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A B S T R A C T

Stroke is a leading cause of morbidity and mortality worldwide, and early detection of risk factors is critical for 
prevention and improved outcomes. Traditional stroke risk assessments, relying on sporadic clinical visits, fail to 
capture dynamic changes in risk factors such as hypertension and atrial fibrillation (AF). Wearable technology 
(devices), combined with biometric data analysis, offers a transformative approach by enabling continuous 
monitoring of physiological parameters. This narrative review was conducted using a systematic approach to 
identify and analyze peer-reviewed articles, reports, and case studies from reputable scientific databases. The 
search strategy focused on articles published between 2010 till date using pre-determined keywords. Relevant 
studies were selected based on their focus on wearable devices and AI-driven technologies in stroke prevention, 
diagnosis, and rehabilitation. The selected literature was categorized thematically to explore applications, op
portunities, challenges, and future directions. The review explores the current landscape of wearable devices in 
stroke risk assessment, focusing on their role in early detection, personalized care, and integration into clinical 
practice. The review highlights the opportunities presented by continuous monitoring and predictive analytics, 
where AI-driven algorithms can analyze biometric data to provide tailored interventions. Personalized stroke risk 
assessments, powered by machine learning, enable dynamic and individualized care plans. Furthermore, the 
integration of wearable technology with telemedicine facilitates remote patient monitoring and rehabilitation, 
particularly in underserved areas. Despite these advances, challenges remain. Issues such as data accuracy, 
privacy concerns, and the integration of wearables into healthcare systems must be addressed to fully realize 
their potential. As wearable technology evolves, its application in stroke care could revolutionize prevention, 
diagnosis, and rehabilitation, improving patient outcomes and reducing the global burden of stroke.

1. Introduction

Stroke remains one of the most pressing global health challenges, 
ranking as the second leading cause of death and a primary contributor 
to long-term disability [1,2]. Each year, more than 15 million people 
suffer from a stroke, with five million fatalities and another five million 
left permanently disabled, placing a substantial burden on healthcare 
systems worldwide [3]. Stroke-related impairments, such as cognitive, 

motor, and speech dysfunction, not only diminish quality of life but also 
contribute significantly to the global loss of disability-adjusted life years 
(DALYs) [4–6]. Ischemic strokes, caused by blockages in cerebral blood 
vessels, account for approximately 87 % of all cases, with the remainder 
being hemorrhagic strokes resulting from vessel rupture [7]. The sudden 
and unpredictable nature of stroke, combined with the narrow thera
peutic window for effective intervention, underscores the urgent need 
for enhanced risk monitoring and early prevention strategies to mitigate 
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its devastating impact [8].
Atrial fibrillation (AF) is one of the most significant modifiable risk 

factors for stroke, strongly associated with increased morbidity and 
mortality in ischemic and cardioembolic stroke patients [9,10]. 
Ischemic strokes in patients with AF tend to be more severe and 
frequently involve cortical locations, which are recognized as potential 
risk factors for post-stroke complications such as seizures and epilepsy 
[11]. Evidence indicates that the rate of early post-ischemic stroke sei
zures ranges from 2 % to 33 %, with late seizure rates varying between 
3 % and 67 %. Post-stroke epilepsy, defined as recurrent late seizures, 
occurs in approximately 2–4 % of patients and is more likely in those 
who experience late seizures [12]. These complications, coupled with 
AF’s contribution to stroke severity, highlight the critical need for early 
detection and management to prevent exacerbation of neurological 
outcomes and improve overall patient prognosis.

One of the most effective ways to reduce stroke incidence and 
improve outcomes is through early identification of risk factors, 
enabling timely intervention [6,13,14]. Established stroke risk factors, 
including hypertension, atrial fibrillation (AF), diabetes, smoking, 
physical inactivity, and obesity, are well-documented, but many remain 
undiagnosed or inadequately managed, especially among asymptomatic 
individuals [15]. The sporadic nature of traditional healthcare visits 
often means that stroke risk factors, such as episodic high blood pressure 
or intermittent heart arrhythmias, may go unnoticed until they culmi
nate in a cerebrovascular event. This reactive approach to stroke man
agement limits the potential for early interventions that could 
significantly lower the risk of stroke and improve patient outcomes.

Standard stroke risk assessments, like the Framingham Stroke Risk 
Profile, offer valuable predictive frameworks based on long-term, static 
factors such as age, gender, cholesterol levels, and smoking history [13, 
16]. However, these tools are typically based on data collected during 
infrequent clinical assessments and do not account for the day-to-day or 
even minute-to-minute variability in physiological markers that might 
indicate an elevated stroke risk [16]. For example, hypertension—the 
most significant modifiable risk factor for stroke—may go undetected in 
individuals who only exhibit elevated readings intermittently or outside 
of clinical settings [16]. This includes patients with "white coat hyper
tension," where blood pressure readings are artificially elevated in 
medical settings but normal at home, or "masked hypertension," where 
clinical readings appear normal but are elevated in everyday conditions 
[17].

Wearable technology offers an innovative solution to this gap in 
stroke risk monitoring by enabling continuous, non-invasive data 
collection in real-world environments [18,19]. Devices such as smart
watches, fitness trackers, and specialized wearable health monitors are 
now equipped with sensors capable of measuring vital physiological 
parameters that are closely linked to stroke risk [19]. These devices 
provide real-time monitoring of metrics such as heart rate variability 
(HRV), blood pressure, physical activity levels, oxygen saturation, and 
even sleep quality, delivering a more comprehensive and dynamic view 
of an individual’s health status [20–22]. By capturing data around the 
clock, wearables provide insight into the fluctuations in these parame
ters that may precede a stroke, offering opportunities for earlier detec
tion and preventive care [23].

