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Abstract 

    The Retrieval-Augmented Generation (RAG) model significantly enhances the 

capabilities of large language models (LLMs) by integrating information retrieval with text 

generation, which is particularly relevant for applications requiring context-aware responses 

based on dynamic data sources. This research study presents a practical implementation of a 

RAG model personalized for a Chabot that answers user inquiries from various specific 

websites. The methodology encompasses several key steps: web scraping using BeautifulSoup 

to extract relevant content, text processing to segment this content into manageable chunks, 

and vectorization to create embeddings for efficient semantic search. By employing a semantic 

search approach, the system retrieves the most relevant document segments based on user 

queries. The OpenAI API is then utilized to generate contextually appropriate responses from 

the retrieved information. Key results highlight the system's effectiveness in providing accurate 

and relevant answers, with evaluation metrics centered on response quality, retrieval efficiency, 

and user satisfaction. This research contributes a comprehensive integration of scraping, 

vectorization, and semantic search technologies into a cohesive chatbot application, offering 

valuable insights into the practical implementation of RAG models. 

Keywords: Large Language Models, Retrieval Augmented Generation (RAG), ChatBot, 

OpenAI API, Natural Language Processing. 
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1. Introduction 

Large Language Model (LLM) - powered interactive systems have transformed human-

computer interaction by facilitating dynamic and intelligent open conversations. By using 

tremendous amounts of pre-trained data LLMs like OpenAI’s GPT models are excellent at 

producing human-like language (Brown et al., 2020). The fact that their knowledge base is 

fixed and set at the time of training, however, this one is their primary drawback. The Retrieval-

Augmented Generation (RAG) architecture was developed to get over this limitation by 

focusing external knowledge retrieval systems with LLMs (Lewis et al.,2020). This hybrid 

technique improves the relevance and accuracy of models by enabling them to obtain and 

incorporate current information during interaction. 

The current implementation’s distinctive characteristic is its ability to actively interact 

with live website information. The system analyses user-specified webpages dynamically, 

extracting information, generating embeddings, and using semantic search to produce 

customized responses in contrast to traditional RAG-based Chabot’s that use static or 

predetermined document collections. The RAG framework improves on LLMs capabilities by 

combining them along with retrievers that find appropriate additional information to improve 

responses. The system’s flexibility is limited in traditional implementations because sources of 

knowledge, such as databases, indexed texts, and datasets, remain fixed (Izacard & Grave, 

2021). These abilities have recently been improved to dynamic retrieval from additional 

information. Through the limitations of real-time scraping, embedding creation, and retrieval 

chains, the system improves user experience by delivering accurate and contextually relevant 

information. 

1.1 Objective 

This research aims to develop a chatbot that can effectively answer user queries about 

a website’s content using the RAG approach, integrating web scraping, embeddings, and 

semantic search. Web scraping ensures current answers, embeddings capture semantic 

relationships, and semantic search enhances the chatbot’s ability to find relevant passages and 

answer user queries. 
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1.2 Significance 

The proposed Chabot improves user interaction with websites by providing up-to-date 

information through web scraping, embeddings, and semantic search methodologies. It saves 

the user time by dynamically scraping the website and recognizing relevant information 

through semantic search. This search aims to create intelligent interactive systems. 

2. Literature Review 

The integration of advanced artificial intelligence (AI) techniques, particularly those 

related to information retrieval and Natural Language Processing (NLP), has greatly advanced 

the development of chatbots that operate on websites. One such innovation is Retrieval-

Augmented Generation (RAG), which blends generative and retrieval-based models to produce 

responses that are more accurate and appropriate for the context (Lewis et al., 2020). 

Applications that require dynamic information retrieval from sizable, regularly updated 

datasets benefit greatly from RAG. By guaranteeing that RAG-based systems have access to 

current and pertinent data, the integration of web scraping, vectorization, and semantic search 

technologies is essential to improving system performance (Izacard and Grave, 2020; 

Karpukhin et al., 2020). 

