
Pokhrel, Sangita ORCID logoORCID:
https://orcid.org/0009-0008-2092-7029, K C, Bina and Shah,
Prashant Bikram (2025) A Practical Application of Retrieval-
Augmented Generation for Website-Based Chatbots: Combining
Web Scraping, Vectorization, and Semantic Search. Journal of
Trends in Computer Science and Smart Technology, 6 (4). pp. 424-
442.

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/11412/

The version presented here may differ from the published version or version of record. If

you intend to cite from the work you are advised to consult the publisher's version:

https://doi.org/10.36548/jtcsst.2024.4.007

Research at York St John (RaY) is an institutional repository. It supports the principles of

open access by making the research outputs of the University available in digital form.

Copyright of the items stored in RaY reside with the authors and/or other copyright

owners. Users may access full text items free of charge, and may download a copy for

private study or non-commercial research. For further reuse terms, see licence terms

governing individual outputs. Institutional Repository Policy Statement

RaY
Research at the University of York St John

For more information please contact RaY at ray@yorksj.ac.uk

https://www.yorksj.ac.uk/ils/repository-policies/
mailto:ray@yorksj.ac.uk

Journal of Trends in Computer Science and Smart Technology (ISSN: 2582-4104)
www.irojournals.com/tcsst/

Journal of Trends in Computer Science and Smart Technology December 2024, Volume 6, Issue 4, Pages 424-442 424
DOI: https://doi.org/10.36548/jtcsst.2024.4.007

Received: 03.12.2024, received in revised form: 27.12.2024, accepted: 11.01.2025, published: 20.01.2025
 © 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

A Practical Application of Retrieval-

Augmented Generation for Website-Based

Chatbots: Combining Web Scraping,

Vectorization, and Semantic Search

Sangita Pokhrel1, Bina K C.2, Prashant Bikram Shah3

Department of Computer Science and Data Science, York St John University, London, United

Kingdom

Email: 1s.pokhrel@yorksj.ac.uk, 2bina.k-c@yorksj.ac.uk, 3p.shah@yorksj.ac.uk

Abstract

 The Retrieval-Augmented Generation (RAG) model significantly enhances the

capabilities of large language models (LLMs) by integrating information retrieval with text

generation, which is particularly relevant for applications requiring context-aware responses

based on dynamic data sources. This research study presents a practical implementation of a

RAG model personalized for a Chabot that answers user inquiries from various specific

websites. The methodology encompasses several key steps: web scraping using BeautifulSoup

to extract relevant content, text processing to segment this content into manageable chunks,

and vectorization to create embeddings for efficient semantic search. By employing a semantic

search approach, the system retrieves the most relevant document segments based on user

queries. The OpenAI API is then utilized to generate contextually appropriate responses from

the retrieved information. Key results highlight the system's effectiveness in providing accurate

and relevant answers, with evaluation metrics centered on response quality, retrieval efficiency,

and user satisfaction. This research contributes a comprehensive integration of scraping,

vectorization, and semantic search technologies into a cohesive chatbot application, offering

valuable insights into the practical implementation of RAG models.

Keywords: Large Language Models, Retrieval Augmented Generation (RAG), ChatBot,

OpenAI API, Natural Language Processing.

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 425

1. Introduction

Large Language Model (LLM) - powered interactive systems have transformed human-

computer interaction by facilitating dynamic and intelligent open conversations. By using

tremendous amounts of pre-trained data LLMs like OpenAI’s GPT models are excellent at

producing human-like language (Brown et al., 2020). The fact that their knowledge base is

fixed and set at the time of training, however, this one is their primary drawback. The Retrieval-

Augmented Generation (RAG) architecture was developed to get over this limitation by

focusing external knowledge retrieval systems with LLMs (Lewis et al.,2020). This hybrid

technique improves the relevance and accuracy of models by enabling them to obtain and

incorporate current information during interaction.

