled
electrohydrodynamic remediation, which combines electric fields
with fluid dynamics to direct the flow of contaminants toward
reactive nanomaterials embedded in porous media (Ji et al., 2023;
Sprocati and Rolle, 2019). In this system, nanomaterials like
functionalized graphene oxide are integrated within a
hydrodynamic framework that is manipulated through external
electric fields. This enables selective capture of contaminants by
steering them towards nanomaterials with high affinity for specific
heavy metals, ensuring high capture rates and fast remediation times
(Ahmad et al., 2020; Nisola et al., 2020). Additionally, the fluid flow
generated by electrohydrodynamics can be fine-tuned to optimize
the contact time between the contaminants and the nanomaterials,
leading to a highly efficient and targeted removal process.

5 Selectivity of nanomaterials

The selectivity of nanomaterials for heavy metal removal is
crucial for ensuring efficient and targeted remediation of
contaminated water sources (Tahoon et al., 2020). Surface
functionalization, ligand design, and molecular imprinting
represent versatile approaches for enhancing the selectivity of

nanomaterials in heavy metal remediation (Rafeeq et al., 2022).
By tailoring the surface chemistry, incorporating specific ligands,
and imprinting molecular recognition sites, researchers can design
highly selective adsorbents for targeted removal of heavy metal
contaminants from water sources (Fei and Hu, 2022). Continued
advancements in materials synthesis, molecular design, and
characterization techniques will further accelerate the
development of selective nanomaterials for sustainable water
treatment applications (Saravanan et al., 2022).

5.1 Surface functionalization

Surface functionalization plays a pivotal role in tailoring
the selectivity of nanomaterials by modifying their surface
chemistry to preferentially adsorb specific heavy metal ions
(Sarma et al., 2019). Recent research has demonstrated the
efficacy of surface functionalization strategies for enhancing
the selectivity of nanomaterials in heavy metal removal
applications (Jawed et al., 2020). Functional groups such as
carboxyl (-COOH), amino (-NH2), thiol (-SH), and hydroxyl
(-OH) are commonly introduced onto the surface of
nanomaterials to impart specific binding affinity towards target
heavy metal ions (Rai et al., 2022). For example, graphene
oxide (GO) and carbon nanotubes (CNTs) functionalized with
carboxyl groups exhibit enhanced selectivity for heavy metal
ions such as lead (Pb), cadmium (Cd), and mercury (Hg) due
to the formation of strong metal-carboxylate complexes (Mohan
et al., 2023). Similarly, metal-organic frameworks (MOFs) can be
functionalized with tailored ligands to selectively adsorb specific
heavy metal ions based on their size, charge, and coordination
chemistry (Wen et al., 2018).

Furthermore, the development of multifunctional
nanomaterials through the simultaneous incorporation of
multiple functional groups enables synergistic effects and
enhanced selectivity toward target heavy metal contaminants. For
instance, hybrid nanocomposites composed of graphene oxide and
magnetic nanoparticles functionalized with both carboxyl and
amino groups demonstrate superior selectivity and adsorption
capacity for heavy metal ions compared to individual
components (Natarajan et al., 2023). Advancements in surface
functionalization techniques, including covalent bonding,
electrostatic interactions, and chemical modification, enable
precise control over the surface chemistry of nanomaterials,
thereby facilitating the design of highly selective adsorbents for
heavy metal removal (Liu et al., 2019).

5.2 Ligand design

Ligand design represents a versatile approach for enhancing the
selectivity of nanomaterials by incorporating specific chelating
agents or receptors that exhibit high affinity towards target heavy
metal ions (Dzhardimalieva and Uflyand, 2018). Recent studies have
focused on the rational design and synthesis of ligands with tailored
properties to selectively form complexes with specific heavy metal
contaminants. Ligands such as crown ethers, cyclodextrins, and
calixarenes offer unique binding cavities and coordination sites for
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selective recognition and capture of heavy metal ions (Liang et al.,
2022). Functionalization of nanomaterials with ligands featuring
complementary functional groups enables the formation of stable
metal-ligand complexes, thereby enhancing the selectivity and
affinity of nanomaterials for target heavy metal ions (de Oliveira
et al., 2021).