A hybrid framework known as Retrieval-Augmented Generation incorporates outside 

knowledge sources into inference to improve the response generation process. To function, the 

RAG model first pulls relevant passages or documents from a knowledge base. Based on the 

information retrieved and the input query, the model then generates responses (Lewis et al., 

2020). With knowledge-intensive tasks, conventional generative models frequently exhibit 

factual errors and a lack of coherence. To overcome these shortcomings, this method tackles 

the issues (Guu et al., 2020). In tasks requiring external knowledge, like open-domain question 

answering and dialogue systems, Lewis et al. (2020) showed that RAG models perform better 

than conventional sequence-to-sequence models. RAG models are more adaptive to new 

domains and topics and less dependent on static training data because they can dynamically 

access updated information by utilizing large-scale retrieval mechanisms (Izacard and Grave, 

2021). Additionally, RAG's modular architecture enables flexible integration with different 

retrieval and generation components, enabling optimization and customization in accordance 

with application requirements (Lewis et al., 2020). 
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Web scraping is a vital method for creating the datasets required for RAG models. 

During the retrieval phase, RAG models access a knowledge base that is populated by 

automatically extracted data from websites. For applications that require real-time or frequently 

updated content, Mitchell (2018) emphasizes that web scraping is especially useful for 

gathering sizable amounts of data that reflect current and up-to-date information. Web scraping 

provides for the ongoing updating of the knowledge base, which improves the relevance and 

precision of the chatbot's responses when it comes to website-based chatbots (Sangita et.al., 

2023). 

A crucial step in enabling machine learning models to process and comprehend text is 

vectorization, which is the process of transforming textual data into numerical vectors. There 

have been many vectorization techniques developed, and each has advantages and 

disadvantages. Reimers and Gurevych (2019) examine various methods such as Word2Vec, 

Term Frequency-Inverse Document Frequency (TF-IDF), and more modern transformer-based 

models such as BERT (Bidirectional Encoder Representations from Transformers). For tasks 

requiring nuanced understanding, like semantic search in RAG models, BERT embeddings 

have been demonstrated to capture contextual information more effectively. 

Rather than depending only on keyword matching, semantic search seeks to enhance 

information retrieval by comprehending the intent and contextual meaning behind user queries 

(Huang et al., 2013). Semantic search improves the retrieval part of RAG-based chatbots by 

finding and bringing up documents that are semantically relevant to the input query; this gives 

response generation a better foundation (Guu et al., 2020). To quantify the semantic similarity 

between queries and documents, advanced embedding techniques and similarity metrics must 

be used (Reimers and Gurevych, 2019). Deep semantic relationships have proven to be 

particularly well-captured by transformer-based models, leading to more precise and 

contextually relevant retrieval outcomes (Humeau et al., 2020). Semantic search is integrated 

into RAG models, which has been demonstrated to improve performance significantly in tasks 

like conversational AI and open-domain question answering, giving users more accurate and 

informative responses (Karpukhin et al., 2020). However, there are still difficulties in finding 

the best way to balance computational efficiency and retrieval accuracy, especially in large-

scale and real-time applications (Johnson et al., 2019). The AI content generation technology 

has been discussed in this research that is about how to use the appropriate language models to 

make customized features and tools (Pokhrel et.al., 2023) and customized chatbots for 



A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search 

ISSN: 2582-4104  428 

 

document summarization and question answering using large language models in (Sangita 

et.al., 2024). 

Advanced website-based chatbots that can handle complex and dynamic information 

needs can be developed with great potential by integrating RAG models with web scraping, 

vectorization, and semantic search techniques (Izacard and Grave, 2021). These systems have 

potential, but there are still several obstacles in the way of their effective implementation. As 

outdated or erroneous information can result in inaccurate responses and erode user trust, it is 

imperative to ensure the quality and reliability of the scraped data (Mitchell, 2018). Moreover, 

optimized architectures and resource management techniques are needed to maintain 

computational efficiency while handling real-time interactions and processing enormous 

volumes of data (Johnson et al., 2019). Legal and ethical issues are also important, especially 

when it comes to data privacy and adhering to laws like the General Data Protection Regulation 

(GDPR) (Voigt and Von dem Bussche, 2017). Concerns about bias, false information, and user 

privacy must be addressed by ensuring accountability and transparency in AI-driven chatbot 

responses (Bender et al., 2021).  

3. Methodology 

The chatbot’s system architecture consists of several components, including a web 

scraper, content parser, text splitter, vector store, retriever chain, and generative model. The 

web scraper retrieves HTML content from the website, the content parser extracts and cleans 

the text, and the generative model divides the content into manageable chunks. OpenAI’s 

language models embed these vectors in a database, and the retriever chain searches for 

relevant content based on the user’s query and conversation history. The generative model 

generates accurate and relevant responses. The Figure 1 depicts the system architecture 

overview. 