The current implementation’s distinctive characteristic is its ability to actively interact

with live website information. The system analyses user-specified webpages dynamically,

extracting information, generating embeddings, and using semantic search to produce

customized responses in contrast to traditional RAG-based Chabot’s that use static or

predetermined document collections. The RAG framework improves on LLMs capabilities by

combining them along with retrievers that find appropriate additional information to improve

responses. The system’s flexibility is limited in traditional implementations because sources of

knowledge, such as databases, indexed texts, and datasets, remain fixed (Izacard & Grave,

2021). These abilities have recently been improved to dynamic retrieval from additional

information. Through the limitations of real-time scraping, embedding creation, and retrieval

chains, the system improves user experience by delivering accurate and contextually relevant

information.

1.1 Objective

This research aims to develop a chatbot that can effectively answer user queries about

a website’s content using the RAG approach, integrating web scraping, embeddings, and

semantic search. Web scraping ensures current answers, embeddings capture semantic

relationships, and semantic search enhances the chatbot’s ability to find relevant passages and

answer user queries.

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 426

1.2 Significance

The proposed Chabot improves user interaction with websites by providing up-to-date

information through web scraping, embeddings, and semantic search methodologies. It saves

the user time by dynamically scraping the website and recognizing relevant information

through semantic search. This search aims to create intelligent interactive systems.

2. Literature Review

The integration of advanced artificial intelligence (AI) techniques, particularly those

related to information retrieval and Natural Language Processing (NLP), has greatly advanced

the development of chatbots that operate on websites. One such innovation is Retrieval-

Augmented Generation (RAG), which blends generative and retrieval-based models to produce

responses that are more accurate and appropriate for the context (Lewis et al., 2020).

Applications that require dynamic information retrieval from sizable, regularly updated

datasets benefit greatly from RAG. By guaranteeing that RAG-based systems have access to

current and pertinent data, the integration of web scraping, vectorization, and semantic search

technologies is essential to improving system performance (Izacard and Grave, 2020;

Karpukhin et al., 2020).

A hybrid framework known as Retrieval-Augmented Generation incorporates outside

knowledge sources into inference to improve the response generation process. To function, the

RAG model first pulls relevant passages or documents from a knowledge base. Based on the

information retrieved and the input query, the model then generates responses (Lewis et al.,

2020). With knowledge-intensive tasks, conventional generative models frequently exhibit

factual errors and a lack of coherence. To overcome these shortcomings, this method tackles

the issues (Guu et al., 2020). In tasks requiring external knowledge, like open-domain question

answering and dialogue systems, Lewis et al. (2020) showed that RAG models perform better

than conventional sequence-to-sequence models. RAG models are more adaptive to new

domains and topics and less dependent on static training data because they can dynamically

access updated information by utilizing large-scale retrieval mechanisms (Izacard and Grave,

2021). Additionally, RAG's modular architecture enables flexible integration with different

retrieval and generation components, enabling optimization and customization in accordance

with application requirements (Lewis et al., 2020).

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 427

Web scraping is a vital method for creating the datasets required for RAG models.

During the retrieval phase, RAG models access a knowledge base that is populated by

automatically extracted data from websites. For applications that require real-time or frequently

updated content, Mitchell (2018) emphasizes that web scraping is especially useful for

gathering sizable amounts of data that reflect current and up-to-date information. Web scraping

provides for the ongoing updating of the knowledge base, which improves the relevance and

precision of the chatbot's responses when it comes to website-based chatbots (Sangita et.al.,

2023).

A crucial step in enabling machine learning models to process and comprehend text is

vectorization, which is the process of transforming textual data into numerical vectors. There

have been many vectorization techniques developed, and each has advantages and

disadvantages. Reimers and Gurevych (2019) examine various methods such as Word2Vec,

Term Frequency-Inverse Document Frequency (TF-IDF), and more modern transformer-based

models such as BERT (Bidirectional Encoder Representations from Transformers). For tasks

requiring nuanced understanding, like semantic search in RAG models, BERT embeddings

have been demonstrated to capture contextual information more effectively.

