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Abstract: In this paper, we introduce Pixelator v2, a novel perceptual image comparison method
designed to enhance security and analysis through improved image difference detection. Unlike
traditional metrics such as MSE, Q, and SSIM, which often fail to capture subtle but critical changes
in images, Pixelator v2 integrates the LAB (CIE-LAB) colour space for perceptual relevance and
Sobel edge detection for structural integrity. By combining these techniques, Pixelator v2 offers
a more robust and nuanced approach to identifying variations in images, even in cases of minor
modifications. The LAB colour space ensures that the method aligns with human visual perception,
making it particularly effective at detecting differences that are less visible in RGB space. Sobel edge
detection, on the other hand, emphasises structural changes, allowing Pixelator v2 to focus on the
most significant areas of an image. This combination makes Pixelator v2 ideal for applications in
security, where image comparison plays a vital role in tasks like tamper detection, authentication,
and analysis. We evaluate Pixelator v2 against other popular methods, demonstrating its superior
performance in detecting both perceptual and structural differences. Our results indicate that Pixelator
v2 not only provides more accurate image comparisons but also enhances security by making it
more difficult for subtle alterations to go unnoticed. This paper contributes to the growing field of
image-based security systems by offering a perceptually-driven, computationally efficient method
for image comparison that can be readily applied in information system security.

Keywords: perceptual image comparison; CIE LAB colour space; sobel edge detection; image security;
structural analysis; tamper detection; image processing algorithms; information visualisation

1. Introduction

The need for robust image comparison methods has become increasingly important in
a wide range of applications, such as image security [1–10], steganography [5,11–14], and
watermarking [11,15–17]. These domains require accurate detection of image tampering or
subtle modifications, which, if left undetected, could compromise the integrity and authen-
ticity of images used in digital communication and forensic investigations. In particular, the
ability to compare images to ensure that no unauthorised modifications have been made is
crucial in ensuring tamper-proofing, content authenticity, and securing digital assets.

Several image comparison techniques have been proposed over the years, including
Mean Squared Error (MSE) [18], the Quality of Index (Q) methodology or Q value [19], and
the Structural Similarity Index Measure (SSIM) [20]. While these methods have been widely
adopted, they exhibit significant limitations. MSE, for instance, focuses purely on pixel-wise
intensity differences and does not account for perceptual or structural variations in images,
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often yielding results that are misaligned with human visual perception. SSIM and Q value,
although more perceptually relevant, can still fail to detect subtle, pixel-level changes
in images that may be critical in scenarios such as steganography and watermarking,
where every pixel matters. These limitations underscore the need for a more sensitive and
comprehensive image comparison method.

To address these shortcomings, we propose Pixelator v2, an enhancement of the
original Pixelator [21,22]. Pixelator v2 combines both pixel-wise RGB (red, green and blue)
differences with perceptual analysis in the LAB colour space [23,24], thereby capturing
both low-level and perceptually significant changes in images. Additionally, it incorporates
Sobel edge detection [25–28] to emphasise structural changes, further enhancing its ability
to detect tampering. This dual-layered approach ensures that Pixelator v2 can detect
subtle modifications, such as those introduced in steganographic processes, which are often
missed by conventional techniques.

In comparison to other edge detection techniques such as Canny [29], the Sobel edge
detection [25–28] method used in Pixelator v2 is chosen for its balance between compu-
tational efficiency and structural sensitivity. While the Canny edge detector provides
detailed edge detection, it is more sensitive to noise and computationally intensive due to
steps like gradient computation and non-maximum suppression. By integrating the LAB
colour space [23,24], Pixelator v2 achieves a closer alignment with human visual percep-
tion, enhancing subtle change detection critical for security applications. This combined
approach offers a practical alternative to modern deep learning-based methods [30–32],
which, despite their accuracy, require extensive computational resources and training data
to generalize effectively across various domains.

The limitations of traditional methods are well-illustrated through a motivational case
study comparing the Lenna original image [33] and a distorted Lenna image. Lenna is
a standard test image used in the study of digital image processing since 1973. In this
experiment (output is shown in Figure 1), the Green channel of RGB of the Lenna image
was incrementally altered by just 1 pixel value, a subtle change that is imperceptible to the
human eye. When comparing the two images, the SSIM Map yielded a similarity value of
0.9972, indicating near-perfect similarity and failing to detect the pixel-level modification.
However, Pixelator v2 successfully identified the changes, producing a Pixelator value of
1054.0784, thereby demonstrating its sensitivity to even the smallest alterations.

Figure 1. Highlighting differences between distorted Lenna and reference Lenna images using SSIM
and Pixelator v2. (a) Is the unaltered original Lenna image; (b) is the altered Lenna image where the
Green channel was incrementally altered by just 1 pixel value; (c) SSIM Map showing the differences
between the original and the altered image; (d) Pixelator View v2 showing the differences between
the original and the altered image.

Furthermore, Pixelator v2 provides additional insights by reporting several metrics
alongside the Pixelator value, such as the Pixelator RGB value, Pixelator LAB value,
Total RGB Image Score, RGB Image Difference, Total LAB Image Score, and LAB Image
Difference. These additional metrics (as explained in Section 3.3.2) offer a more granular
understanding of the differences between the images, making the tool not only more robust
but also more informative for users analysing changes in security-sensitive images.

The contributions of this paper are as follows:
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• We introduce Pixelator v2, a novel image comparison method that combines RGB and
LAB colour space analysis with edge detection, significantly improving upon existing
state-of-the-art techniques such as MSE, Q value, and SSIM.

• We provide a comprehensive set of metrics alongside the Pixelator value, enabling a
deeper understanding of image differences for both perceptual and pixel-level changes.

• We demonstrate, through experimental results, that Pixelator v2 outperforms state-of-
the-art approaches in detecting subtle image modifications, highlighting its potential
for applications in image security, steganography, and tamper detection.

The rest of this paper is structured as follows: Section 2 discusses related works on
image comparison methods, Section 3 details the design and implementation of Pixelator v2,
Section 4 presents the experimental and validation results, and Section 5 discusses some of
the relevant observations from experimental results and analysis, followed by a conclusion
in Section 6. Source code of Pixelator v2 is provided in Section 7.

2. Related Works

Image comparison has been a long-standing challenge in computer vision, particularly
in applications such as image security, steganography, and watermarking. Traditional
methods such as Mean Squared Error (MSE), Q value, and Structural Similarity Index
Measure (SSIM) have been widely employed. MSE computes the pixel-wise differences
between two images and averages them, providing a simplistic error metric that fails to
account for perceptual relevance or structural information. Similarly, Q value focuses on
pixel-wise differences but provides better results than MSE by incorporating factors like
luminance and contrast, yet still falls short in detecting more intricate differences. SSIM
improved upon these by incorporating structure, contrast, and luminance into its similarity
measure, making it more aligned with human visual perception. However, as demonstrated
in our case study, SSIM can miss small but significant changes at the pixel level, especially
when modifications occur in non-perceptually significant regions like isolated channel
values. Other noteworthy measures include the Information Theoretical-Based Statistic
Similarity Measure (ISSM) [34], which offers different perspectives on image quality
by leveraging statistical and information theory-based approaches. Additionally, the
Feature Similarity Index Measure (FSIM) [35] attempts to improve perceptual relevance
by focusing on low-level features in images. Despite this, FSIM, like SSIM, struggles to
capture nuanced pixel-level variations essential in security applications where minute
changes are critical. While effective in specific contexts, these measures may not address
the subtle structural and perceptual differences targeted by Pixelator v2.