Moreover, the integration of molecular modeling techniques,
such as density functional theory (DFT) calculations and molecular
dynamics simulations, aids in the rational design and optimization
of ligands for selective heavy metal removal (Ebenezer and Solomon,
2024). By elucidating the underlying interactions between ligands
and heavy metal ions at the molecular level, researchers can tailor
the structure and properties of ligands to maximize selectivity and
binding affinity (Li et al., 2023a). Furthermore, the development of
stimuli-responsive ligands that undergo conformational changes or
structural transformations in response to specific environmental
cues offers dynamic control over the selectivity of nanomaterials
(Grzelczak et al., 2019). Stimuli-responsive ligands can selectively
bind heavy metal ions under certain conditions, such as pH,
temperature, or redox potential, enabling on-demand capture and
release of target contaminants (Mamidi et al., 2021; Sharma
et al., 2024).

5.3 Molecular imprinting

Molecular imprinting is an emerging technique for imprinting
specific binding sites or cavities within the structure of
nanomaterials to selectively recognize and capture target heavy
metal ions (Tchekwagep et al., 2022). Recent advancements in
molecular imprinting technology have led to the development of
highly selective nanomaterials for heavy metal removal (Ali et al.,
2024). Molecularly imprinted polymers (MIPs) represent a
promising class of materials that mimic the molecular
recognition properties of natural receptors or antibodies (Parisi
et al., 2022). By imprinting the desired heavy metal ions within a
polymer matrix through template-assisted polymerization or sol-gel
methods, MIPs can selectively bind and remove target contaminants
from aqueous solutions (ul Gani Mir et al., 2022). The precise
control over the size, shape, and functionality of imprinted cavities
enables high selectivity and affinity towards specific heavy metal ions
(El Ouardi et al., 2021).

Moreover, the integration of molecular imprinting technology
with nanomaterials, such as graphene-based nanocomposites,
metal oxide nanoparticles, and carbon nanotubes, enhances the
stability, reusability, and performance of imprinted materials for
heavy metal removal applications (Yahaya et al., 2021).
Functionalization of nanomaterials with template molecules and
cross-linking agents facilitates the formation of well-defined
imprinted cavities with tailored recognition properties (Parisi
et al., 2020). Furthermore, the development of smart and
stimuli-responsive molecularly imprinted nanomaterials offers
dynamic control over the selectivity and release of captured
heavy metal ions (Li et al., 2023b). Stimuli-responsive MIPs can
undergo reversible changes in their structure or properties in
response to external stimuli, enabling the on-demand release of
adsorbed contaminants under specific conditions (Mintz Hemed
et al., 2023).

6 Regeneration strategies

Regeneration of adsorbents and other materials used in heavy
metal removal processes is essential for enhancing the sustainability
and cost-effectiveness of water treatment systems. Regeneration
strategies play a crucial role in enhancing the sustainability and
cost-effectiveness of heavy metal removal processes. Recent
advancements in desorption techniques, electrochemical
regeneration, and photocatalytic regeneration offer promising
solutions for the efficient recovery and reuse of adsorbents and
electrodes in water treatment systems.

6.1 Desorption techniques

Desorption techniques involve the removal of adsorbed heavy
metal ions from the surface of adsorbent materials, allowing for the
regeneration and reuse of the adsorbents. Various desorption
methods have been developed to efficiently recover heavy metal
ions while minimizing the generation of secondary wastes (Lata
et al., 2015). Recent trends in desorption techniques focus on
enhancing the efficiency and selectivity of desorption processes
while reducing energy consumption and environmental impact
(Kopac, 2021). Thermal desorption, which involves heating the
adsorbent material to release adsorbed contaminants, remains a
commonly used method due to its simplicity and effectiveness.
However, advancements in alternative desorption methods, such
as chemical desorption, solvent extraction, and microwave-assisted
desorption, offer advantages in terms of selectivity, speed, and
energy efficiency (Jalili et al., 2020).

Chemical desorption techniques involve the use of desorbing
agents, such as acids, bases, or complexing agents, to break the bonds
between the adsorbent and the heavy metal ions (Chatterjee and
Abraham, 2019). Recent studies have investigated the use of
environmentally friendly desorbing agents, such as citric acid,
EDTA, and hydrochloric acid, to minimize the generation of
hazardous wastes and reduce environmental impact (Golmaei
et al., 2018; Yaashikaa et al., 2021). Furthermore, the
development of innovative desorption techniques, such as
ultrasonic-assisted desorption and supercritical fluid extraction,
enables rapid and efficient recovery of heavy metal ions from
adsorbent materials (Wang J. et al., 2024). These techniques offer
advantages in terms of selectivity, speed, and energy efficiency,
making them promising candidates for the regeneration of
adsorbents in heavy metal removal systems (Shrestha et al., 2021).