Rather than depending only on keyword matching, semantic search seeks to enhance

information retrieval by comprehending the intent and contextual meaning behind user queries

(Huang et al., 2013). Semantic search improves the retrieval part of RAG-based chatbots by

finding and bringing up documents that are semantically relevant to the input query; this gives

response generation a better foundation (Guu et al., 2020). To quantify the semantic similarity

between queries and documents, advanced embedding techniques and similarity metrics must

be used (Reimers and Gurevych, 2019). Deep semantic relationships have proven to be

particularly well-captured by transformer-based models, leading to more precise and

contextually relevant retrieval outcomes (Humeau et al., 2020). Semantic search is integrated

into RAG models, which has been demonstrated to improve performance significantly in tasks

like conversational AI and open-domain question answering, giving users more accurate and

informative responses (Karpukhin et al., 2020). However, there are still difficulties in finding

the best way to balance computational efficiency and retrieval accuracy, especially in large-

scale and real-time applications (Johnson et al., 2019). The AI content generation technology

has been discussed in this research that is about how to use the appropriate language models to

make customized features and tools (Pokhrel et.al., 2023) and customized chatbots for

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 428

document summarization and question answering using large language models in (Sangita

et.al., 2024).

Advanced website-based chatbots that can handle complex and dynamic information

needs can be developed with great potential by integrating RAG models with web scraping,

vectorization, and semantic search techniques (Izacard and Grave, 2021). These systems have

potential, but there are still several obstacles in the way of their effective implementation. As

outdated or erroneous information can result in inaccurate responses and erode user trust, it is

imperative to ensure the quality and reliability of the scraped data (Mitchell, 2018). Moreover,

optimized architectures and resource management techniques are needed to maintain

computational efficiency while handling real-time interactions and processing enormous

volumes of data (Johnson et al., 2019). Legal and ethical issues are also important, especially

when it comes to data privacy and adhering to laws like the General Data Protection Regulation

(GDPR) (Voigt and Von dem Bussche, 2017). Concerns about bias, false information, and user

privacy must be addressed by ensuring accountability and transparency in AI-driven chatbot

responses (Bender et al., 2021).

3. Methodology

The chatbot’s system architecture consists of several components, including a web

scraper, content parser, text splitter, vector store, retriever chain, and generative model. The

web scraper retrieves HTML content from the website, the content parser extracts and cleans

the text, and the generative model divides the content into manageable chunks. OpenAI’s

language models embed these vectors in a database, and the retriever chain searches for

relevant content based on the user’s query and conversation history. The generative model

generates accurate and relevant responses. The Figure 1 depicts the system architecture

overview.

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 429

Figure 1. System Architecture Overview

3.1 Data Retrieval

The system utilizes web scraping, BeautifulSoup, and a Python package designed for

parsing HTML and XML documents, to extract content from the target website (Richardson,

2022). The requests library sends an HTTP request to a website, which is processed by

BeautifulSoup, which creates a parse tree to extract individual elements like text, images, and

links. BeautifulSoup uses the ‘find_all()’ method to locate all instances of an HTML tag

extracts the textual content using the ‘get_text()’ method to remove extraneous HTML markup

(Mitchell, 2018).

3.1.1 Libraries Employed

The system uses Python-based libraries like Streamlit, LangChain, BeautifulSoup4,

OpenAI API, and Chroma for tasks like websites data import, embedding creation, and vector

database creation. These libraries help with interactive web apps, pipeline administration,

HTML extraction, and embedding storage.

3.1.2 Data Extraction/Retrieval

 The data extracted from website content obtained through web scraping requires

systematic retrieval and parsing, with various methods available once BeautifulSoup has

loaded the document. For example, to search for HTML tags by name, attribute, or content, the

functions ‘find()’ and ‘find_all()’ is used (Richardson 2020). The system can extract

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 430

information and navigate the HTML document's intricate structure. BeautifulSoup cleans and

organizes extracted data for text splitting and vectorization, ensuring a responsive chatbot that

utilizes up-to-date information.