One of the most compelling examples of wearable technology’s po
tential in stroke risk assessment is its ability to monitor heart rhythm 
abnormalities, particularly atrial fibrillation (AF), which is a well- 
known precursor to ischemic stroke [22,24,25]. Devices like the Apple 
Watch, Fitbit series, Samsung Galaxy Watch and other fitness trackers 
are now equipped with sensors capable of detecting irregular heart 
rhythms in real-time, which can then be analyzed by algorithms to 
identify potential AF episodes [22,26]. This continuous monitoring 
could allow for earlier diagnosis and timely treatment, reducing the 
likelihood of stroke in high-risk individuals [24]. Similarly, wearable 
blood pressure monitors, such as those developed by Omron and With
ings, can track blood pressure continuously, enabling the detection of 

persistent hypertension or sudden spikes that could indicate an immi
nent risk of stroke [22,27].

The data generated by wearable devices goes beyond simple moni
toring; when integrated with advanced machine learning algorithms and 
big data analytics, it provides a powerful tool for stroke prediction [28]. 
Machine learning models can analyze the vast amounts of biometric data 
generated by wearables, identifying patterns and correlations that are 
not readily apparent to the human eye [25]. These algorithms can 
process not only historical data but also dynamic, real-time data 
streams, offering personalized stroke risk assessments that evolve as new 
data is collected [25]. This allows healthcare providers to move beyond 
traditional, static risk models and develop adaptive, personalized care 
plans tailored to the specific physiological characteristics of each patient 
[25,28].

In addition to heart rhythm and blood pressure monitoring, wearable 
devices also track other key stroke risk factors, such as physical inac
tivity and poor sleep quality [21,22,25]. Sedentary behavior and lack of 
physical activity are associated with a higher risk of stroke, and many 
wearables now include activity tracking features that encourage users to 
meet daily movement goals, promoting cardiovascular health [29,30]. 
Furthermore, sleep quality has been increasingly recognized as an 
important factor in stroke prevention, with conditions linked to 
increased stroke risk [31–33]. Wearables equipped with pulse oximetry 
sensors can detect drops in blood oxygen levels during sleep, a key in
dicator of sleep apnea, allowing for early diagnosis and intervention 
[34].

Despite the significant opportunities that wearable technology pre
sents for stroke risk assessment, there are several challenges that must be 
addressed to fully realize its potential [18]. Data accuracy remains a key 
concern, as not all consumer-grade wearable devices are validated to the 
same standard as clinical-grade equipment [35,36]. For example, while 
wearable ECG monitors can detect irregular heart rhythms, their accu
racy may vary compared to traditional medical devices used in clinical 
settings. Additionally, the vast amounts of data generated by wearables 
raise important questions about data privacy, security, and ownership 
[37]. Ensuring that patients’ health data is protected and used appro
priately is critical for the widespread adoption of wearable technology in 
healthcare [37].

Moreover, the integration of wearable technology into existing 
healthcare systems presents a logistical challenge [35]. While the 
continuous data generated by wearables can provide valuable insights, 
integrating this data into electronic health records (EHRs) and ensuring 
that it is accessible to healthcare providers in a meaningful way is not yet 
fully realized [35]. Additionally, healthcare providers need to be trained 
in interpreting and acting upon the data generated by wearable devices, 
which represents a significant shift from traditional methods of stroke 
risk assessment.

There is a growing concern in the inability of current diagnostic 
methods to continuously monitor individuals for these fluctuating stroke 
risk factors, leading to missed opportunities for early detection and 
timely intervention [38]. The growing availability of wearable tech
nology and biometric data collection presents a compelling solution, 
offering the potential to track real-time health metrics and provide 
personalized, preventive care outside of clinical settings [18,19,39]. 
However, despite the promise of these technologies, significant chal
lenges related to data accuracy, integration into clinical practice, and 
data privacy remain unresolved [28,35]. The objective of this review is 
to assess the current state of wearable technology in stroke risk assess
ment, explore its opportunities for enhancing early detection and 
personalized treatment, and examine the challenges that must be 
addressed to fully realize its potential in clinical practice.

This narrative review employed a critical approach to identify, 
analyze, and synthesize relevant literature on the integration of wear
able technology and biometric data in stroke risk assessment. The search 
was conducted in reputable databases, including PubMed, Scopus, and 
IEEE Xplore, focusing on studies published between 2010 till date. 
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Keywords such as "stroke risk assessment," "wearable technology," "atrial 
fibrillation," and "artificial intelligence" guided the search strategy. Ar
ticles were screened based on inclusion criteria, such as relevance to 
wearable devices and stroke risk factors, and exclusion criteria, such as 
non-peer-reviewed sources and non-English publications. Relevant 
studies were thematically categorized to explore applications, oppor
tunities, challenges, and future directions. This methodology ensured a 
comprehensive evaluation of the role of wearable technology and arti
ficial intelligence in advancing stroke prevention and care.

2. Wearable technology and biometric data in stroke risk 
assessment

The integration of wearable technology into stroke risk assessment 
has transformed the way individuals and healthcare providers monitor 
and manage stroke risk factors [19,40]. Traditionally, stroke risk as
sessments relied on intermittent clinical visits and diagnostic tools, 
providing only a fragmented view of an individual’s health status [41]. 
This approach often misses the dynamic fluctuations in risk factors such 
as blood pressure and heart rhythm that occur outside of clinical settings 
[17]. However, wearable devices offer a new solution by enabling 
continuous, real-time monitoring of critical physiological parameters, 
such as heart rate, blood pressure, physical activity, and sleep patterns 
[19,28,39]. These devices generate vast amounts of biometric data that 
can be analyzed using advanced algorithms to provide actionable in
sights into stroke risk, making it possible to detect problems early and 
intervene promptly [28]. Table 1 below summarizes the different ap
plications of wearable technology in stroke care, highlighting the AI 
tools and applications that enhance continuous monitoring, personal
ized care, and remote patient management.