Recent advances have introduced the use of machine learning and deep learning
algorithms to improve image comparison techniques. The Learned Perceptual Image
Patch Similarity (LPIPS) [30], Fréchet Inception Distance (FID) [31], and Deep Image
Structure and Texture Similarity (DISTS) [32] metrics have gained attention due to their
ability to leverage deep neural networks to model image similarity. LPIPS compares im-
age patches through the learned features of a neural network, achieving results that are
closer to human perception. However, it is computationally intensive and relies heavily on
pre-trained models, which may not generalise well across different domains. FID, widely
used to evaluate the quality of generated images, particularly in Generative Adversarial
Network(GAN)-based models [36–38], focuses on capturing the distributional difference
between feature vectors of real and generated images. While useful for high-level gener-
ative tasks, FID is less effective for detecting pixel-level alterations, which are crucial in
image security contexts. DISTS, a more recent technique, combines structural and textural
similarity, improving upon traditional perceptual similarity measures, but it too suffers
from computational overhead and struggles with pixel-level precision in cases of subtle
image manipulations.

Moreover it should be kept in mind that methods such as Convolutional Neural Net-
works (CNN) [39–43] and GAN-based models have demonstrated success in detecting
complex patterns and features in images. However, their computational demands and
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need for large training datasets limit their scalability and accessibility for real-time or
resource-limited applications. Pixelator v2’s design provides a balance by employing com-
putationally efficient yet perceptually aligned methods suitable for security applications
without the overhead of deep learning.

Recent advancements in pixel-level manipulation detection have provided new frame-
works for identifying tampered or modified image regions with greater accuracy.
Kong et al. [44] introduced a method called Pixel-inconsistency modeling for image ma-
nipulation localization, which identifies discrepancies in images by analyzing pixel-level
inconsistencies. This technique enhances detection capabilities, especially in applications
requiring precise localization of altered regions, thus aligning with the goals of Pixelator v2
to improve perceptual and structural difference detection in security-sensitive contexts.

Additionally, Prashnani et al. [45] proposed PieAPP (Perceptual Image-Error As-
sessment through Pairwise Preference), a perceptual image-error assessment metric that
leverages human pairwise preference data. PieAPP estimates perceptual differences be-
tween images in a way that is closely aligned with human visual judgement, offering
a benchmark for evaluating perceptual similarity and error. Pixelator v2’s design simi-
larly emphasizes perceptual sensitivity, specifically by combining LAB colour space and
structural edge detection to capture subtle variations that might otherwise go unnoticed.

To provide a clearer comparison of the capabilities of existing popular methods against
Pixelator v2, Table 1 summarizes each technique’s approach, perceptual sensitivity, struc-
tural analysis, and computational efficiency. This comparison highlights the limitations
of traditional and deep learning-based approaches, underscoring the need for a balanced
solution that Pixelator v2 aims to achieve.

Table 1. Comparison of Some of the Existing Popular Techniques with Pixelator v2.

Method Approach Perceptual Sensitivity Structural Analysis Computational Efficiency

MSE [18] Pixel-wise intensity Low None High

SSIM [20] Structural similarity Moderate Limited Moderate

Q [19] Gradient-based Moderate Moderate Moderate

FSIM [35] Feature-based similarity High Moderate Low

DISTS [32] Deep feature similarity High Moderate Moderate

PieAPP [45] Pairwise perceptual assessment High None Low

LPIPS [30] Deep learning High None Low

FID [31] GAN-based High None Low

Pixelator v2 (proposed) LAB + Sobel High High High

Pixelator v2 addresses the aforementioned limitations by introducing a dual approach
that combines both pixel-wise RGB differences and perceptual analysis in the LAB
colour space. This method not only captures fine-grained pixel changes but also provides
perceptually relevant insights into image differences. The inclusion of Sobel edge detection
further enhances Pixelator v2’s ability to detect structural changes, enabling it to perform
robustly in applications where image tampering, steganography, and watermarking are
critical concerns. Compared to traditional methods and deep learning-based approaches,
Pixelator v2 strikes a balance between computational efficiency and perceptual accuracy,
making it a powerful tool for a wide range of image comparison tasks.

As shown in Table 1, while traditional methods such as MSE, Q, and SSIM provide
relatively high computational efficiency but struggle with detecting subtle changes. More
advanced deep learning techniques such as LPIPS, FID, and DISTS, though effective in
perceptual analysis, are often computationally expensive or domain-specific. Pixelator
v2 overcomes these challenges by integrating pixel-wise and perceptual analysis with
structural detection. This combination provides a comprehensive image comparison frame-
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work/tool suitable for high-stakes applications such as image security, tamper detection,
and forensic analysis.

3. Pixelator v2 Methodology
3.1. Overview of Pixelator v2

Pixelator v2 is an advanced image comparison tool designed to overcome the limita-
tions of existing methods like MSE, Q, and SSIM by integrating pixel-wise and perceptual
analysis. It leverages both the RGB colour space for low-level pixel differences and the
CIE-LAB colour space for perceptual relevance. Moreover, it incorporates Sobel edge detec-
tion to highlight structural changes in the images, providing a comprehensive method for
detecting subtle modifications. Pixelator v2 offers additional metrics such as Pixelator RGB
value, Pixelator LAB value, and structural differences to present a full-fledged comparative
analysis of images.

3.2. Detailed Approach and Design Choices

Pixelator v2 is designed with a dual-layer approach to address both pixel-level and
perceptual differences. The algorithm of Pixelator v2 is provided in Section 3.3.1. The key
steps of the methodology include:

• Pixel-wise RGB Difference Calculation: Pixelator v2 computes the pixel-wise differ-
ences between two images in the RGB space as proposed in [21]. This captures minute
pixel-level changes which might be important in image tampering detection.

• LAB Colour Space for Perceptual Analysis: The CIE-LAB colour space [23,24] is a
perceptual colour model that represents colour in a manner aligned with human vision,
aiming to approximate how humans perceive colour differences. Unlike the RGB
colour model, which is device-dependent and primarily used for digital displays, CIE-
LAB is device-independent, making it suitable for applications involving perceptual
analysis. The use of the CIE-LAB colour space allows Pixelator v2 to capture perceptual
differences that align with human vision. This is crucial for detecting changes that are
less perceptible in the RGB space but noticeable to the human eye.