6.2 Electrochemical regeneration

Electrochemical regeneration involves the application of an
electric current to regenerate adsorbent materials or electrodes
used in heavy metal removal processes (Ganzoury et al., 2020).
The process relies on electrochemical reactions to desorb and
recover heavy metal ions from the surface of the electrodes or
adsorbents. Recent advancements in electrochemical regeneration
techniques focus on optimizing electrode materials, operating
conditions, and regeneration protocols to enhance efficiency and
reduce energy consumption (Romano et al., 2020). Electrochemical
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regeneration methods, such as electrochemical desorption and
electrodialysis, offer advantages in terms of selectivity, scalability,
and environmental sustainability (Sedighi et al., 2023).

Advanced electrode materials, including carbon-based
electrodes, metal oxide nanoparticles, and conductive polymers,
exhibit enhanced electrochemical activity and stability, leading to
improved regeneration efficiency and durability of electrochemical
regeneration systems (Pan et al., 2019). Moreover, the integration of
renewable energy sources, such as solar and wind power, into
electrochemical regeneration systems reduces the carbon
footprint and energy consumption of heavy metal removal
processes (Zahmatkesh et al., 2022). Additionally, the
development of smart and adaptive electrochemical regeneration
systems enables real-time monitoring and control of regeneration
processes, leading to enhanced efficiency and reliability (Lv et al.,
2023). These systems offer advantages in terms of process
optimization, resource utilization, and environmental
sustainability, making them promising candidates for the
regeneration of adsorbents and electrodes in heavy metal removal
systems (Shrestha et al., 2021; Younas et al., 2021).

6.3 Photocatalytic regeneration

Photocatalytic regeneration involves the use of photocatalysts to
facilitate the degradation or transformation of adsorbed contaminants
under irradiation with light, typically ultraviolet (UV) or visible light
(Liao et al., 2022). The process relies on the generation of reactive
oxygen species (ROS) or photoinduced electrons and holes to oxidize
or reduce the adsorbed contaminants (Afreen et al., 2020). Recent
trends in photocatalytic regeneration focus on developing efficient
photocatalysts with enhanced activity and stability for the degradation
of heavy metal ions (Pang et al., 2024). Advanced photocatalytic
materials, such as metal oxides, semiconductor nanoparticles, and
carbon-based nanomaterials, exhibit high photocatalytic activity and
selectivity towards specific heavy metal contaminants (Farhan
et al., 2023).

Moreover, the integration of advanced reactor designs, such as
photocatalytic membranes, immobilized photocatalysts, and flow-
through photocatalytic reactors, enables efficient utilization of light
energy and enhancement of mass transfer kinetics (Molinari et al.,
2021; Wang Z. et al., 2021). These reactor designs offer advantages in
terms of scalability, continuous operation, and process integration,
making them suitable for practical applications in heavy metal
removal systems (Qasem et al., 2021). Hence, the development of
hybrid photocatalytic systems, such as photocatalytic-adsorption and
photocatalytic-electrochemical systems, enables synergistic effects and
enhanced regeneration efficiency. These hybrid systems offer
advantages in terms of selectivity, efficiency, and versatility,
making them promising candidates for the regeneration of
adsorbents and electrodes in heavy metal removal systems.

7 Scalability and practical
considerations

Scalability and practical considerations are critical factors in the
development and implementation of heavy metal removal

nanotechnologies (Ateia et al., 2024). Recent advancements in
synthesis methods, stability, longevity, cost-effectiveness, and
integration with existing water treatment infrastructure offer
promising solutions for addressing heavy metal contamination in
water sources and ensuring access to clean and safe drinking water
for all (Hussain et al., 2024; Jadhao et al., 2024; Maji and
Dutta, 2024).