2.1. Overview of wearable devices for stroke risk monitoring

The proliferation of wearable technology has introduced a wide 
range of devices capable of monitoring key physiological parameters 
associated with stroke risk [19]. Smartwatches and fitness trackers have 
become popular tools for health monitoring due to their widespread 
accessibility and ease of use [21]. Devices like the Apple Watch and 
Fitbit can track heart rate, physical activity, and sleep patterns, 
providing users with continuous feedback on their overall health [21]. 
In recent years, these devices have evolved to include advanced features, 
such as electrocardiogram (ECG) monitoring, which allows for the 
detection of irregular heart rhythms, particularly atrial fibrillation (AF) 
[46,47]. AF is a well-known risk factor for stroke, and its detection 
through wearable technology has been shown to facilitate early medical 
intervention [48]. Studies have demonstrated that devices like the Apple 
Watch are capable of identifying AF episodes with high accuracy, 
potentially reducing the risk of stroke for individuals who may not 
display any symptoms of the condition [42].

Blood pressure monitors are another important category of wearable 
devices in stroke risk assessment [49]. Hypertension is the most signif
icant modifiable risk factor for stroke, and its continuous monitoring is 
essential for effective management [49]. Traditional blood pressure 
measurements taken in clinical settings may not capture fluctuating 
patterns that occur throughout the day, leading to misdiagnosis or un
derdiagnosis of hypertension. Wearable blood pressure monitors, such 
as those offered by Omron and Withings, provide a non-invasive way to 
continuously track systolic and diastolic blood pressure in real-time [17, 
22,27]. This allows for early detection of elevated blood pressure levels, 
enabling timely interventions that could prevent strokes from occurring 
[27].

Wearable electrocardiogram (ECG) and cardiac monitors are also 
crucial in detecting arrhythmias, such as atrial fibrillation, that signifi
cantly increase the risk of stroke [47]. Continuous ECG monitoring via 
devices like KardiaMobile and Withings ECG provides real-time heart 
rhythm analysis, allowing for the early detection of irregularities that 

may not be captured during periodic medical exams. These devices are 
particularly valuable for individuals who experience intermittent epi
sodes of AF, which can be challenging to diagnose without continuous 
monitoring. In addition to heart and blood pressure monitoring, wear
able devices that track oxygen saturation and respiratory rate have 
shown promise in stroke risk management [20,50]. Sleep apnea, a 
condition characterized by pauses in breathing during sleep, is emerging 
as a significant risk factor for stroke [31–33,51]. Wearable devices 
equipped with pulse oximeters can monitor blood oxygen levels and 
detect sleep apnea events, enabling early diagnosis and treatment, 
which may help reduce stroke risk in affected individuals [34]. These 
devices offer a comprehensive approach to monitoring the physiological 
parameters most closely associated with stroke risk [34]. Fig. 1 dem
onstrates how different wearable technologies work together to provide 
a comprehensive approach to stroke risk monitoring.

2.2. Key biometrics for stroke risk assessment

Several key biometric parameters can be measured using wearable 
devices, all of which play a significant role in assessing stroke risk [18]. 
Blood pressure, for instance, is one of the most critical factors in stroke 
prevention [18]. Continuous monitoring of blood pressure through 
wearable devices allows for the early detection of hypertension, making 

Table 1 
AI applications and tools in stroke care using wearable technology.

Opportunities in 
stroke care

Wearable 
technology

AI 
application/ 
tool used

Description

Continuous 
Monitoring and 
Early Detection 
[42]

Smartwatches (e. 
g., Apple Watch, 
Fitbit); Wearable 
ECG monitors

AI-driven ECG 
analysis 
algorithms

Continuous 
monitoring for 
atrial fibrillation 
(AF) and other 
irregular heart 
rhythms, enabling 
early detection and 
intervention.

Continuous 
Monitoring and 
Early Detection 
[17,22,27]

Wearable blood 
pressure monitors 
(e.g., Omron 
HeartGuide, 
Withings BPM)

Machine 
learning-based 
blood pressure 
tracking

Continuous 
monitoring of 
systolic and 
diastolic blood 
pressure, detecting 
white coat or 
masked 
hypertension, 
enabling early 
intervention.

Personalized 
Stroke Risk 
Assessment [28]

Smartwatches, 
Fitness Trackers, 
ECG monitors

Predictive 
algorithms for 
risk profiling

AI algorithms 
analyze real-time 
data on heart rate, 
blood pressure, 
activity, and sleep 
patterns to 
generate 
individualized 
stroke risk profiles.

Integration with 
Telemedicine 
[28,43]

Wearable sensors 
(e.g., heart rate 
monitors, activity 
trackers)

Remote patient 
monitoring 
platforms

AI enables real- 
time data 
transmission to 
healthcare 
providers, allowing 
remote monitoring 
and timely 
adjustments in care 
plans.

Rehabilitation 
[44,45]

Wearable activity 
monitors, AI- 
enhanced VR 
platforms

AI-based 
adaptive 
therapy 
algorithms

AI tracks patient 
recovery and 
adjusts 
rehabilitation 
programs in real 
time, ensuring 
customized therapy 
regimens.
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it possible to intervene with lifestyle changes or medications before the 
condition leads to a stroke [49]. Real-time blood pressure monitoring 
provides a more accurate picture of an individual’s cardiovascular 
health compared to periodic readings taken in clinical settings, which 
may miss short-term spikes or fluctuations [17].