3.2 Text Processing

Splitting text into smaller, more manageable chunks or documents for additional

analysis is an essential step in processing extracted content (Mitchell, 2018). This division is

required because handling enormous amounts of textual data can be difficult and may result in

inefficiencies or problems with content management (Jurafsky and Martin, 2009). The

RecursiveCharacterTextSplitter is a technique used for text splitting, dividing long texts into

smaller chunks within language model’s token size limitations, preserving context and ensuring

compliance.

3.3 Vectorization

To convert text chunks into dense vector embeddings using a pretrained embedding

model, the system uses Chroma for vectorization and OpenAIEmbeddings to create vector

representations of text. These vectors are then stored in vector databases (Chroma), which

serves the dual purposes of encoding semantic meaning into numeric representations and

facilitating effective similarity searches for information retrieval.

3.4 Semantic Search

Reimers and Gurevych (2019) define semantic search as the process of using vector

embedding to compare and rank text chunks according to how relevant they are to a user’s

query. The angle between vectors in the vector space is measured to determine the similarity

between them, this comparison is typically carried out using cosine similarity or other distance

metrics (Manning, Raghavan, and Schütze, 2008). Higher ranking and retrieval of the most

pertinent results are achieved by text chunks that have the highest similarity scores to the query

vector. According to Brown et al. (2020), semantic search yields more precise and contextually

relevant results than traditional keyword-based searches because it comprehends the context

and meaning behind the text. Semantic search is a feature that locates and displays documents

that are semantically connected to the user's text query (Jeong., 2023). Semantic search process

is shown in the given Figure 2.

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 431

Figure 2. Semantic Search

Semantic search improves user response by analysing user queries and determining

their meaning. OpenAI’s Chat model processes user input and conversation history creating

contextually appropriate queries. ChatPromptTemplate creates search queries based on user

intent, retrieving desired information. A retriever chain integrates semantic queries into the

search pipeline, utilizing context previous messages and user inquiry for improved retrieval.

3.5 Query Processing

• Query Embedding

Text embeddings are strong vector representations of text that effectively compare text

similarity by including semantic meaning. The system utilizes OpenAI’s text embedding

model, including text-embedding-ada-002. The semantic structure of text is represented in

high-dimensional space by these embeddings (Brown et al., 2020). For effective embedding

and retrieval, the RecursiveCharacterTextSplitter breaks up the text of the webpage into smaller

chunks. Multimodal retrieval of relevant information is made possible by the autonomous

embedding of each chunk.

• Similarity Checks

The Chroma vector storage calculates inverse similarity between user queries and

document embeddings, enabling quick and effective similarity-based searches, and transforms

user queries into vector storage for query matching. The stored document vector and the query

vector are compared using cosine similarity, a lower angle denotes a stronger semantic

similarity (Manning et al., 2008). Based on the similarity scores, the top-ranked document

chunks are retrieved through the vector_store.as_retriever() interface. The language model is

then given these pieces to generate responses.

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 432

• Techniques/Algorithm Used

OpenAI uses conversational GPT model for semantic query processing and prompt

engineering for search queries. Pretrained Embedding models transform text into high-

dimensional semantic representations. Cosine similarity matches query and document

embeddings. RecursiveCharacterTextSplitter splits long texts for retrieval and embedding.

Chroma Vector Store saves document embeddings. Figure 3 shows the query processing using

embedding.

Figure 3. Query Processing using Embedding

3.6 Response Generation

OpenAI’s advanced models are used to create an interactive chatbot that dynamically

interprets website content, utilizing GPT-4 for conversational responses and text-embedding-

ada-002 for efficient embeddings. The retrieved document chunks are integrated into a large

language models (LLM), like the OpenAI model, while the response generation process. The

LLM uses these chunks to produce a contextually appropriate response to the user’s query

(Brown et al., 2020). The LLM utilizes semantic information in document chunks and

pretrained knowledge to provide precise and user specific responses (Radford et al., 2019).

With this method, the model can interpret and rephrase important data in a logical way that is

specific to the question at hand, in addition to retrieving important data (Geo et al., 2021).