• Sobel Edge Detection: Sobel filtering is a widely used edge detection method in
image processing [25–28]. The Sobel operator is a discrete differentiation operator
that computes an approximation of the gradient of the image intensity function. This
is done by convolving the image with two 3 × 3 kernels that are designed to detect
vertical and horizontal edges, respectively. The Sobel filter highlights areas of an image
where there is a significant intensity change, making it particularly useful for detecting
edges and structural changes within an image. This is critical for applications such as
image comparison, where edge information can reveal alterations like tampering or
watermarking. Moreover, Sobel filtering is computationally efficient, which makes it
advantageous for real-time applications. In our proposed Pixelator v2, to ensure struc-
tural changes are captured, Sobel filters are applied to the difference matrices, which
enhance edge detection and structural modifications in the images. The decision to
employ Sobel edge detection in Pixelator v2 stems from its balance between computa-
tional efficiency and sensitivity to structural changes. Sobel filtering is computationally
lighter than alternatives such as the Canny edge detector [29], which involves addi-
tional steps such as gradient magnitude computation, non-maximum suppression,
and hysteresis thresholding. While Canny is highly effective for detecting detailed
edges, it is often more sensitive to noise and can produce more complex results, which
may not be necessary for our intended application. Sobel’s simpler approach, which
uses convolution with small, integer-valued kernels to detect horizontal and vertical
edges, allows for real-time application without sacrificing accuracy in identifying sig-
nificant structural modifications. Moreover, Sobel’s robustness in capturing primary
edge information makes it a suitable choice for image comparison tasks where subtle
tampering or structural changes need to be highlighted efficiently, as demonstrated in
Pixelator v2’s ability to detect pixel-level alterations in security-sensitive images.
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After the aforementioned key steps are executed, Pixelator v2 shows the output
(difference in the images) as Pixelator View v2 (as demonstrated in Figure 2) along with
the Pixelator value (up to 10 decimal points) as calculated from our heuristic based metrics
(as mentioned in Section 3.3.2). Figure 2 shows the visual output (Pixelator View v2) of
Pixelator v2 comparing the Lenna original image and a distorted Lenna image, where the
Green channel of RGB of the Lenna image was incrementally altered by just 1 pixel value.
In Figure 2, it can be noticed that Pixelator View v2 highlights the changes/differences in
pixel along the dimensions of the image, which is 512 × 512 for the Lenna image.

Figure 2. Highlighting differences between distorted Lenna image (where the Green channel of RGB
of the Lenna image was incrementally altered by just 1 pixel value) and original Lenna image using
Pixelator View v2 along with Pixelator value.

3.3. Handling Greyscale Images in Pixelator v2

Pixelator v2 is also capable of comparing differences in greyscale images. When
comparing greyscale images, Pixelator v2 processes them in a manner similar to colour
images, but with certain considerations for the single intensity channel that greyscale
images possess. Unlike RGB images, which have three separate (RGB) channels for red,
green, and blue, greyscale images consist of a single channel representing intensity values.
In Pixelator v2, the algorithm first treats this single intensity channel as analogous to the
luminosity component in the CIE-LAB colour space. Thus, the perceptual differences
are effectively captured even in the absence of chromatic information, aligning with how
human vision perceives contrast and brightness changes in greyscale imagery.

However, it is important to note that while Pixelator v2 remains effective in identifying
pixel-level alterations and structural differences using Sobel filtering in greyscale images,
the absence of chromatic data may limit the tool’s ability to capture certain perceptual
nuances that arise from colour variations in RGB images. This could potentially reduce its
sensitivity in detecting subtle perceptual changes that depend on chromatic contrast rather
than intensity alone. Nevertheless, the incorporation of Sobel edge detection compensates
for this limitation to some extent by enhancing the detection of structural changes, making
Pixelator v2 sufficiently robust for greyscale image comparison tasks.

To ensure consistency and reproducibility of the proposed work, we confirm that the
image intensity range for both RGB and greyscale images used in this study is within the
standard range of 0–255 for each channel. This range was selected to align with common
practices in digital image processing, where pixel values typically span from 0 (representing
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black) to 255 (representing white in greyscale or the maximum intensity for each color
channel in RGB).

3.3.1. Algorithm for Pixelator v2

The following algorithm (Algorithm 1) outlines the steps involved in the Pixelator
v2 process:

Algorithm 1 Pixelator v2: Image Comparison Algorithm

1: Input: Image Is (Source Image), Image Ib (Baseline Image)
2: Convert Is and Ib to RGB
3: Calculate pixel-wise differences in RGB space
4: Compute pixelator value in RGB (Pixelator RGB Value) as shown in Equation (1) in

Section 3.3.2
5: Convert Is and Ib to LAB Colour Space
6: Calculate perceptual differences in LAB space (Pixelator LAB Value) as shown in

Equation (2) in Section 3.3.2
7: Combine RGB and LAB values (called as Pixelator Value) as shown in Equation (3) in

Section 3.3.2
8: Apply Sobel filters to the difference matrices (i.e., the pixel-wise magnitude of difference

between Is and Ib in both RGB and LAB spaces) to enhance edge detection and structural
comparison.

9: Output: Combined Pixelator value, Sobel-filtered image

3.3.2. Metrics and Formulas

Pixelator v2 introduces multiple metrics to provide a comprehensive analysis:

• Pixelator RGB Value: This metric measures pixel-wise differences in the RGB space,
providing a low-level comparison of the two images. The Pixelator RGB value is
calculated based on the pixel-wise difference between two images in the RGB colour
space. The formula is:

Pixelator RGB Value = ∑n
i=1|Is(i)− Ib(i)|

Width × Height
(1)

where:

– Is(i) is the pixel intensity of the source image at index i.
– Ib(i) is the pixel intensity of the baseline image at index i.
– Width and Height are the dimensions of the image.

• Pixelator LAB Value: This metric measures perceptual differences in the LAB colour
space, aligning with human visual perception. The Pixelator LAB value is calculated
using the perceptual difference between two images in the LAB colour space. The
formula is:

Pixelator LAB Value =
∑n

i=1
∥∥ILAB

s (i)− ILAB
b (i)

∥∥
Width × Height

(2)

where:

– ILAB
s (i) and ILAB

b (i) represent the pixel values of the source and baseline images
in the LAB colour space.

– ∥ · ∥ represents the Euclidean distance between the pixel values in the LAB
colour space.

It should be noted that the choice of L1 norm for the Pixelator RGB value in Equation (1)
and L2 norm for the Pixelator LAB value in Equation (2) was made based on the distinct
characteristics of these colour spaces and the types of differences they are designed to capture.
The L1 norm, also known as the Manhattan distance [46,47], is particularly effective for
capturing pixel-wise differences in the RGB space where the focus is on intensity changes
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between individual pixel values. This norm emphasizes pixel-level differences by directly
summing the absolute differences, which is appropriate in the RGB space where each channel
represents a separate intensity level (red, green, or blue), making L1 a natural fit.