7.1 Synthesis methods

Synthesis methods are crucial in determining the scalability,
reproducibility, and properties of nanomaterials used in heavy metal
removal technologies (Wawata and Fabiyi, 2024). Recent
advancements in synthesis techniques focus on enhancing the
scalability and cost-effectiveness of nanomaterial production
while maintaining control over the properties and performance
of the materials (Gohar et al., 2024; Saleh, 2024). Traditional
synthesis methods, such as chemical precipitation, sol-gel, and
hydrothermal synthesis, offer advantages in terms of simplicity,
versatility, and scalability (Zohrabi, 2024). However, these methods
may suffer from limitations in terms of particle size control,
uniformity, and reproducibility (Li et al., 2023a; Lin et al., 2023).
Recent trends in synthesis methods include the development of
scalable and environmentally friendly approaches, such as green
synthesis, microwave-assisted synthesis, and continuous-flow
synthesis, which offer advantages in terms of energy efficiency,
reaction control, and waste reduction (Adeola et al., 2023;
Ahmed S. F. et al., 2022; Kaur et al., 2023). Moreover,
advancements in bottom-up and top-down fabrication techniques
enable precise control over the size, shape, and surface properties of
nanomaterials, leading to improved performance and selectivity in
heavy metal removal applications. Integration of advanced
characterization techniques, such as electron microscopy, X-ray
diffraction, and spectroscopy, facilitates real-time monitoring and
optimization of synthesis processes, enabling rapid scale-up and
commercialization of nanomaterial-based technologies (Abid et al.,
2022; Baig et al., 2021; Chen et al., 2022; El-Khawaga et al., 2023).

7.2 Stability and longevity

Stability and longevity are critical factors in the performance and
sustainability of nanomaterials used for heavy metal removal,
particularly in long-term and continuous water treatment
applications (Gul Zaman et al., 2021; Yu et al., 2022). While
significant advancements have been made in improving the
stability and durability of nanomaterials, challenges remain.
Nanomaterials are prone to aggregation due to weaker
intermolecular interactions, which can reduce their surface area
and subsequently diminish their removal efficiency (Ahmed S. F.
et al., 2022). In addition, nanomaterials, particularly
nanomembranes, often suffer from mechanical instability, which
results in performance degradation over time, limiting their
effectiveness in long-term applications. One major issue is the
environmental fate of nanomaterials, especially when they
interact with microorganisms or are released into aquatic
environments. Nanoparticles, such as carbon nanotubes and
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graphene-based materials, are prone to settling in sediments where
they can harm benthic organisms. For instance, graphene oxide can
produce reactive oxygen species that damage cell membranes in
marine life (Saleem and Zaidi, 2020). These interactions with
environmental microorganisms could lead to unintended
ecological consequences, complicating the large-scale deployment
of nanomaterials in water treatment systems.

The aggregation of nanomaterials in wastewater treatment
plants is another significant concern. Studies have shown that a
substantial proportion of nanoparticles are removed during the
activated sludge process via bioadsorption onto the sludge
surface. For example, nanoparticles like WO₃ and TiO₂ were
found to accumulate in sludge (Simelane and Dlamini, 2019).
The aggregation of nanoparticles in sludge complicates the
management of waste sludge, as it can lead to potential
environmental risks if not properly managed. To address these
challenges, surface modification techniques have been developed
to enhance the stability and dispersibility of nanomaterials.
Functionalization with stabilizing agents, encapsulation within
protective coatings, and immobilization on support matrices can
extend the operational lifespan of nanomaterials by preventing
aggregation and degradation in harsh water treatment
environments (Alipour Atmianlu et al., 2021). For instance, by
reducing aggregation and enhancing dispersibility, these
modifications can significantly extend the operational lifespan of
nanomaterials. However, long-term environmental assessments are
still necessary, as exposure to various environmental factors can alter
the size, composition, and stability of these materials, potentially
changing their behaviour and environmental impact (Simeonidis
et al., 2019). Nanoparticles such as Ag and ZnO have been reported
to negatively affect phytoplankton and diatoms, demonstrating the
need for more research on the environmental impact of spent
nanomaterials.

In addition to these stability issues, proper disposal and
recyclability of spent nanomaterials are crucial for ensuring
sustainable applications. Recycling methods, such as using spent
nanoparticles in brick manufacturing or disposing them in
controlled landfills, have been suggested, but long-term
evaluation is required, as many approaches have only been tested
at the laboratory scale (Prathna et al., 2018). Clear guidelines on
nanomaterial disposal are also necessary to avoid unintended
environmental contamination when scaling up their use in
industrial applications. Despite these challenges, advancements in
nanocomposite and hybrid materials show promise for enhancing
stability and longevity. For example, combining different
nanomaterials can create synergistic effects, improving their
structural integrity and resistance to environmental degradation
(Hassan et al., 2021). Integrating nanomaterials with biodegradable
or natural matrices also enhances their environmental compatibility
while maintaining high removal efficiency.