Heart rate variability (HRV) and ECG data are also pivotal in stroke 
risk assessment, particularly for detecting atrial fibrillation [52]. AF is a 
leading cause of ischemic stroke, and wearable devices equipped with 
ECG sensors can monitor heart rhythms continuously [28]. By detecting 
abnormal heart rhythms early, these devices enable prompt medical 
intervention, such as the administration of anticoagulants, which 
significantly reduce the risk of stroke [53]. Wearable devices like the 
Apple Watch, KardiaMobile, and other ECG-capable trackers have 
demonstrated high sensitivity and specificity in detecting AF, proving to 
be valuable tools in stroke prevention [54].

Physical activity levels are another important factor in stroke risk 
[55]. Sedentary behavior is strongly associated with increased stroke 
risk, and fitness trackers are designed to monitor daily activity levels and 
encourage users to engage in regular physical exercise [56]. By tracking 
metrics such as steps taken, calories burned, and hours spent active, 
these devices can help users maintain a healthy lifestyle, which is crucial 
in reducing the risk of stroke [21]. Sleep patterns, including the detec
tion of sleep apnea, are emerging as critical biomarkers for stroke risk 
[57]. Wearable devices that track sleep duration and quality, as well as 
those equipped with pulse oximetry, can detect abnormalities such as 
sleep apnea, which has been linked to increased stroke risk [34]. The 
ability to identify sleep disturbances in real-time allows for earlier 
intervention and management of sleep disorders, contributing to overall 
stroke prevention [33].

Furthermore, Arterial hypertension is the primary modifiable risk 
factor for stroke and is particularly associated with the lacunar infarc
tion subtype of ischemic stroke. Lacunar infarctions are small, deep 
cerebral infarcts caused by occlusion of small penetrating arteries, and 
their pathophysiology, prognosis, and clinical features are distinct from 
other acute stroke subtypes [58,59]. According to Arboix et al. [60], 
while lacunar syndromes are highly suggestive of lacunar infarctions, 
16.6 % of cases of lacunar syndrome are not due to lacunar infarcts. This 
study emphasizes the importance of distinguishing lacunar infarctions 
from other stroke subtypes, particularly in patients presenting with 
atrial fibrillation, sensorimotor symptoms, and sudden onset [60]. The 
findings underscore the need for accurate hypertension management, 
especially in patients predisposed to lacunar strokes, to mitigate the risk 
of both typical lacunar infarctions and other small vessel-related stroke 
syndromes [60]. This highlights the critical role of continuous blood 
pressure monitoring via wearable technology in stroke prevention 

strategies targeting lacunar infarction.

2.3. Real-time data analysis and predictive algorithms

One of the most significant advantages of wearable technology in 
stroke risk assessment is its ability to generate continuous, real-time data 
[28]. The vast amount of biometric data collected by wearables can be 
analyzed using machine learning algorithms to detect subtle patterns 
and trends that may be indicative of an elevated stroke risk [28]. For 
instance, AI algorithms can analyze heart rate variability and ECG data 
to predict the likelihood of an atrial fibrillation episode [24,28]. These 
predictive models use real-time inputs from wearables, such as blood 
pressure and activity data, to provide a more dynamic and compre
hensive stroke risk assessment compared to traditional methods, which 
often rely on isolated measurements taken during clinical visits [28].

By integrating multiple biometric data streams—such as heart rate, 
blood pressure, physical activity, and sleep patterns—machine learning 
algorithms can provide healthcare professionals with a holistic view of a 
patient’s cardiovascular health [22]. This comprehensive assessment 
allows for more accurate predictions of stroke risk, enabling early in
terventions that could prevent the occurrence of strokes [22]. Addi
tionally, wearable devices equipped with AI capabilities can offer 
personalized recommendations to users, such as lifestyle changes or 
medication adjustments, based on real-time health data, thereby 
empowering individuals to take a proactive role in managing their 
stroke risk [25].

3. Opportunities in stroke care using wearable technology

Wearable technology has emerged as a pivotal innovation in 
healthcare, particularly in the prevention and management of stroke 
[19]. Its ability to provide continuous monitoring of vital health pa
rameters, coupled with real-time data analysis, presents numerous op
portunities for improving stroke care outcomes [18]. By enabling early 
detection, personalizing stroke risk assessments, and integrating with 
telemedicine platforms, wearable devices hold the potential to trans
form stroke prevention, diagnosis, and recovery [19,28]. These oppor
tunities underscore the growing role of wearable technology in 
revolutionizing the landscape of stroke care [28].

3.1. Continuous monitoring and early detection

One of the most significant advantages of wearable technology in 
stroke care is the capability for continuous monitoring over extended 
periods [22]. This is particularly valuable for identifying stroke risk 

Fig. 1. Various types of wearable devices utilized for monitoring stroke risk. These devices contribute to stroke risk assessment, which can lead to early intervention.
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factors like hypertension and atrial fibrillation (AF), which may be 
intermittent or asymptomatic [48]. Many individuals with AF, for 
example, may be unaware of their condition due to the absence of 
noticeable symptoms, putting them at heightened risk for ischemic 
stroke. Wearable ECG devices, such as smartwatches equipped with ECG 
sensors, can continuously monitor heart rhythms and detect irregular
ities before they become symptomatic [48,61]. This allows for timely 
interventions, such as the initiation of anticoagulant therapy, which can 
significantly reduce the risk of stroke [48,61].