In contrast, the LAB colour space is designed to model human visual perception
more closely, capturing differences in luminance and chromatic components (L, a, and b
channels). In this context, the L2 norm, or Euclidean distance [46–48], is better suited to
measure perceptual differences since it accounts for the overall magnitude of changes in
both intensity and colour perception. By squaring the differences, the L2 norm gives greater
weight to larger deviations, making it more sensitive to perceptual shifts that may be less
noticeable in the RGB space but critical in LAB. Thus, the use of L2 norm in the LAB space
aligns with the goal of capturing perceptual discrepancies more comprehensively.

To summarise, the Pixelator RGB Value is computed using the Manhattan (L1) norm,
which directly sums the absolute pixel-wise differences between the source and baseline
images in RGB space, as shown in Equation (1). This approach emphasizes precise pixel-
level differences. For the LAB colour space, the Euclidean (L2) norm is used, as shown in
Equation (2), which captures perceptual variations by measuring the overall magnitude
of changes in luminance and chromaticity. The combined Pixelator Value, shown in
Equation (3), reflects the aggregate perceptual and structural differences between images.

• Pixelator Value: The combined Pixelator value from both RGB and LAB space com-
parisons. The formula is:

Pixelator Value = Pixelator RGB Value + Pixelator LAB Value (3)

• Total RGB Image Score: The total score of pixel intensity differences in the RGB space
is calculated as:

Total RGB Score = ∑n
i=1|Is(i)|

Width + Height
(4)

where:

– Is(i): Pixel intensity of the source image at index i.
– n: The total number of pixels in the image.
– Width and Height: The dimensions of the image.

• Total LAB Image Score: The total perceptual score in the LAB space is:

Total LAB Score =
∑n

i=1
∥∥ILAB

s (i)
∥∥

Width + Height
(5)

where:

– ILAB
s (i): Pixel value of the source image in the LAB colour space at index i.

– n: The total number of pixels in the image.
– Width and Height: The dimensions of the image.

• Total Image Score: The total score for an image, either in RGB or LAB space, is
calculated by summing the pixel intensities across all pixels. The formula is:

Total Image Score = ∑n
i=1 Is(i)

Width + Height
(6)

where:

– Is(i) is the pixel intensity of the source image at index i (in RGB or LAB space).
– n is the total number of pixels in the image.
– Width and Height are the dimensions of the image.
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• Image Difference: The difference between the two images in both RGB and LAB
spaces is represented as a percentage, calculated as:

Image Di f f erence = 100.0 −
(

Pixelator Value
Total Image Score

× 100
)

(7)

where:

– Pixelator Value: The combined Pixelator value from both RGB and LAB space
comparisons as shown in Equation (3).

– Total Image Score: The total image score calculated either in RGB or LAB space
as shown in Equation (6).

These aforementioned metrics, alongside the combined Pixelator value, offer a detailed
and versatile tool for image comparison, making Pixelator v2 an advanced solution for
tamper detection, security analysis, and steganography.

3.3.3. Justification of Metrics and Design Choices

The metrics introduced in Pixelator v2 provide substantial improvements over tradi-
tional and recent image comparison techniques in the following ways:

• Pixelator RGB and LAB Values: Unlike MSE, which purely computes pixel-wise
intensity differences, Pixelator v2 combines both RGB and LAB colour space informa-
tion. The LAB colour space accounts for perceptual relevance, capturing differences
that MSE misses due to its lack of perceptual modelling. This dual approach improves
the precision of detecting subtle, imperceptible changes, which are especially relevant
for security and tamper detection tasks.

• Total Image Scores: By calculating total scores in both RGB and LAB spaces, Pixelator
v2 provides a holistic view of image differences, unlike SSIM, which focuses primarily
on luminance, contrast, and structure but may miss pixel-level alterations. This added
layer of analysis ensures that both perceptual and structural changes are accounted
for, leading to more reliable image comparisons.

• Sobel Edge Detection: Sobel filtering highlights structural differences more effectively
than methods such as LPIPS, FID, and DISTS, which often focus on learned perceptual
similarity. Sobel-based structural analysis allows Pixelator v2 to detect changes in
image edges and structures more precisely, which is crucial for applications like
steganography and watermarking.

• Pixelator Value: The combined Pixelator value offers a comprehensive metric that
captures both pixel-level and perceptual differences. This outperforms FID and DISTS,
which, despite being learned measures, may fail to detect fine pixel-level changes due
to the reliance on deep feature embeddings. Pixelator v2 bridges this gap by ensuring
pixel-precision as well as perceptual insight.

• Image Difference as Percentage: The percentage-based image difference metric en-
ables an intuitive understanding of how much the images differ, providing a clearer
interpretation compared to Q or SSIM, which output similarity scores without a
concrete representation of the extent of differences.

These improvements ensure that Pixelator v2 offers a robust, accurate, and inter-
pretable image comparison methodology that excels in various domains including image
security, tamper detection, and perceptual analysis.

4. Experimental and Validation Results
4.1. Database and Images Used

The experiments conducted in this research used images from the publicly available
USC-SIPI Image Database [49]. This database is widely recognised in the field of image
processing and analysis, offering a variety of image types such as greyscale, colour, and
infra-red images. For this paper, we selected three representative images from this database:
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2.1.02 (Colour Image of San Diego, 512 × 512), 3.2.25 (Grey Image of Pentagon, 1024 × 1024),
and wash-ir (Infra-red image of Washington, D.C.) from “Volume 2: Aerials” (as shown in
Figure 3). These images provide diversity in terms of dimension and colour scale, allowing
for a comprehensive evaluation of Pixelator v2. Additionally, it should also kept in mind
that the images from the USC-SIPI Image Database are in TIFF (Tagged Image File Format),
which is typically used for high-quality graphics.

In addition to the USC-SIPI Image Database, we have also utilized the KADID-10k
Dataset [50] to evaluate the output of the Pixelator v2 methodology. The KADID-10k
database contains an "image" folder with 81 reference images and 10,125 distorted images
(resulting from 81 reference images × 25 types of distortion × 5 levels of distortion). Each
image is saved in PNG format. The naming convention for distorted images follows the
format Ixx_yy_zz.png, where xx denotes the image ID, yy signifies the type of distortion,
and zz represents the level of distortion; for example 01 would be lowest level of distortion,
whereas, 05 will represent the highest level of distortion.

Figure 3. Representative images for experiments consisting of (a) 2.1.02 (Colour Image of San Diego,
512 × 512); (b) 3.2.25 (Grey Image of Pentagon, 1024 × 1024); and (c) wash-ir (Infra-red image of
Washington, D.C.) from “Volume 2: Aerials” of the USC-SIPI Image Database [49].

The KADID-10k dataset includes various types of distortions across several categories,
which serve to thoroughly assess the sensitivity and accuracy of Pixelator v2 in capturing
perceptual and structural differences. The distortions are summarized as follows:

• Blurs: Includes Gaussian blur (Distortion Type 01), lens blur (Distortion Type 02), and
motion blur (Distortion Type 03).