7.3 Cost-effectiveness

Cost-effectiveness is a critical consideration in developing and
implementing heavy metal removal technologies, particularly for
large-scale and decentralized water treatment systems (Ayach et al.,
2024; Neisan et al., 2023). Several economic factors can mitigate

against investing in nanomaterial-based remediation technologies.
The running cost of the technologies can be huge. This may be due to
the raw materials used, the synthesis method adopted, specialized
equipment and facilities, energy consumption cost, labour, and
environmental and health risk assessment costs (Asghar et al., 2024).

However, recent advancements in materials synthesis, process
engineering, and system design focus on reducing costs while
maintaining performance and reliability (Chai et al., 2021; Gupta
et al., 2021). The cost of nanomaterials, energy consumption, and
operational maintenance are primary factors influencing the overall
cost-effectiveness of heavy metal removal technologies. Recent
trends in materials synthesis emphasize scalable and low-cost
approaches, such as template-assisted synthesis, self-assembly,
and waste-derived materials, to reduce production costs and
enhance affordability (Abdullahi et al., 2024; Luo et al., 2021).

Furthermore, advancements in process engineering, such as
optimization of reactor design, flow rate control, and automation,
enable efficient utilization of resources and energy, leading to
reduced operational costs and improved cost-effectiveness
(Constance Obiuto et al., 2024). Integration of renewable energy
sources, such as solar and wind power, into water treatment systems
further enhances sustainability and reduces operating expenses
(Shokri and Sanavi Fard, 2022). Moreover, life cycle cost analysis
and techno-economic assessments provide valuable insights into the
cost-effectiveness and feasibility of heavy metal removal
technologies, guiding decision-making and investment strategies
for water treatment infrastructure (Ćetković et al., 2022; Ilyas
et al., 2021; Kehrein et al., 2021).

Specifically, to address scalability, cost-effectiveness, and
environmental sustainability challenges associated with the use of
nanoparticles for heavy metal remediation, there is a need to
improve surface functionalization. When nanoparticle surfaces
are optimally functionalized, the tendency for aggregation is
reduced. This will ultimately improve its stability. Also, using
green chemistry and biological methods of synthesis would
tremendously reduce the cost associated with the use of nano-
based heavy metal remediation. Furthermore, optimizing the
magnetic properties of nanoparticles to improve their separation
from the environment will increase recovery and reusability (Asghar
et al., 2024).

7.4 Integration with existing water treatment
infrastructure

Integrating nanomaterials with existing water treatment
technologies, such as membrane filtration, electrochemical
treatment, and biological remediation, presents an opportunity to
enhance the efficiency of heavy metal removal (Elgarahy et al., 2021;
Khan et al., 2021). Recent efforts focus on hybrid systems that
leverage the unique properties of nanomaterials alongside
traditional remediation techniques, offering synergistic effects
that can improve selectivity, efficiency, and fouling resistance
(Adeola and Forbes, 2021; Pérez et al., 2023; Thakur and Kumar,
2022). For instance, membrane-based nanocomposites embedded
with functionalized nanoparticles have demonstrated superior
performance in selectively removing heavy metals from water
while also improving membrane durability and reducing fouling.
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The successful incorporation of nanomaterials into current
water treatment systems is exemplified by ceramic disk filters
coated with nano-ZnO. These filters, which utilize the
photocatalytic antibacterial properties of ZnO to reduce
Escherichia coli in drinking water, offer a cost-effective solution,
particularly beneficial for remote and rural communities (Huang
et al., 2018). This hybrid approach, combining traditional filtration
methods with nanomaterials, provides a low-cost upgrade to
existing systems, enhancing water safety without requiring
substantial modifications. However, integrating nanomaterials
into large-scale WWTPs presents unique challenges, as
demonstrated by studies on the behaviour of AgNPs in
wastewater treatment processes. Research indicates that during
wastewater treatment, AgNPs undergo sulfidation, particularly in
anaerobic zones, converting them to Ag₂S. This transformation
reduces their effectiveness in contaminant removal (Kent et al.,
2014). This transformation complicates the integration of
nanomaterials in large-scale systems, due to the altered
adsorption properties of the nanoparticles.