                                                                                                                                                                        Sangita Pokhrel, Bina K C, Prashant Bikram Shah 

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 429 

 

 

Figure 1. System Architecture Overview 

3.1 Data Retrieval 

The system utilizes web scraping, BeautifulSoup, and a Python package designed for 

parsing HTML and XML documents, to extract content from the target website (Richardson, 

2022). The requests library sends an HTTP request to a website, which is processed by 

BeautifulSoup, which creates a parse tree to extract individual elements like text, images, and 

links. BeautifulSoup uses the ‘find_all( )’ method to locate all instances of an HTML tag 

extracts the textual content using the ‘get_text( )’ method to remove extraneous HTML markup 

(Mitchell, 2018). 

3.1.1 Libraries Employed 

The system uses Python-based libraries like Streamlit, LangChain, BeautifulSoup4, 

OpenAI API, and Chroma for tasks like websites data import, embedding creation, and vector 

database creation. These libraries help with interactive web apps, pipeline administration, 

HTML extraction, and embedding storage. 

3.1.2 Data Extraction/Retrieval 

 The data extracted from website content obtained through web scraping requires 

systematic retrieval and parsing, with various methods available once BeautifulSoup has 

loaded the document. For example, to search for HTML tags by name, attribute, or content, the 

functions ‘find()’ and ‘find_all()’ is used (Richardson 2020). The system can extract 
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information and navigate the HTML document's intricate structure. BeautifulSoup cleans and 

organizes extracted data for text splitting and vectorization, ensuring a responsive chatbot that 

utilizes up-to-date information. 

3.2 Text Processing 

Splitting text into smaller, more manageable chunks or documents for additional 

analysis is an essential step in processing extracted content (Mitchell, 2018). This division is 

required because handling enormous amounts of textual data can be difficult and may result in 

inefficiencies or problems with content management (Jurafsky and Martin, 2009). The 

RecursiveCharacterTextSplitter is a technique used for text splitting, dividing long texts into 

smaller chunks within language model’s token size limitations, preserving context and ensuring 

compliance. 

3.3 Vectorization 

To convert text chunks into dense vector embeddings using a pretrained embedding 

model, the system uses Chroma for vectorization and OpenAIEmbeddings to create vector 

representations of text. These vectors are then stored in vector databases (Chroma), which 

serves the dual purposes of encoding semantic meaning into numeric representations and 

facilitating effective similarity searches for information retrieval. 

3.4 Semantic Search 

Reimers and Gurevych (2019) define semantic search as the process of using vector 

embedding to compare and rank text chunks according to how relevant they are to a user’s 

query. The angle between vectors in the vector space is measured to determine the similarity 

between them, this comparison is typically carried out using cosine similarity or other distance 

metrics (Manning, Raghavan, and Schütze, 2008). Higher ranking and retrieval of the most 

pertinent results are achieved by text chunks that have the highest similarity scores to the query 

vector. According to Brown et al. (2020), semantic search yields more precise and contextually 

relevant results than traditional keyword-based searches because it comprehends the context 

and meaning behind the text. Semantic search is a feature that locates and displays documents 

that are semantically connected to the user's text query (Jeong., 2023). Semantic search process 

is shown in the given Figure 2. 
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Figure 2. Semantic Search 

Semantic search improves user response by analysing user queries and determining 

their meaning. OpenAI’s Chat model processes user input and conversation history creating 

contextually appropriate queries. ChatPromptTemplate creates search queries based on user 

intent, retrieving desired information. A retriever chain integrates semantic queries into the 

search pipeline, utilizing context previous messages and user inquiry for improved retrieval. 

3.5 Query Processing 

• Query Embedding 

Text embeddings are strong vector representations of text that effectively compare text 

similarity by including semantic meaning. The system utilizes OpenAI’s text embedding 

model, including text-embedding-ada-002. The semantic structure of text is represented in 

high-dimensional space by these embeddings (Brown et al., 2020). For effective embedding 

and retrieval, the RecursiveCharacterTextSplitter breaks up the text of the webpage into smaller 

chunks. Multimodal retrieval of relevant information is made possible by the autonomous 

embedding of each chunk.  