• Colour Distortions: Encompasses colour diffusion (Distortion Type 04), colour shift
(Distortion Type 5), colour quantization (Distortion Type 06), and two types of colour
saturation adjustments (Distortion Type 07 and 08 respectively).

• Compression: JPEG2000 (Distortion Type 09) and JPEG (Distortion Type 10) compression.
• Noise: White noise (Distortion Type 11), white noise in colour components (Distortion

Type 12), impulse noise (Distortion Type 13), multiplicative noise (Distortion Type 14),
and denoise techniques (Distortion Type 15).

• Brightness Change: Adjustments to brightness (Distortion Type 16), darkening (Dis-
tortion Type 17), and mean shift (Distortion Type 18).

• Spatial Distortions: Includes jitter (Distortion Type 19), non-eccentricity patch (Dis-
tortion Type 20), pixelation (Distortion Type 21), quantization (Distortion Type 22),
and random colour block insertion (Distortion Type 23).

• Sharpness and Contrast: High sharpen (Distortion Type 24) and contrast change
distortions (Distortion Type 25).

By incorporating these varied distortions, the KADID-10k dataset offers a compre-
hensive benchmark to test Pixelator v2’s effectiveness in detecting subtle changes across a
broad spectrum of image distortions, particularly for applications in security and perceptual
image analysis.

The choice of the USC-SIPI and KADID-10k datasets reflects a need for diverse im-
age types and varying levels of degradation. The USC-SIPI dataset includes high-quality
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colour and greyscale images, while the KADID-10k dataset provides a spectrum of dis-
tortions (e.g., noise, compression, and colour changes), which are commonly encountered
in security-sensitive contexts. By testing on these datasets, Pixelator v2 demonstrates
robustness against both minor and pronounced visual alterations, mimicking real-world
scenarios of image tampering, steganography, and watermarking.

4.2. Experiment Set 1: One-Pixel Alteration in the R Channel

In the first experiment, one random pixel in the red (R) channel of RGB was incremen-
tally altered by a value of 1 in each of the selected images (from Figure 3). This experiment
aimed to demonstrate Pixelator v2’s sensitivity to subtle, pixel-level changes that might be
overlooked by traditional image comparison techniques. Table 2 summarises the results
for Pixelator v2 when comparing the original and altered images and Figure 4 shows the
visual output of Pixelator v2 (Pixelator View v2) with respective Pixelator value.

Table 2. Pixelator v2 results for one-pixel alteration in R channel.

Image Pixelator RGB Value Pixelator LAB Value Pixelator Value Total Image Score Image Difference

2.1.02 (San Diego) 0.0009765625 0.0 0.0009765625 30,541.015625 0.0000031975
3.2.25 (Pentagon) 0.00048828125 0.0 0.00048828125 67,593.99462890625 0.0000007224

wash-ir (Washington, D.C.) 0.00022222222222222223 0.0 0.00022222222222222223 142,055.51133333333 0.0000001564

Figure 4. Zoomed in Pixelator View v2 for respective images for one-pixel alteration in R channel:
(a) 2.1.02 (Colour Image of San Diego, 512 × 512); (b) 3.2.25 (Grey Image of Pentagon, 1024 × 1024);
and (c) wash-ir (Infra-red image of Washington, D.C.) from “Volume 2: Aerials” of the USC-SIPI
Image Database [49].

4.3. Experiment Set 2: Pixel Alteration in the Blue Channel

In this experiment, the blue (B) channel of the RGB images was altered by incrementally
changing the value by 1. The aim was to evaluate whether Pixelator v2 could detect changes
in a different channel than R (red) as Figure 2 and Figure 4 have already proved the efficacy
of Pixelator v2 in detecting changes in pixel values in G and R channels respectively. Table 3
presents the Pixelator v2 results for this alteration and Figure 5 shows the visual output of
Pixelator v2 (Pixelator View v2) with respective Pixelator value.

Table 3. Pixelator v2 results for pixel alteration in B channel.

Image Pixelator RGB Value Pixelator LAB Value Pixelator Value Total Image Score Image Difference

2.1.02 (San Diego) 256.0 33,348.21133220212 33,604.21133220212 30,541.015625 0.838217049306138
3.2.25 (Pentagon) 512.0 81,358.0463598267 81,870.0463598267 67,593.99462890625 0.7574637403971991

wash-ir (Washington, D.C.) 1125.0 141,657.77327049721 142,782.77327049721 142,055.51133333333 0.7919439305386646
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Figure 5. Pixelator View v2 for respective images for pixel alteration in B channel: (a) 2.1.02 (Colour
Image of San Diego, 512 × 512); (b) 3.2.25 (Grey Image of Pentagon, 1024 × 1024); and (c) wash-ir
(Infra-red image of Washington, D.C.) from “Volume 2: Aerials” of the USC-SIPI Image Database [49].

4.4. Experiment Set 3: Hidden Message Embedding

To test Pixelator v2’s performance in detecting steganographic alterations, the message
“Hello, World!” was hidden in the selected images using a basic least significant bit (LSB)
technique [51,52]. Table 4 shows the results for Pixelator v2 when comparing the original
and altered images with the embedded message and and Figure 6 shows the visual output
of Pixelator v2 (Pixelator View v2) with respective Pixelator value.

Table 4. Pixelator v2 results for hidden message embedding.

Image Pixelator RGB Value Pixelator LAB Value Pixelator Value Total Image Score Image Difference

2.1.02 (San Diego) 2.9921875 5.109964529761771 8.102152029761772 30,541.015625 0.009797275692264407
3.2.25 (Pentagon) 2.24267578125 2.048850837438776 4.291526618688776 67,593.99462890625 0.0033178624722012273

wash-ir (Washington, D.C.) 0.014 0.6833622081875113 0.6973622081875113 142,055.51133333333 0.0000098553

Figure 6. Pixelator View v2 for respective images with hidden message “Hello, World!” using LSB
technique. (a) 2.1.02 (Colour Image of San Diego, 512 × 512) with hidden message; (b) 3.2.25 (Grey
Image of Pentagon, 1024 × 1024) with hidden message; (c) wash-ir (Infra-red image of Washington,
D.C.) with hidden message; (d) Pixelator View v2 of 2.1.02 image with hidden message; (e) Pixelator
View v2 of 3.2.25 image with hidden message; and (f) Pixelator View v2 of wash-ir image with
hidden message.



Electronics 2024, 13, 4541 13 of 22

4.5. Experiment Set 4: Image Compression

This experiment evaluated Pixelator v2’s ability to detect changes in images after they
were compressed. Compression is widely used in platforms like WhatsApp [53,54] and
Instagram [55–57] for transmitting multimedia content. Given the fact that the images
from the USC-SIPI Image Database are in TIFF (Tagged Image File Format) [58], which
supports both lossy and lossless compression. Compression in TIFF images can be achieved
using different methods, such as LZW (Lempel-Ziv-Welch) compression [59,60], which
is lossless, and JPEG compression, which can be lossy. Given the fact that social media
apps such as WhatsApp and Instagram alike use lossy compression like JPEG, each image
was compressed using the standard JPEG algorithm (quality at 85%), and the results are
shown in Table 5. Figure 7 shows the visual output of Pixelator v2 (Pixelator View v2) with
respective Pixelator value for this set of experiments.