Similarly, continuous blood pressure monitoring offers a critical 
advantage for individuals at risk of stroke due to hypertension [62,63]. 
Traditional blood pressure measurements are typically taken in clinical 
settings and may not capture fluctuations in blood pressure that occur 
throughout the day [17,41]. Wearable blood pressure monitors enable 
real-time tracking, helping to identify conditions like "white coat hy
pertension," where blood pressure is elevated during clinical visits but 
normal at home, or "masked hypertension," where blood pressure re
mains high outside the clinic but appears normal during doctor visits 
[17]. Early detection of these conditions through continuous monitoring 
allows for earlier treatment, thereby lowering the risk of stroke [17,22, 
27].

3.2. Personalized stroke risk assessment

Wearable devices also enable personalized stroke risk assessments by 
capturing individual biometric data and analyzing it in real-time 
[20–22]. Using machine learning algorithms, wearable technology can 
generate dynamic risk profiles tailored to each user’s unique physio
logical and behavioral patterns [19,28,39]. This personalized approach 
allows for more accurate predictions and interventions compared to 
traditional risk models, which are often based on static demographic and 
clinical data. For instance, a wearable device could continuously track 
multiple factors, such as sustained elevated blood pressure, recurrent AF 
episodes, levels of physical activity, and sleep quality [28,61]. This 
combination of data points can then be processed by machine learning 
algorithms to produce a personalized stroke risk score, which accounts 
for the interactions between these variables [64]. Based on this dynamic 
risk profile, customized intervention plans can be created, which may 
include lifestyle changes, medication adjustments, or more intensive 
clinical monitoring [25]. By continuously updating the risk assessment 
with real-time data, wearable technology ensures that stroke prevention 
strategies remain responsive to the individual’s evolving health status 
[18].

While wearable technology and AI offer transformative potential for 
personalized stroke risk assessment, socio-economic barriers remain 
significant challenges to their widespread adoption. The high cost of 
advanced wearable devices, such as smartwatches with ECG capabilities 
or continuous blood pressure monitors, may place them out of reach for 
individuals in low-income settings [65,66]. Additionally, limited access 
to the internet and smartphones in underserved regions restricts the 
ability to use these technologies, as many wearable devices rely on 
app-based integrations for data analysis and monitoring. Health literacy 
is another critical barrier; individuals with limited understanding of 
health technologies may struggle to interpret data or take appropriate 
action based on alerts from wearable devices [67]. Furthermore, dis
parities in healthcare infrastructure, particularly in rural areas, limit the 
integration of wearable data into clinical workflows, reducing the po
tential impact of these tools in such settings [68]. Addressing these 
socio-economic barriers will require collaborative efforts, including cost 
reduction strategies, initiatives to improve digital and health literacy, 
and policy reforms to ensure equitable access to these life-saving tech
nologies. These steps are essential to maximize the benefits of person
alized stroke risk assessment and ensure its reach across diverse 
populations.

3.3. Integration with telemedicine and remote healthcare

Wearable devices, when integrated with telemedicine platforms, 
have the potential to significantly address disparities in healthcare de
livery, particularly in underserved regions [28]. These technologies 
enable real-time monitoring of stroke risk factors, such as blood pressure 
and atrial fibrillation, without requiring frequent in-person visits to 
healthcare facilities [69,70]. This is especially critical in rural or 
low-resource settings, where access to specialized stroke care may be 
limited. By transmitting data from wearable devices to telemedicine 
systems, healthcare providers can remotely monitor patients, provide 
timely interventions, and adjust treatment plans based on real-time data. 
Furthermore, wearables empower patients by providing them with 
accessible tools to track their own health metrics, promoting proactive 
health management. Programs that subsidize wearable devices or 
implement community-based telemedicine hubs could amplify these 
benefits, ensuring that patients in underserved areas have access to the 
same life-saving technologies as those in urban centers. Addressing these 
disparities requires collaborative efforts between healthcare providers, 
policymakers, and technology developers to create scalable and equi
table solutions for stroke prevention and care.

For stroke survivors, wearable devices offer the potential to play a 
crucial role in recovery and the prevention of secondary strokes [45]. 
Recovery from stroke often requires close monitoring of physical ac
tivity, blood pressure, and heart health to ensure that complications are 
avoided and that patients are adhering to rehabilitation protocols. By 
transmitting data directly to healthcare providers, wearable devices 
allow for ongoing assessments of the patient’s recovery progress and 
enable timely adjustments to rehabilitation programs, medications, or 
lifestyle recommendations [71]. This real-time feedback loop between 
the patient and the healthcare provider can enhance the overall effec
tiveness of stroke rehabilitation and prevent secondary strokes, which 
are common among stroke survivors [72].

4. AI in stroke follow-up and rehabilitation

Artificial intelligence (AI) has become a game-changer in the field of 
stroke rehabilitation and follow-up care [73]. By harnessing the power 
of AI-driven systems, healthcare providers can now offer more effective 
and personalized stroke recovery programs [73]. Wearable devices, 
enhanced with AI algorithms, enable continuous monitoring of patients 
after a stroke, facilitating the detection of complications, supporting 
rehabilitation, and predicting recovery outcomes [74]. The integration 
of AI with telemedicine, predictive analytics, and personalized rehabil
itation plans has transformed stroke follow-up, ensuring that patients 
receive timely interventions and tailored therapies, thereby improving 
their chances of recovery [44].

4.1. Remote monitoring and predictive analytics

AI-driven systems have proven especially valuable in the realm of 
post-stroke care by allowing for remote monitoring and predictive an
alytics [73]. Wearable devices equipped with AI can continuously 
monitor vital signs and detect early warning signs of stroke recurrence 
or complications, such as atrial fibrillation, which often increases the 
likelihood of a secondary stroke [42]. These AI-enhanced wearables 
generate real-time data that is sent directly to healthcare providers, who 
receive immediate alerts if abnormalities or dangerous trends are 
detected [28]. This real-time, continuous monitoring can prompt early 
interventions, potentially preventing further damage and reducing the 
need for hospital readmissions [28]. For stroke survivors, this kind of 
vigilant care ensures that potential risks are mitigated, leading to a safer 
and more stable recovery process.