Further challenges include the handling of nanomaterials in the
sludge generated by wastewater treatment processes. A recent study
(Cervantes-Avilés and Keller, 2021) demonstrated that while
WWTPs can remove between 84% and 99% of metal-based
nanoparticles from influent wastewater, substantial
concentrations of nanoparticles, especially Mg, Ni, and Cd, still
accumulate in the waste sludge. The accumulation of nanoparticles
in waste sludge requires careful consideration during disposal, as the
potential release of nanomaterials into the environment could pose
additional risks. This was affirmed by another study that researched
integrating WO₃ and TiO₂ mixtures into a wastewater treatment
plant (Simelane and Dlamini, 2019). The nanoparticles were mainly
adsorbed onto the sludge and removed from the wastewater, with
the activated sludge process proving effective in their elimination.
However, the long-term fate of these nanoparticles, including the
stability of their polymorphs like monoclinicWO₃ and anatase TiO₂,
remains a concern for sludge management strategies. Moreover, a
study on silver nanoparticles in municipal WWTPs demonstrated
that both mechanical and biological treatments are effective in
reducing nanoscale silver particles from wastewater, with a 95%
reduction achieved by combining these processes (Li et al., 2013).
However, despite this high reduction rate, residual concentrations of
n-Ag-Ps in the effluent still pose a challenge for WWTPs,
particularly when scaling up the technology for larger plants.

System optimization and advancements in process integration
have facilitated the incorporation of nanomaterials into
conventional water treatment infrastructure. For instance,
modular approaches allow for easier retrofitting of remediation
units, enabling the deployment of nanomaterials without
extensive changes to existing systems (Ruíz-Baltazar, 2024;
Vasoya, 2023). However, the transformation, stability, and long-
term behaviour of nanomaterials within these systems, particularly
under varying environmental conditions, remain areas of concern.
Collaborative efforts between nanotechnology experts,
environmental engineers, and materials scientists are essential for
overcoming these challenges and realizing the full potential of
nanomaterials in integrated water treatment solutions.

Overall, integrating nanomaterial with existing water treatment
infrastructure is essential for the practical implementation and

adoption of heavy metal removal technologies in real-world
settings (Singh et al., 2023). Recent advancements in system
design, modularization, and process optimization focus on
compatibility and interoperability with existing treatment
processes and infrastructure (Brad et al., 2021). Heavy metal
removal technologies should be designed to complement and
integrate seamlessly with conventional water treatment processes,
such as coagulation-flocculation, sedimentation, filtration, and
disinfection (Khan Khanzada et al., 2023; Vidu et al., 2020).
Modular and scalable designs enable flexible deployment and
retrofitting of treatment units within existing infrastructure,
facilitating gradual upgrades and expansions according to specific
water quality and capacity requirements (Brears, 2021; Daigger et al.,
2020; Leigh and Lee, 2019). Moreover, advancements in sensor
technology, remote monitoring, and automation enable real-time
data acquisition, process control, and performance optimization,
enhancing the operational efficiency and reliability of integrated
water treatment systems (Martínez et al., 2020; Park et al., 2020;
Zainurin et al., 2022; Zhang W. et al., 2020). Integration of smart
sensors and IoT-enabled devices facilitates remote monitoring and
control of treatment processes, enabling predictive maintenance and
early detection of system failures.

8 Challenges and future directions

Addressing heavy metal contamination in water sources poses
significant challenges, ranging from environmental impact
assessment to regulatory compliance and scaling up production.
Addressing the challenges of heavy metal contamination in water
sources requires multidisciplinary approaches, collaboration, and
innovation (Chernov et al., 2024; Ding, 2024; Kupa et al., 2024).

8.1 Environmental impact assessment

Nanoparticles could be optimized to become highly reusable.
For instance, platinum magnesium and copper oxide nanoparticles
have been reused in literature. However, when nanoparticles are not
properly managed, they could accumulate in the environment due to
their long-term stability. They can react with organic matter in the
environment to cause environmental damage, and health issues such
as apoptosis, oxidative stress, etc (Fu et al., 2020; Imran et al., 2021;
Wahl et al., 2021; Zhang X. et al., 2020).