• Similarity Checks 

The Chroma vector storage calculates inverse similarity between user queries and 

document embeddings, enabling quick and effective similarity-based searches, and transforms 

user queries into vector storage for query matching. The stored document vector and the query 

vector are compared using cosine similarity, a lower angle denotes a stronger semantic 

similarity (Manning et al., 2008). Based on the similarity scores, the top-ranked document 

chunks are retrieved through the vector_store.as_retriever( ) interface. The language model is 

then given these pieces to generate responses. 
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• Techniques/Algorithm Used 

OpenAI uses conversational GPT model for semantic query processing and prompt 

engineering for search queries. Pretrained Embedding models transform text into high-

dimensional semantic representations. Cosine similarity matches query and document 

embeddings. RecursiveCharacterTextSplitter splits long texts for retrieval and embedding. 

Chroma Vector Store saves document embeddings. Figure 3 shows the query processing using 

embedding. 

Figure 3. Query Processing using Embedding 

3.6 Response Generation 

OpenAI’s advanced models are used to create an interactive chatbot that dynamically 

interprets website content, utilizing GPT-4 for conversational responses and text-embedding-

ada-002 for efficient embeddings. The retrieved document chunks are integrated into a large 

language models (LLM), like the OpenAI model, while the response generation process. The 

LLM uses these chunks to produce a contextually appropriate response to the user’s query 

(Brown et al., 2020). The LLM utilizes semantic information in document chunks and 

pretrained knowledge to provide precise and user specific responses (Radford et al., 2019). 

With this method, the model can interpret and rephrase important data in a logical way that is 

specific to the question at hand, in addition to retrieving important data (Geo et al., 2021).  

To ensure that the final response directly and successfully answers the user's query, the 

output produced by the LLM is refined (Zhang et al., 2019). The process entails identifying the 

most pertinent segments of the model's response, guaranteeing clarity and consistency, and 

eliminating any superfluous data that does not aid in addressing the inquiry (Liu et al., 2018). 

To improve user experience and engagement, the response is then given to the user in an 
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understandable format, frequently through a conversational interface that mimics natural 

dialogue (Raffel et al., 2020). This procedure guarantees an easy-to-use and informative 

product, facilitating a smooth user-system interaction (Brown et al., 2020). 

4. Implementation  

The application enables conversational querying of web-based content by combining 

web scraping, text processing, vector database tools, and OpenAI's language model. It involves 

technical setup, essential procedures (text processing, querying, embedding, and scraping), and 

addressing development issues. Essential libraries include OpenAI's API, Streamlit, 

LangChain, BeautifulSoup, and Chroma. Environment variables, including API keys, are 

managed through dotenv. The Python package manager pip installs necessary libraries, and the 

application is loaded with these environment variables. 

• Challenges and Solutions 

The implementation of a chatbot application faced several challenges, including 

handling large content, maintaining conversational context, efficient embedding and retrieval, 

and managing state in the web interface. LangChain’s RecursiveCharacterTextSplitter was 

used to divide text into manageable chunks, improving the efficiency of the retrieval process. 

Chroma was used to efficiently organize high dimensional vectors and conduct similarity 

searches, ensuring timely responses. Streamlit’s feature st.session_state was used to maintain 

chat history and vector store during user interactions. The chatbot’s state was managed using 

Streamlit’s feature st.session_state, allowing the chatbot to continue meaningful dialogue by 

recalling prior exchanges and modifying responses accordingly. A series of tests were 

conducted to evaluate the effectiveness of the chatbot application’s main features, including 

web scraping, text processing, embedding, semantic search, and the conversational interface. 

• Testing Methods 

The chatbot's performance was evaluated through three steps: website content retrieval, 

conversational interaction, and response evaluation. The chatbot was given an example URL 

to retrieve and handle web content, and tested for context preservation, user input 

comprehension, and data retrieval. The accuracy, coherence, and relevance of the responses 

were assessed by comparing them with the website's content. The testing results are depicted 

in Figures 4-9. 
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Figure 4. Testing Chatbot General Understanding and Context Awareness 

The UK government's website URL was used to test a chatbot's general understanding, 

context awareness, retrieval accuracy, and complex problem handling. The chatbot was tested 

on its main purpose, core job features, visa features, and multi-turn conversation, ensuring it 

could explain visas, benefits for internation students, and compare products or services. 