Predictive analytics, driven by AI, has further enhanced the ability of 
clinicians to forecast recovery trajectories for stroke patients [73]. Using 
data collected from wearable sensors, AI-powered platforms analyze 

D.B. Olawade et al.                                                                                                                                                                                                                             Clinical Neurology and Neurosurgery 249 (2025) 108689 

5 



patterns in a patient’s performance and progress, allowing for more 
accurate predictions regarding recovery timelines [28,73]. These pre
dictions help healthcare providers tailor rehabilitation programs to the 
specific needs of each patient, ensuring that they receive the most 
appropriate therapies at every stage of recovery [73]. This level of 
precision in predicting patient outcomes ensures that clinicians can 
intervene promptly when necessary and optimize the rehabilitation plan 
to support long-term recovery [73,75].

4.2. Personalized rehabilitation programs

AI is playing a pivotal role in transforming stroke rehabilitation by 
enabling highly personalized recovery plans [73]. Wearable sensors can 
collect data on a patient’s motor abilities, cognitive function, and overall 
physical progress [71]. AI algorithms analyze this data to develop 
individualized therapy regimens that are specifically designed to meet 
the unique needs of each patient [71,72]. As the patient engages in 
rehabilitation exercises, AI-driven platforms monitor their performance 
and continuously adapt the rehabilitation plan [72]. This dynamic 
approach ensures that patients are always challenged at an appropriate 
level, keeping them engaged in the recovery process while avoiding 
frustration or plateauing [71].

In addition to traditional rehabilitation methods, AI-enhanced vir
tual reality (VR) platforms are gaining traction as a promising tool in 
stroke recovery [76]. These immersive environments encourage patients 
to participate in interactive exercises that target motor skills, balance, 
and coordination, which are often impaired following a stroke [76]. AI 
algorithms integrated into these VR platforms can assess the patient’s 
performance in real time, adjusting the difficulty of the exercises based 
on progress and abilities [77]. By tracking patient data and adapting 
tasks in real time, these AI-powered VR systems ensure that patients 
remain motivated, engaged, and consistently challenged throughout 
their recovery journey, promoting continuous improvement in motor 
function [77]. Fig. 2 emphasizes the integration of AI-enhanced virtual 
reality (VR) platforms that provide immersive, interactive exercises 
tailored to improve motor skills, balance, and coordination during re
covery. This comprehensive approach ensures continuous engagement 
and optimal challenge levels for patients throughout their rehabilitation 
journey.

5. Future directions and innovations

The evolution of wearable technology and artificial intelligence (AI) 

in stroke care is poised to revolutionize the field further [28]. By inte
grating multiple data sources, enhancing predictive analytics, and 
advancing towards autonomous health monitoring systems, the future 
holds tremendous potential for even more personalized, timely, and 
effective stroke prevention and management strategies [78]. These ad
vancements will not only improve the accuracy of stroke risk assess
ments but also streamline interventions, making healthcare more 
responsive to individual needs and dynamic health changes [25,28]. 
Table 2 summarizes future innovations in wearable technology for 
stroke care, highlighting the role of AI applications and tools in 
multi-modal data integration, predictive analytics, and autonomous 
health monitoring systems. Table 2 also outlines the potential impact of 
these advancements, which are poised to improve stroke prevention and 
management through more accurate risk assessments and proactive, 
real-time interventions.

5.1. Multi-modal data integration

One of the most promising future directions for wearable technology 
in stroke risk assessment is the integration of multiple data sources into a 
unified platform [18]. Currently, wearables primarily focus on physio
logical data such as heart rate, blood pressure, and activity levels [18]. 
However, the integration of additional data types—such as genetic in
formation, lifestyle habits, environmental factors, and detailed clinical 
records—will provide a more holistic understanding of an individual’s 
health status [79]. Genetic information, for instance, can help identify 
inherited predispositions to stroke, while lifestyle data can offer insights 
into behavioral risk factors like diet, sleep, and exercise [80].

AI algorithms will play a crucial role in processing this multi-modal 
data [18]. By combining diverse datasets, AI systems will be able to 
generate even more accurate and personalized stroke risk assessments 
[18]. These integrated models will enable healthcare providers to detect 
subtle interactions between genetic predispositions, behavioral factors, 
and real-time biometric data, allowing for earlier and more targeted 
interventions [81]. This personalized, data-driven approach will help 
clinicians not only assess current stroke risk but also anticipate future 
health challenges, providing more effective prevention strategies 
tailored to each individual [18].

5.2. Advanced predictive analytics

As AI and machine learning algorithms continue to advance, more 
sophisticated predictive models will emerge, capable of forecasting 

Fig. 2. AI-driven personalized rehabilitation programs for stroke recovery. The figure illustrates the components of AI-driven personalized rehabilitation programs 
for stroke patients. It highlights the process of data collection through wearable sensors, the analysis of this data by AI algorithms to create individualized therapy 
regimens, and the dynamic adaptation of rehabilitation plans based on real-time performance monitoring.
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stroke risk with greater precision than ever before [82]. Current models 
already analyze relationships between various biometric parameters 
such as blood pressure, heart rate variability, and activity levels, but 
future systems will take these predictions to the next level by incorpo
rating more complex interactions between larger datasets [83]. AI will 
be able to identify nuanced patterns that indicate elevated stroke risk, 
even when traditional risk factors appear within normal ranges [82]. For 
example, AI might detect subtle shifts in heart rate variability that signal 
impending atrial fibrillation or use long-term data trends to predict 
hypertension flare-ups [83]. These advanced predictive models will 
provide clinicians with actionable insights, allowing them to intervene 
preemptively with lifestyle changes, medications, or other preventive 
measures before the risk escalates into an acute stroke event [83]. This 
ability to predict and prevent strokes earlier will drastically improve 
patient outcomes, reducing both the incidence of strokes and the 
severity of their impact [83].