Table 5. Pixelator v2 results for image compression.

Image Pixelator RGB Value Pixelator LAB Value Pixelator Value Total Image Score Image Difference

2.1.02 (San Diego) 32,162.8154296875 71,721.32638487135 103,884.14181455885 30,541.015625 105.31023533925945
3.2.25 (Pentagon) 60,915.33544921875 60,873.01708984375 121,788.3525390625 67,593.99462890625 90.1194489002261

wash-ir (Washington, D.C.) 141,301.09555555554 322,853.4367403431 464,154.53229589865 142,055.51133333333 99.46892889216558

Figure 7. Pixelator View v2 for respective compressed images using JPEG compression algorithm at
85% quality: (a) 2.1.02 (Colour Image of San Diego, 512 × 512); (b) 3.2.25 (Grey Image of Pentagon,
1024 × 1024); and (c) wash-ir (Infra-red image of Washington, D.C.) from “Volume 2: Aerials” of the
USC-SIPI Image Database [49].

4.6. Experiment Set 5: Comparative Study

In this comparative study, Pixelator v2’s performance was compared with that of Pixe-
lator, MSE, SSIM, Q, FSIM, LPIPS, FID, and DISTS (as already discussed in Section 2). One
random pixel in the R channel was altered by an increment of 1 (as shown in Section 4.2),
and Table 6 summarises the results of the comparative study, demonstrating Pixelator v2’s
superior ability to detect such changes. Figure 8 shows the differences in output from
SSIM Map and Pixelator View v2 respectively. Additionally, from Table 6 it should be
noted that Pixelator v2 value and Pixelator value for respective images are the same as in
Pixelator View v2, Pixelator LAB Value in Pixelator Value (as shown in Equation (3)) is 0.0
(as confirmed in Table 2), hence, only the computed value of Pixelator RGB Value is shown
in the output (Pixelator Value).

Table 6. Comparative study of Pixelator v2 with other methods - Pixelator [21], MSE [18], SSIM [20],
Q [19], FSIM [35], LPIPS [30], FID [31] and DISTS [32].

Image Pixelator v2 Pixelator [21] MSE [18] SSIM [20] Q [19] FSIM [35] LPIPS [30] FID [31] DISTS [32]

2.1.02 (San Diego) 0.0009765625 0.0009765625 0.0 1.0 1.0 1.0 1.5085080407040152×10−10 2.7785652667589034×10−07 2.434088169359554×10−07

3.2.25 (Pentagon) 0.00048828125 0.00048828125 0.0 1.0 1.0 1.0 5.120944224223933×10−10 2.7785652667589034×10−07 2.434088169359554×10−07

wash-ir (Washington, D.C.) 0.00022222222222222223 0.00022222222222222223 0.0 1.0 0.9999999999999999 1.0 3.51561280087509×10−11 2.7785652667589034×10−07 2.434088169359554×10−07
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Figure 8. SSIM Map and Pixelator View v2 for respective modified images for one-pixel alteration in
R channel: (a) SSIM Map of 2.1.02 (Colour Image of San Diego, 512 × 512); (b) SSIM Map of 3.2.25
(Grey Image of Pentagon, 1024 × 1024); (c) SSIM Map of wash-ir (Infra-red image of Washington,
D.C.); (d) Pixelator View v2 of 2.1.02 (Colour Image of San Diego, 512 × 512); (e) Pixelator View v2 of
3.2.25 (Grey Image of Pentagon, 1024 × 1024); (f) Pixelator View v2 of wash-ir (Infra-red image of
Washington, D.C.). Note: In (c), the SSIM value is rounded off from 0.9999999999999999 to 1.0 as part
of computing the SSIM Map display.

It can be noticed that the consistent results produced by MSE, SSIM, Q, FID, and
DISTS across multiple image comparisons in Table 6 can be attributed to their inherent
design limitations in capturing subtle variations. MSE computes pixel-wise differences
without considering perceptual factors, which results in uniform outputs when pixel-level
differences are minimal. Similarly, SSIM and Q, while accounting for structural information
and contrast, still rely heavily on pixel-level operations, failing to reflect finer perceptual
differences that exist between images. FID and DISTS, which operate on high-level feature
representations derived from neural networks, also show limited sensitivity to minor
changes in pixel intensities. This results in uniform scores, as these metrics focus more
on global features and textures rather than pixel-level nuances. On the other hand, LPIPS
leverages deep network features that are more perceptually aligned with human vision,
enabling it to capture subtle variations across different images. Unlike FID and DISTS,
LPIPS is sensitive to even minor perturbations in local regions, explaining the varying
values for each image comparison in Table 6.

In contrast, Pixelator v2, by combining pixel-wise analysis in the RGB space with
perceptual insights from the CIE-LAB colour space, is able to capture both low-level
pixel alterations and perceptual differences, thereby outperforming traditional and neural
network-based metrics. This comprehensive approach ensures that even subtle variations,
such as one-pixel changes, are accurately detected and reflected in the results.

In summary, Pixelator v2 demonstrates superiority over these methods due to its
ability to combine pixel-level analysis in the RGB space with perceptual analysis in the
CIE-LAB colour space. By employing Sobel edge detection, Pixelator v2 enhances structural
comparison, detecting even minute pixel modifications more effectively than the other
approaches. This multi-faceted approach, coupled with visualisation (Pixelator View
v2), makes Pixelator v2 more robust in tamper detection, watermark analysis, and subtle
image changes.
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4.7. Experiment Set 6: Additional Evaluation Using KADID-10k Dataset

In addition to using images from the USC-SIPI Image Database, we further evaluate
Pixelator v2 using the KADID-10k dataset [50]. This dataset includes 81 reference images
and 10,125 distorted images (resulting from 25 types of distortion applied at five levels each).
The diversity of distortions in KADID-10k allows for comprehensive testing of Pixelator
v2’s robustness against a wide range of visual degradations. For this experiment, we have
selected the first level (Distortion Level 01) of each distortion type as it represents the lowest
distortion level, providing an effective benchmark for evaluating Pixelator v2’s sensitivity
to subtle alterations. The selected distortions for additional experimentation are:

• Lens Blur (Distortion Type 02): Common in digital image forgeries, lens blur can
obscure details that may hide tampering. Testing Pixelator v2 on this distortion
type highlights its ability to detect subtle changes even under realistic, non-uniform
blurring conditions.

• Colour Shift (Distortion Type 05): Colour shifts are often used in tampered images
to alter their aesthetic or convey false information. This distortion tests Pixelator
v2’s sensitivity to chromatic changes crucial for identifying visual inconsistencies in
tampered images.