To ensure that the final response directly and successfully answers the user's query, the

output produced by the LLM is refined (Zhang et al., 2019). The process entails identifying the

most pertinent segments of the model's response, guaranteeing clarity and consistency, and

eliminating any superfluous data that does not aid in addressing the inquiry (Liu et al., 2018).

To improve user experience and engagement, the response is then given to the user in an

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 433

understandable format, frequently through a conversational interface that mimics natural

dialogue (Raffel et al., 2020). This procedure guarantees an easy-to-use and informative

product, facilitating a smooth user-system interaction (Brown et al., 2020).

4. Implementation

The application enables conversational querying of web-based content by combining

web scraping, text processing, vector database tools, and OpenAI's language model. It involves

technical setup, essential procedures (text processing, querying, embedding, and scraping), and

addressing development issues. Essential libraries include OpenAI's API, Streamlit,

LangChain, BeautifulSoup, and Chroma. Environment variables, including API keys, are

managed through dotenv. The Python package manager pip installs necessary libraries, and the

application is loaded with these environment variables.

• Challenges and Solutions

The implementation of a chatbot application faced several challenges, including

handling large content, maintaining conversational context, efficient embedding and retrieval,

and managing state in the web interface. LangChain’s RecursiveCharacterTextSplitter was

used to divide text into manageable chunks, improving the efficiency of the retrieval process.

Chroma was used to efficiently organize high dimensional vectors and conduct similarity

searches, ensuring timely responses. Streamlit’s feature st.session_state was used to maintain

chat history and vector store during user interactions. The chatbot’s state was managed using

Streamlit’s feature st.session_state, allowing the chatbot to continue meaningful dialogue by

recalling prior exchanges and modifying responses accordingly. A series of tests were

conducted to evaluate the effectiveness of the chatbot application’s main features, including

web scraping, text processing, embedding, semantic search, and the conversational interface.

• Testing Methods

The chatbot's performance was evaluated through three steps: website content retrieval,

conversational interaction, and response evaluation. The chatbot was given an example URL

to retrieve and handle web content, and tested for context preservation, user input

comprehension, and data retrieval. The accuracy, coherence, and relevance of the responses

were assessed by comparing them with the website's content. The testing results are depicted

in Figures 4-9.

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 434

Figure 4. Testing Chatbot General Understanding and Context Awareness

The UK government's website URL was used to test a chatbot's general understanding,

context awareness, retrieval accuracy, and complex problem handling. The chatbot was tested

on its main purpose, core job features, visa features, and multi-turn conversation, ensuring it

could explain visas, benefits for internation students, and compare products or services.

Figure 5. Testing Chatbot’s Retrieval Accuracy

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 435

Figure 6. Testing Chatbot’s Handling Complex Queries and Multi-Conversation

Figure 7. Chatbot’s Failure Testing

The chatbot's failure testing was conducted using a website URL and a logistic

company URL, while its user experience, response quality, and knowledge boundaries were

tested using a random website URL and four questions, generated responses are illustrated in

Table 1.

Table 1. Chatbot Responses

Questions Chatbot Responses

What is this

logistic

company

about? What

This logistics company, Diamond Logistics, specializes in tailored

fulfilment and delivery services for individuals and companies. They

offer services such as same day delivery, next day delivery, international

delivery, UK fulfilment, eCommerce fulfilment, carriers & integrations,

and outsourced warehousing and distribution. They also have a logistics

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 436

services can

they provide?

management platform called Despatch lab that allows you to book,

track, and manage your courier requirements and shipments.

What

eCommerce

fulfilment

services they

have?

Diamond Logistics offers eCommerce fulfilment services as part of their

tailored solutions for businesses. These services include managing

inventory, multiple marketplace integrations, and logistics management

through their platform, Despatch lab. They ensure transparency, control,

and peace of mind for your eCommerce fulfilment needs.

Are your

responses based

on current

information?

Yes, my responses are based on the information provided in the context

you shared about Diamond Logistics and its services. If you have any

specific questions or need more details, feel free to ask.

Are your

responses based

on current

information?