One of the primary challenges in heavy metal remediation is
conducting comprehensive environmental impact assessments to
evaluate the potential risks and benefits associated with remediation
technologies (Khatun et al., 2024; Rashid et al., 2023). While
nanomaterials offer promising solutions for heavy metal removal,
concerns remain regarding their environmental fate, toxicity, and
long-term effects on ecosystems. Recent studies have focused on
assessing the environmental implications of nanomaterial-based
remediation technologies through rigorous toxicity testing, fate
and transport modelling, and ecological risk assessments (Isibor,
2024; Isibor et al., 2024; Prasad and Gupta, 2024; Shanker, 2024).
These efforts aim to identify potential environmental hotspots,
evaluate exposure pathways, and mitigate adverse impacts on
aquatic organisms, soil microbiota, and human health. Moreover,
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advancements in life cycle assessment (LCA) and environmental
footprint analysis enable holistic evaluation of the environmental
impacts of heavy metal remediation technologies, considering
factors such as energy consumption, resource utilization, and
waste generation (Ding et al., 2024; Pandit et al., 2024; Rothee
et al., 2024). Integration of environmental sustainability criteria into
the design and implementation of remediation strategies ensures
responsible stewardship of natural resources and minimizes
unintended consequences.

8.2 Regulatory compliance

Regulatory compliance is another significant challenge in the
development and deployment of heavy metal remediation
technologies, as stringent regulations govern the use, disposal,
and discharge of contaminants in water sources. Recent trends in
regulatory compliance focus on harmonizing standards and
guidelines for heavy metal concentrations in drinking water,
surface water, and wastewater effluents to ensure the protection
of human health and the environment (Kumar and Samadder, 2023;
Shaikh and Birajdar, 2024). Regulatory agencies, such as the
Environmental Protection Agency (EPA) in the United States
and the European Chemicals Agency (ECHA) in Europe, play a
crucial role in setting and enforcing regulatory requirements for
heavy metal remediation technologies (Nwokediegwu et al., 2024).
Moreover, advancements in risk-based approaches and adaptive
management strategies enable flexible and pragmatic regulatory
frameworks that balance environmental protection with
technological innovation (Gikay, 2024; Dada et al., 2024).
Collaborative efforts between government agencies, industry
stakeholders, and research institutions facilitate knowledge
exchange, capacity building, and continuous improvement in
regulatory compliance.

8.3 Scaling up production

Scaling up the production of nanomaterial-based remediation
technologies from laboratory-scale prototypes to commercially
viable systems poses practical challenges, including cost
considerations, process optimization, and supply chain
management. Recent advancements in scaling up production
focus on optimizing synthesis methods, improving materials
efficiency, and streamlining manufacturing processes to reduce
production costs and enhance scalability (Ganguly et al., 2024;
Palit and Ranjit, 2024; Tyagi et al., 2024). Automation, robotics,
and process intensification techniques enable high-throughput
production of nanomaterials with consistent quality and
performance (Aithal and Aithal, 2024; Darwish et al., 2024).
Furthermore, partnerships between academia, industry, and
government agencies facilitate technology transfer, knowledge
dissemination, and capacity building to accelerate the
commercialization of nanomaterial-based remediation
technologies (Kumar et al., 2023). Investment in research
infrastructure, pilot-scale testing facilities, and demonstration
projects enables validation of scalability and performance under
real-world conditions.

8.4 Multifunctional nanomaterials

Multifunctional nanomaterials offer exciting opportunities for
addressing multiple challenges in heavy metal remediation
simultaneously, including selectivity, stability, and regeneration
(Feisal et al., 2024; Nikić et al., 2024). Recent trends in
multifunctional nanomaterials focus on integrating multiple
functionalities, such as adsorption, catalysis, and sensing, into a
single platform to enhance performance and versatility in heavy
metal removal applications (Asghar et al., 2024; Godja and
Munteanu, 2024; Shanmugavel et al., 2024). For example,
nanocomposites composed of graphene oxide, metal
nanoparticles, and molecularly imprinted polymers exhibit
synergistic effects and enhanced selectivity for specific heavy
metal contaminants. Moreover, advancements in responsive and
stimuli-triggered nanomaterials enable dynamic control over
adsorption, desorption, and regeneration processes, enhancing
efficiency and sustainability (Makaev et al., 2023; Shahrokhinia
et al., 2024; Zhou et al., 2021).