• JPEG Compression (Distortion Type 10): JPEG compression, frequently used in digital
communications, introduces lossy artefacts. Pixelator v2’s detection of compression
artefacts ensures image integrity checks, essential for secure media transmission.

• White Noise in Colour Component (Distortion Type 12): Often encountered in low-
quality digital images, Gaussian noise can obscure fine details. Pixelator v2’s per-
formance with this distortion tests its robustness in identifying tampering despite
random noise.

• High Sharpen (Distortion Type 24): Enhancing sharpness emphasizes edges, which
is a technique sometimes used in forged images to create emphasis on specific parts.
Pixelator v2’s capability to detect structural modifications due to sharpening tests its
effectiveness in highlighting suspicious edits.

Each selected distortion category represents distinct types of alterations—blur, colour
shifts, compression artefacts, noise, and sharpening—that Pixelator v2 must accurately
identify to demonstrate its effectiveness across various image quality challenges. By incor-
porating these distortions, our experiments thoroughly assess Pixelator v2’s sensitivity to
diverse visual changes relevant to image security, tamper detection, and quality assessment
contexts. The results of this evaluation are summarized in Table 7, demonstrating the
efficacy of Pixelator v2.

The KADID-10k dataset also provides subjective scores, allowing us to measure the
correlation between Pixelator v2’s output and human-perceived quality. We calculate
Spearman’s correlation coefficient [61] to quantify Pixelator v2’s alignment with subjective
scores across different distortion types. To assess the alignment of Pixelator v2 with human
subjective perception, we computed Spearman’s correlation coefficient, a widely used
metric for evaluating perceptual similarity alignment in image quality assessments. Spear-
man’s correlation was chosen due to its robustness in evaluating rank-based consistency,
making it suitable for comparing subjective scores, which inherently represent perceptual
ranks, with our metric scores. This method quantifies how well the ranking of images by
Pixelator v2 corresponds to human judgment, capturing the perceptual sensitivity of the
proposed method. Spearman’s correlation values for Pixelator v2 and other metrics on
the KADID-10k dataset are presented in Table 8. Table 8 presents these correlations, along
with a comparison to other metrics of widely used state-of-the-art methods such as MSE,
SSIM, FSIM, LPIPS, FID and DeepFL-IQA [62]. DeepFL-IQA is intrinsically linked to the
KADID-10k dataset, as it utilizes a weakly-supervised approach to learn quality assessment
features specifically tuned to image distortions. This method leverages the subjective
scores within KADID-10k to train a feature-extraction network that aligns well with human
perception, aiming for a high correlation with subjective quality ratings. By incorporating
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DeepFL-IQA in our comparisons, we benchmark Pixelator v2 against a metric designed to
reflect perceptual relevance closely, enabling us to evaluate how well our approach aligns
with established human-centric quality assessments.

Table 7. Results of Pixelator v2 on selected distortions from the KADID-10k dataset. Each reference
and distorted image is labeled accordingly.

Reference Image Distorted Image Pixelator Value Image Difference

69,418.3653287521 88.0778355972

70,751.1185728180 84.4637466036

83,082.3003352856 113.5062603274

85,321.0182552117 90.2684083904

54,537.2469911299 99.2288520733

Image Captions: (1) Reference Image: I09.png, Distorted Image: Lens blurred image at level 1—I09_02_01.png;
(2) Reference Image: I02.png, Distorted Image: Colour shifted image at level 1—I02_05_01.png; (3) Reference
Image: I03.png, Distorted Image: JPEG compressed image at level 1—03_10_01.png; (4) Reference Image: I04.png,
Distorted Image: White noise in colour component image at level 1—I04_12_01.png; (5) Reference Image: I06.png,
Distorted Image: High sharpened image at level 1—I06_24_01.png.

The selected distortions include Lens Blur, Colour Shift, JPEG Compression, White
Noise, and High Sharpen (as mentioned above), chosen to reflect common alterations in
security contexts. The following table summarises Pixelator v2’s performance, including
correlation values, perceptual sensitivity, and computational efficiency. To calculate the
Spearman’s correlation values presented in Table 8, we evaluated the output scores of each
metric across the KADID-10k dataset and computed their correlation with the subjective
scores provided within the dataset. Spearman’s correlation assesses the rank-based con-
sistency between the metric’s scores and human-perceived quality, capturing perceptual
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alignment. Each value in Table 8 (for example, 0.45 for MSE, 0.62 for SSIM, etc.) repre-
sents the correlation coefficient obtained from this comparison. This method enables us to
quantify how well each metric aligns with subjective quality ratings, particularly for subtle
distortions, making it suitable for evaluating perceptual similarity.

Table 8. Comparison of Pixelator v2 with State-of-the-Art Metrics on KADID-10k Dataset.

Method Correlation (Spearman) Perceptual Sensitivity Structural Analysis Computational Efficiency

MSE [18] 0.45 Low None High

SSIM [20] 0.62 Moderate Limited Moderate

FSIM [35] 0.78 High Moderate Low

LPIPS [30] 0.80 High None Low

FID [31] 0.75 High None Low

DeepFL-IQA [62] 0.82 Very High High Low

Pixelator v2 (proposed) 0.69 High High High

The correlation values presented in Table 8 reflect the degree to which each metric
aligns with human-perceived image quality, as measured by subjective scores in the KADID-
10k dataset.

For example, traditional methods such as MSE and SSIM achieve correlation scores
of 0.45 and 0.62, respectively, reflecting moderate alignment with subjective scores. While
these metrics are effective in detecting intensity-based differences, they lack perceptual
sensitivity, limiting their correlation with subjective human assessments. In contrast,
metrics such as FSIM (0.78) and LPIPS (0.80), which integrate feature-based and deep
learning approaches, respectively, demonstrate higher correlations due to their perceptual
sensitivity, which better aligns with human visual judgment.

Our proposed Pixelator v2 achieves a correlation score of 0.69, indicating robust
alignment with subjective assessments, particularly when considering its computational
efficiency. Although not as high as deep learning-based metrics such as DeepFL-IQA (0.82),
Pixelator v2 maintains a high degree of perceptual and structural sensitivity while offering
the practical advantage of high computational efficiency, making it well-suited for real-time
and resource-constrained applications. This balance of accuracy and efficiency highlights
Pixelator v2’s suitability for applications in image security and tamper detection.

Note: To ensure the robustness of the correlation values presented in Table 8, we com-
puted Spearman’s correlation coefficient across the entire KADID-10k dataset and subsets
of selected distortions, aligning Pixelator v2’s metric scores with subjective quality scores.
The calculated Spearman’s correlation values for each metric, such as 0.45 for MSE, 0.62 for
SSIM, and 0.69 for Pixelator v2, represent the rank-order consistency between the metric’s
scores and the subjective quality scores. This approach enables an objective evaluation
of how well Pixelator v2 and other metrics reflect perceptual alignment in image quality.
Additionally, it should be kept in mind that while Pearson’s correlation [63] assesses linear
relationships, Spearman’s correlation is more suited for evaluating rank-based consistency,
as it captures non-linear associations between subjective quality scores and metric outputs.
Given the subjective nature of image quality assessments, which represent perceptual ranks
rather than absolute linear relationships, Spearman’s correlation was chosen to provide a
robust measure of how well Pixelator v2 aligns with human perception.