5.3. Autonomous health monitoring systems

A significant innovation in wearable technology lies in the devel
opment of fully autonomous health monitoring systems [35,71]. These 
systems would not only detect stroke risk in real-time but also initiate 
preventive or corrective measures automatically, without requiring 
constant human oversight [35]. For instance, a wearable device that 
continuously tracks blood pressure could autonomously adjust medica
tion dosing based on real-time readings, ensuring that blood pressure 
stays within a safe range and reducing the risk of stroke [25,28].

Autonomous systems could also recommend specific lifestyle 
changes based on an individual’s real-time data [84]. For example, if a 
wearable device detects a pattern of sedentary behavior and elevated 
blood pressure, it might recommend increased physical activity, dietary 
adjustments, or stress-reduction techniques to lower stroke risk [29]. 
These systems would operate as a proactive health companion, 
providing real-time, personalized interventions that adapt to the user’s 
changing health needs [25,28,29]. Furthermore, autonomous systems 
will likely integrate with telemedicine platforms, allowing healthcare 
providers to remotely monitor these automatic adjustments and inter
vene when necessary [28]. By reducing the need for constant in-person 
check-ups, these systems could increase access to preventive stroke care, 
particularly for individuals living in remote or underserved areas [20, 

28]. This integration of wearable technology, AI, and autonomous sys
tems represents the future of stroke prevention—where technology acts 
not only as a diagnostic tool but also as a decision-maker, improving 
outcomes through timely, data-driven interventions [28].

5.4. Integrating AI-driven wearable services for acute ischemic stroke 
subtypes

The integration of AI-driven wearable devices and biometric data 
into stroke risk assessment offers exciting potential for tailoring strate
gies to the distinct characteristics of acute ischemic stroke subtypes. 
Acute ischemic strokes, including large artery atherosclerosis, car
dioembolic, and lacunar subtypes, differ significantly in their patho
physiology, distribution of risk factors, stroke severity, and clinical 
outcomes [58]. For example, lacunar strokes are often associated with 
chronic hypertension and small vessel disease, while cardioembolic 
strokes are closely linked to atrial fibrillation [85]. AI-powered wear
ables, such as continuous blood pressure monitors and ECG devices, 
could provide subtype-specific insights by capturing and analyzing 
real-time data relevant to these differing etiologies.

Future research should explore how wearable technology can aid in 
distinguishing between stroke subtypes by integrating multi-modal data, 
such as genetic, hemodynamic, and environmental factors, into machine 
learning algorithms. These AI systems could enhance early detection, 
improve the precision of risk stratification, and guide targeted preven
tion strategies, particularly for populations predisposed to specific 
subtypes. By addressing the unique pathophysiological mechanisms, this 
approach has the potential to transform personalized stroke care, lead
ing to improved outcomes across all ischemic stroke subtypes.

6. Limitations of this review

This narrative review has several limitations that should be 
acknowledged. First, the study relies on literature published between 
2010 till date, which may have excluded relevant earlier studies that 
could provide additional context or historical perspectives on the 
development of wearable technology in stroke care. Second, the review 
primarily includes articles published in English, potentially introducing 
language bias and overlooking valuable research published in other 
languages. Third, as a narrative review, the study does not employ 

Table 2 
Future directions and innovations in wearable technology for stroke risk assessment.

Future direction Wearable technology AI application/tool 
used

Description Potential impact

Multi-Modal Data 
Integration [18]

Smartwatches, fitness 
trackers, ECG monitors, 
genetic data platforms

AI algorithms for multi- 
modal data processing

AI combines real-time biometric data (e.g., heart 
rate, blood pressure) with genetic, lifestyle, and 
clinical records to provide comprehensive stroke 
risk profiles.

More accurate and personalized stroke 
risk assessments, enabling targeted 
interventions and early prevention.

Multi-Modal Data 
Integration [22]

Wearable ECG monitors, 
blood pressure monitors, 
genomic and clinical data

AI-driven multi-layered 
risk modeling

Integration of genetic predispositions, lifestyle 
data (e.g., physical activity), and real-time vitals 
into an AI platform for holistic stroke risk 
assessment.

Tailored healthcare approaches based 
on combined risk factors, improving the 
precision and timing of interventions.

Advanced Predictive 
Analytics [18]

Smartwatches, wearable 
ECG monitors, fitness 
trackers

Machine learning-based 
predictive analytics 
models

AI analyzes complex interactions between 
physiological data, such as blood pressure and 
heart rhythm, to predict stroke risk with greater 
precision.

Earlier identification of potential stroke 
incidents, allowing for proactive 
intervention and improved patient 
outcomes.

Advanced Predictive 
Analytics [18]

Wearable heart rate 
monitors, activity trackers

Deep learning 
algorithms for 
forecasting stroke risk

AI tools process real-time biometric data to detect 
patterns or anomalies that correlate with stroke 
events, refining predictive models.

Higher precision in predicting stroke 
onset, leading to more timely medical 
intervention and improved stroke 
prevention.

Autonomous Health 
Monitoring Systems 
[19,71]

Smartwatches, blood 
pressure monitors, wearable 
ECG devices

AI-enabled automated 
intervention systems

Wearable devices autonomously adjust treatment 
plans, such as medication dosage or lifestyle 
recommendations, based on real-time biometric 
data analysis.