However, designing multifunctional nanomaterials also presents
several challenges. The complexity of synthesizing materials that
combine multiple functionalities while maintaining structural
integrity and long-term stability is a significant barrier. For
instance, some multifunctional materials, such as those used for
both adsorption and catalysis, must balance these functions without
compromising their effectiveness in any particular role (Li and Liu,
2023). Additionally, the recovery and recyclability of these materials
are critical for large-scale applications. Magnetic nanomaterials,
such as ZnO-Fe3O4 composites, have shown promise in this
regard due to their ability to be easily separated from treated
water using external magnets, thus enhancing the regeneration
process and overall cost-effectiveness (Goyal et al., 2018).
Furthermore, multifunctional nanomaterials must maintain high
selectivity in complex water matrices containing competing ions, a
factor that often limits their performance (Baby et al., 2022).

Despite these challenges, advancements in stimuli-responsive
and smart nanomaterials have opened new avenues for overcoming
these limitations. Materials that can dynamically alter their
adsorption properties based on environmental conditions, such as
pH-responsive poly 4-hydroxyphenyl methacrylate single-walled
carbon nanotube (PHPMA-SWCNT) nanocomposites, have
demonstrated the ability to selectively target heavy metals like
Pb2⁺ and Cd2⁺, even in the presence of multiple interfering ions
(Mamidi et al., 2021). This adaptability enhances the material’s
performance in real-world applications, where water compositions
can vary significantly. A practical example of multifunctionality can
be seen in the work by Goyal et al. (2018), where ZnO-Fe3O4 (ZF)
nanocomposites were successfully used for simultaneous adsorption
of heavy metals, degradation of organic dyes, and antibacterial
activity. This multifunctional performance is crucial for dealing
with complex contamination scenarios, such as those found in
industrial effluents, where pollutants often coexist. Moreover, the
ZF nanocomposite could be easily recovered using magnetic
separation and reused multiple times, offering a sustainable
solution for water treatment.

Further practical examples of multifunctional nanomaterials
include the multifunctional nanomaterials is the biomaterial-
functionalized graphene-magnetite (Bio-GM) nanocomposite,
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developed by Ramalingam et al., 2018, which addresses the
challenges of colloidal stability and recyclability in graphene-
based materials. By incorporating Shewanella oneidensis cells into
the nanocomposite, Bio-GM efficiently adsorbed both dyes and Cr⁶⁺,
with removal capacities of 189.63 mg/g for dyes and 222.2 mg/g for
Cr⁶⁺. Additionally, the nanocomposite facilitated the biocatalytic
reduction of Cr⁶⁺ to Cr³⁺, demonstrating its multifunctionality. Bio-
GM could be regenerated and reused without releasing harmful
components, making it a sustainable option for water treatment. In
another example, El Mouden et al., 2023 synthesized NC@Co₃O₄
nanocomposites by co-precipitating natural clay with cobalt oxide
nanoparticles for heavy metal removal. These nanocomposites
exhibited high adsorption efficiencies for Pb2⁺ and Cd2⁺, with
rates of 86.89% and 82.06%, respectively.

9 Conclusion

Heavy metal contamination poses a significant threat to
environmental and public health, necessitating effective
remediation strategies. Nanomaterial-based approaches offer
promising solutions for heavy metal removal from water sources,
leveraging the unique properties of nanomaterials to enhance
selectivity, efficiency, and sustainability. Through advancements
in synthesis methods, surface functionalization, and integration
with existing water treatment infrastructure, nanomaterials have
demonstrated remarkable potential in addressing the challenges of
heavy metal pollution. However, several critical aspects must be
considered to ensure the successful implementation of
nanomaterial-based remediation technologies. Environmental
impact assessment and regulatory compliance are paramount to
mitigating potential risks and ensuring the responsible use of
nanomaterials in water treatment applications. Additionally,
scalability, cost-effectiveness, and integration with other
remediation techniques are essential considerations for practical
implementation and widespread adoption of nanomaterial-based
solutions. Furthermore, ongoing research efforts should focus on
addressing key challenges such as the stability, longevity, and
multifunctionality of nanomaterials to enhance their performance
and reliability in real-world settings. Collaboration between key

stakeholders in academia, industry, government agencies, and
communities is essential to drive innovation, foster technology
transfer, and accelerate the translation of research findings into
actionable solutions.
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