As an AI assistant, I can provide information and answer questions

based on the content available on the website you provided about

Diamond Logistics. However, I may not be able to retrieve real-time or

updated information that is not included on the website. If you have

specific questions beyond the content provided on the website, I may not

have access to that information.

We have tested another website which is a website about 10 best supply chain

companies of 2021 in this website: https://www.inboundlogistics.com/articles/10-best-supply-

chain-companies-of-2021/ and here are the results from the chatbot:

https://www.inboundlogistics.com/articles/10-best-supply-chain-companies-of-2021/
https://www.inboundlogistics.com/articles/10-best-supply-chain-companies-of-2021/

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 437

Figure 8. Testing of Chatbot’s User Experience, Response quality, Limitations and

Knowledge boundaries

 Figure 9(a). Testing Chatbot’s Follow – up Question Handling Capacity

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 438

Figure 9(b). Testing Chatbot’s Follow – up Questions Handling Capacity

To test the Chatbot’s quality to handle Follow-up questions, Figures 9(a) and 9(b)

illustrate our chatbot’s quality to handle Follow-up questions.

• Addressing Chatbot Performance Issues

Problems with embeddings, vector storage, semantic mismatch, and the constraints of

the GPT-4 model could make the chatbot's implementation fail. These problems may result in

hallucinated responses, confused user enquiries, incomplete or incorrect responses, and

improper loading of dynamic website material. For large websites, the GPT-4 model may also

produce irrelevant responses and significant latency.

• Potential Improvements

To enhance a chatbot's ability to handle complex inquiries and multi-turn dialogues, it

can use more complex conversation models, web scraping tools like Selenium, retrieval-

augmented generation (RAG) techniques, and a complex query parsing mechanism. These

strategies can help the chatbot handle larger contexts, produce more thorough responses, and

better understand user intents, especially when dealing with complex instructions or layered

information requests.

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 439

5. Conclusion and Future Work

The research’s main aim is to explore the use of Retrieval-Augmented Generation

(RAG) for chatbots on websites. It demonstrates how these methods can retrieve large amounts

of data and provide context-relevant information. Web scraping gathers current content, NLP

models transform it into embeddings, semantic search connects user queries to relevant content,

and a generative model produces logical answers. The RAG model is successful in answering

user inquiries, making it practical in dynamic environments like e-commerce and customer

support.The RAG chatbot model can be enhanced by adding more languages, incorporating

data sources like knowledge bases, social media platforms, or APIs, and creating personalized

interaction features. Future work could involve ongoing web scraping, change monitoring, and

reinforcement learning to improve the chatbot’s intelligence and precision This will ensure

users with varying linguistic backgrounds can still benefit from the system.

References

[1] Bender, E.M., Gebru, T., McMillan-Major, A. and Shmitchell, S., 2021, March. On the

dangers of stochastic parrots: Can language models be too big?. In Proceedings of the

2021 ACM conference on fairness, accountability, and transparency (610-623).

https://doi.org/10.1145/3442188.3445922

[2] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,

A., Shyam, P., Sastry, G., Askell, A. and Agarwal, S., 2020. Language Models are Few-

Shot Learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

[3] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K. (2019) 'BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding', Proceedings of the

2019 Conferenceof the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Minneapolis, Minnesota, 4171-4186.

[4] Gao, T., Fisch, A., Chen, T., Khashabi, D., and Zettlemoyer, L., 2021. Making Pre-

trained Language Models Better Few-Shot Learners. arXiv preprint arXiv:2105.11447.

[5] Guu, K., Lee, K., Tung, Z., Pasupat, P. and Chang, M., 2020, November. Retrieval

augmented language model pre-training. In International conference on machine

learning (3929-3938). PMLR.

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 440

[6] Huang, P.S., He, X., Gao, J., Deng, L., Acero, A. and Heck, L., 2013, October. Learning

deep structured semantic models for web search using clickthrough data. In

Proceedings of the 22nd ACM international conference on Information & Knowledge

Management (2333-2338).