Figure 5. Testing Chatbot’s Retrieval Accuracy 
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Figure 6. Testing Chatbot’s Handling Complex Queries and Multi-Conversation 

 

Figure 7. Chatbot’s Failure Testing 

The chatbot's failure testing was conducted using a website URL and a logistic 

company URL, while its user experience, response quality, and knowledge boundaries were 

tested using a random website URL and four questions, generated responses are illustrated in 

Table 1. 

Table 1. Chatbot Responses 

Questions Chatbot Responses 

What is this 

logistic 

company 

about? What 

This logistics company, Diamond Logistics, specializes in tailored 

fulfilment and delivery services for individuals and companies. They 

offer services such as same day delivery, next day delivery, international 

delivery, UK fulfilment, eCommerce fulfilment, carriers & integrations, 

and outsourced warehousing and distribution. They also have a logistics 
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services can 

they provide? 

 

management platform called Despatch lab that allows you to book, 

track, and manage your courier requirements and shipments. 

What 

eCommerce 

fulfilment 

services they 

have? 

Diamond Logistics offers eCommerce fulfilment services as part of their 

tailored solutions for businesses. These services include managing 

inventory, multiple marketplace integrations, and logistics management 

through their platform, Despatch lab. They ensure transparency, control, 

and peace of mind for your eCommerce fulfilment needs. 

Are your 

responses based 

on current 

information? 

Yes, my responses are based on the information provided in the context 

you shared about Diamond Logistics and its services. If you have any 

specific questions or need more details, feel free to ask. 

Are your 

responses based 

on current 

information? 

As an AI assistant, I can provide information and answer questions 

based on the content available on the website you provided about 

Diamond Logistics. However, I may not be able to retrieve real-time or 

updated information that is not included on the website. If you have 

specific questions beyond the content provided on the website, I may not 

have access to that information. 

 

We have tested another website which is a website about 10 best supply chain 

companies of 2021 in this website: https://www.inboundlogistics.com/articles/10-best-supply-

chain-companies-of-2021/ and here are the results from the chatbot: 

https://www.inboundlogistics.com/articles/10-best-supply-chain-companies-of-2021/
https://www.inboundlogistics.com/articles/10-best-supply-chain-companies-of-2021/
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Figure 8. Testing of Chatbot’s User Experience, Response quality, Limitations and 

Knowledge boundaries 

 

          Figure 9(a). Testing Chatbot’s Follow – up Question Handling Capacity 



A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search 

ISSN: 2582-4104  438 

 

 

Figure 9(b). Testing Chatbot’s Follow – up Questions Handling Capacity 

To test the Chatbot’s quality to handle Follow-up questions, Figures 9(a) and 9(b) 

illustrate our chatbot’s quality to handle Follow-up questions. 

• Addressing Chatbot Performance Issues  

Problems with embeddings, vector storage, semantic mismatch, and the constraints of 

the GPT-4 model could make the chatbot's implementation fail. These problems may result in 

hallucinated responses, confused user enquiries, incomplete or incorrect responses, and 

improper loading of dynamic website material. For large websites, the GPT-4 model may also 

produce irrelevant responses and significant latency. 

• Potential Improvements 

To enhance a chatbot's ability to handle complex inquiries and multi-turn dialogues, it 

can use more complex conversation models, web scraping tools like Selenium, retrieval-

augmented generation (RAG) techniques, and a complex query parsing mechanism. These 

strategies can help the chatbot handle larger contexts, produce more thorough responses, and 

better understand user intents, especially when dealing with complex instructions or layered 

information requests. 
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5. Conclusion and Future Work 

The research’s main aim is to explore the use of Retrieval-Augmented Generation 

(RAG) for chatbots on websites. It demonstrates how these methods can retrieve large amounts 

of data and provide context-relevant information. Web scraping gathers current content, NLP 

models transform it into embeddings, semantic search connects user queries to relevant content, 

and a generative model produces logical answers. The RAG model is successful in answering 

user inquiries, making it practical in dynamic environments like e-commerce and customer 

support.The RAG chatbot model can be enhanced by adding more languages, incorporating 

data sources like knowledge bases, social media platforms, or APIs, and creating personalized 

interaction features. Future work could involve ongoing web scraping, change monitoring, and 

reinforcement learning to improve the chatbot’s intelligence and precision This will ensure 

users with varying linguistic backgrounds can still benefit from the system. 
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