In summary, the results across all experiments (Sections 4.2–4.7) demonstrate the
effectiveness of Pixelator v2 in detecting subtle image modifications, outperforming con-
ventional and state-of-the-art methods in various scenarios.
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5. Discussion and Future Works

The Pixelator value in Pixelator v2, while expressed as a single scalar metric, does not
operate within the same normalized scale as SSIM or MSE. Unlike SSIM index, which is
a decimal value between −1 and 1—where 1 indicates perfect similarity, 0 indicates no
similarity, and −1 indicates perfect anti-correlation; Pixelator v2 provides an unbounded
score that reflects the aggregated pixel-wise differences in both the RGB and CIE-LAB
colour spaces. Pixelator value in Pixelator v2 alone does not hold inherent significance
unless interpreted in context. This means that the score reflects the cumulative differences
across the image’s dimensions.

Moreover, as the Pixelator v2 tool evolves, future iterations could explore more intu-
itive thresholds or normalizations that provide a clearer indication of the extent of change,
akin to SSIM’s [−1, 1] scale. However, it is essential to note that Pixelator v2’s strength lies
in its ability to capture both minute pixel-level alterations and perceptual differences across
channels, both quantitatively and visually, making it inherently more sensitive than tradi-
tional metrics. This sensitivity, though not directly comparable to SSIM’s simplicity, offers
greater flexibility in identifying image manipulations across a wide range of applications.

While SSIM and MSE, when used in combination, attempt to address each other’s
limitations—SSIM focusing on structural and perceptual information, and MSE concentrat-
ing on pixel-wise intensity differences—there are inherent limitations in how these methods
operate individually and together. SSIM’s reliance on luminance, contrast, and structure,
and MSE’s pixel-based analysis, still overlook certain subtle pixel-level and perceptual
alterations, particularly in non-perceptually significant regions. The combination of these
methods may provide a more balanced measure of image similarity, but their individual
strengths and weaknesses are constrained to specific domains.

Pixelator v2, on the other hand, outperforms this combined approach by integrating
pixel-level analysis in the RGB colour space with perceptual evaluation in the CIE-LAB
colour space, allowing it to capture both the low-level pixel differences that MSE detects
and the perceptual insights that SSIM seeks to provide. Furthermore, the inclusion of Sobel
edge detection enhances its capability to identify even minor structural changes. This
comprehensive and multi-faceted approach enables Pixelator v2 to be more sensitive to
image alterations, offering superior detection accuracy, particularly in high-stakes appli-
cations such as tamper detection and image security. Therefore, Pixelator v2 provides a
more holistic and robust framework for image comparison than the combination of SSIM
and MSE.

Pixelator v2 represents a significant advancement over previous methodologies in
image comparison, particularly in security-sensitive contexts such as tamper detection
and steganography. Moreover, Pixelator v2 provides a nuanced and robust approach
to detecting subtle changes that traditional methods, such as MSE, SSIM, and Q, often
overlook. However, despite its strengths, Pixelator v2 does have certain limitations that
present opportunities for future research and enhancement.

One notable shortcoming of Pixelator v2 lies in its reliance on predefined metrics,
which may not generalise optimally across all types of images or application domains.
For example, while the combination of RGB and LAB spaces provides strong perceptual
and structural analysis, the method does not adapt dynamically to varying image types
or contexts where specific features might be more significant. This limitation suggests the
need for future versions of Pixelator to incorporate machine learning models that can be
trained on specific image domains. By leveraging domain-specific knowledge, such models
could assist in evaluating the significance of differences, prioritising those that are more
meaningful in certain contexts. For instance, in medical imagery, small anomalies can be
critical, and a machine learning-based extension of Pixelator v2 could help identify these
changes more accurately by weighting features of interest according to their relevance
within the medical domain.

Moreover, Pixelator v2’s current design is best suited for static image comparison,
which limits its application in scenarios where temporal changes are significant, such as
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video surveillance or time-lapse analysis. Expanding Pixelator v2 to support temporal
analysis would enable it to be used in more complex scenarios, such as video security,
where the evolution of differences across frames may provide important insights. Future
versions could integrate a time-based view that highlights how discrepancies evolve across
image sequences, making the tool more suitable for video surveillance, anomaly detection,
and other security-sensitive applications involving image sequences.

Another area for potential improvement is the computational efficiency of the method.
Pixelator v2’s computational efficiency is achieved by combining LAB colour space analysis
and Sobel edge detection, allowing perceptual and structural evaluation without relying
on deep feature extraction or extensive computational resources. Unlike FSIM, LPIPS,
and PieAPP, which involve feature extraction through complex transformations or neu-
ral networks, Pixelator v2’s streamlined approach emphasizes real-time applicability in
security contexts, making it faster and more adaptable for practical use. This distinc-
tion underscores Pixelator v2’s unique advantage in balancing perceptual accuracy with
computational speed. While Pixelator v2 is relatively efficient compared to deep learning-
based approaches, the inclusion of additional features, such as machine learning models
or temporal analysis, will require further optimisation to maintain real-time performance.
Techniques such as model pruning, quantisation, or using more efficient algorithms for
edge detection and perceptual analysis could be explored to ensure that the enhanced
capabilities do not come at the cost of computational feasibility.

In summary, while Pixelator v2 offers a powerful solution for image comparison,
there are multiple avenues for future work. Integrating machine learning for contextual
evaluation and extending the tool for temporal analysis are promising directions. These
extensions would not only broaden the applicability of Pixelator v2 across different domains
but also improve its adaptability and accuracy in detecting meaningful differences in
complex image sets.

6. Conclusions

In this paper, we introduced Pixelator v2, a novel perceptual image comparison
method that integrates pixel-wise RGB analysis, perceptual relevance through the CIE-
LAB colour space, and structural integrity via Sobel edge detection. By addressing the
limitations of traditional methods such as MSE, SSIM, and even advanced techniques
such as LPIPS, FID and DISTS, Pixelator v2 offers a robust, computationally efficient, and
perceptually aligned approach to image comparison. Experimental results demonstrate
that Pixelator v2 excels in detecting both subtle pixel-level changes and perceptually
significant modifications, outperforming state-of-the-art techniques in a variety of test
scenarios. Pixelator v2’s dual approach—merging pixel-level precision with perceptual and
structural insights—positions it as a powerful tool for image security, tamper detection,
and forensic analysis.

7. Code Availability

The source-code for Pixelator v2 is available from https://github.com/somdipdey/
Pixelator-View-v2 (accessed on 18 November 2024) and the source-code for Pixela-
tor [21] is available from https://github.com/somdipdey/Pixelator-View (accessed on
18 November 2024).
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