Immediate health interventions without 
the need for constant clinician 
oversight, leading to better stroke 
prevention and management.

Autonomous Health 
Monitoring Systems 
[19]

Wearable medical-grade 
monitors (e.g., blood 
pressure, heart rate)

AI-powered 
autonomous health 
monitoring and 
feedback loops

AI analyzes health data continuously and 
autonomously makes treatment adjustments, such 
as increasing physical activity recommendations 
or altering medication.

Enhances self-management for stroke 
patients, providing real-time preventive 
care and reducing hospital visits or 
readmissions.
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quantitative synthesis methods such as meta-analysis, which limits the 
ability to statistically assess the efficacy of wearable technologies and AI 
applications in stroke risk assessment. Fourth, the heterogeneity of the 
included studies—in terms of study design, population characteristics, 
types of wearable devices, and outcomes measured—may affect the 
generalizability of the conclusions drawn. Additionally, there is a pos
sibility of publication bias, as studies with positive findings are more 
likely to be published than those with negative results. Lastly, the 
rapidly evolving nature of wearable technology and artificial intelli
gence means that newer developments may have emerged since the 
completion of this review, potentially limiting the timeliness of the 
findings. Future research should address these limitations by including 
broader search strategies, incorporating studies from multiple lan
guages, employing systematic review methodologies, and conducting 
quantitative analyses to provide more robust and generalizable evidence 
on the effectiveness of wearable technology and AI in stroke risk 
assessment and management.

7. Conclusion

Wearable technology and the integration of biometric data present a 
transformative opportunity for enhancing stroke risk assessment and 
delivering more personalized care. The ability of these devices to 
continuously monitor key physiological parameters, such as heart rate, 
blood pressure, and physical activity, coupled with the predictive power 
of machine learning algorithms, has the potential to revolutionize how 
stroke risk is detected and managed. Early detection of risk factors, such 
as hypertension and atrial fibrillation, allows for timely interventions 
that can significantly reduce the likelihood of stroke. Furthermore, 
personalized care plans based on real-time data offer a more tailored 
approach to stroke prevention and rehabilitation, improving patient 
outcomes and quality of life. However, several challenges must be 
addressed to fully realize the potential of wearable technology in stroke 
care. Issues related to data accuracy, especially with consumer-grade 
devices, can impact the reliability of these systems. Privacy and data 
security concerns are also paramount, given the sensitive nature of 
continuous health monitoring. Additionally, integrating wearable 
technology into existing healthcare infrastructures and ensuring that 
healthcare providers can effectively utilize the data remains a challenge. 
Overcoming these obstacles will be crucial for unlocking the full po
tential of wearable devices and artificial intelligence in revolutionizing 
stroke prevention, diagnosis, and rehabilitation, ultimately reducing the 
global burden of stroke and improving patient outcomes.
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Machine learning and the conundrum of stroke risk prediction, Arrhythmia 
Electrophysiol. Rev. 12 (2023).

[83] A. Javaid, F. Zghyer, C. Kim, E.M. Spaulding, N. Isakadze, J. Ding, D. Kargillis, 
Y. Gao, F. Rahman, D.E. Brown, S. Saria, Medicine 2032: the future of 

D.B. Olawade et al.                                                                                                                                                                                                                             Clinical Neurology and Neurosurgery 249 (2025) 108689 

9 

http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref27
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref27
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref28
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref28
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref29
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref29
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref29
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref30
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref30
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref30
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref31
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref31
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref31
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref32
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref32
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref32
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref33
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref33
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref33
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref34
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref34
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref34
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref35
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref35
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref35
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref36
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref36
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref36
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref37
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref37
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref37
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref38
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref38
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref38
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref38
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref39
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref39
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref39
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref39
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref40
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref40
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref41
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref41
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref42
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref42
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref42
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref43
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref43
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref43
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref43
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref44
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref44
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref44
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref44
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref45
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref45
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref45
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref45
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref46
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref46
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref46
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref46
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref47
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref47
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref47
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref48
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref49
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref49
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref49
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref50
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref50
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref50
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref50
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref51
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref51
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref51
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref51
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref52
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref52
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref53
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref53
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref53
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref53
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref54
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref54
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref55
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref55
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref55
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref56
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref56
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref56
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref56
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref57
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref57
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref57
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref58
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref58
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref58
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref58
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref59
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref59
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref59
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref60
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref60
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref60
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref61
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref61
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref61
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref62
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref62
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref62
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref63
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref63
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref63
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref63
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref64
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref64
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref65
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref65
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref66
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref66
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref67
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref67
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref67
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref67
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref68
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref68
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref68
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref69
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref69
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref69
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref70
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref70
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref70
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref71
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref71
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref71
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref72
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref72
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref73
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref73
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref73
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref74
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref74
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref74
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref75
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref75
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref75
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref75
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref76
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref76
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref77
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref77
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref77
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref77
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref78
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref78
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref78
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref79
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref79
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref79
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref80
http://refhub.elsevier.com/S0303-8467(24)00576-6/sbref80


cardiovascular disease prevention with machine learning and digital health 
technology, Am. J. Prev. Cardiol. 12 (2022) 100379.

[84] L. Dowthwaite, G.R. Cruz, A.R. Pena, C. Pepper, N. Jäger, P. Barnard, A.M. Hughes, 
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