[7] Humeau, S., Shuster, K., Lachaux, M.A. and Weston, J., 2019. Poly-encoders:

Transformer architectures and pre-training strategies for fast and accurate multi-

sentence scoring. arXiv preprint arXiv:1905.01969.

[8] Izacard, G. and Grave, E., 2020. Leveraging passage retrieval with generative models

for open domain question answering. arXiv preprint arXiv:2007.01282.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), 4171–4186, Minneapolis, Minnesota. Association for Computational

Linguistics.

[10] Jeong, C., 2023. A study on the implementation of generative ai services using an

enterprise data-based llm application architecture. arXiv preprint arXiv:2309.01105.

Chroma. (2023). Chroma: Vector Database. https://www.trychroma.com/

[11] Johnson, J., Douze, M. and Jégou, H., 2019. Billion-scale similarity search with GPUs.

IEEE Transactions on Big Data, 7(3), 535-547.

[12] Martin, James H. Speech and language processing: An introduction to natural language

processing, computational linguistics, and speech recognition. Pearson/Prentice Hall,

2009.

[13] Karpukhin, Vladimir, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. "Dense passage retrieval for open-domain

question answering." arXiv preprint arXiv:2004.04906 (2020).

[14] LangChain. (2023). LangChain Documentation. https://www.langchain.com/docs

[15] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,

Lewis, M., Yih, W.T., Rocktäschel, T. and Riedel, S., 2020. Retrieval-augmented

 Sangita Pokhrel, Bina K C, Prashant Bikram Shah

Journal of Trends in Computer Science and Smart Technology, December 2024, Volume 6, Issue 4 441

generation for knowledge-intensive nlp tasks. Advances in Neural Information

Processing Systems, 33, 9459-9474.

[16] Liu, P.J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L. and Shazeer, N., 2018.

Generating wikipedia by summarizing long sequences. arXiv preprint

arXiv:1801.10198.

[17] Manning, C.D., Raghavan, P. and Schütze, H., 2008. Introduction to Information

Retrieval. Cambridge: Cambridge University Press.

[18] Microsoft (2023) 'Retrieval Augmented Generation using Azure Machine Learning

prompt flow'. Available at: https://learn.microsoft.com/en-us/azure/machine-

learning/concept-retrieval-augmented-generation?view=azureml-api-2 (Accessed: 12

September 2024).

[19] Mitchell, Ryan. Web scraping with Python: Collecting more data from the modern web.

O'Reilly Media, 2018.OpenAI. (2023). OpenAI API. https://openai.com/api/

[20] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I., 2019. Language

models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

[21] Pokhrel, Sangita, and Shiv Raj Banjade. "AI Content Generation Technology based on

Open AI Language Model." Journal of Artificial Intelligence and Capsule Networks 5,

no. 4 (2023): 534-548

[22] Pokhrel, Sangita, Swathi Ganesan, Tasnim Akther, and Lakmali Karunarathne.

"Building Customized Chatbots for Document Summarization and Question

Answering using Large Language Models using a Framework with OpenAI, Lang

chain, and Streamlit." Journal of Information Technology and Digital World 6, no. 1

(2024): 70-86

[23] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.

and Liu, P.J., 2020. Exploring the limits of transfer learning with a unified text-to-text

transformer. Journal of machine learning research, 21(140), 1-67.

[24] Reimers, N. and Gurevych, I., 2019. Sentence-BERT: Sentence embeddings using

siamese BERT-networks. arXiv preprint arXiv:1908.10084.

A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search

ISSN: 2582-4104 442

[25] Richardson, L. (2022). Beautiful Soup Documentation. [Online]. Available at:

https://www.crummy.com/software/BeautifulSoup/bs4/doc/ .

[26] Streamlit. (2023). Streamlit: The Fastest Way to Build Data Apps. https://streamlit.io/

[27] Vaswani, A., 2017. Attention is all you need. Advances in Neural Information

Processing Systems. arXiv:1706.03762v7 [cs.CL]

[28] Pokhrel, Sangita, Nalinda Somasiri, Rebecca Jeyavadhanam, and Swathi Ganesan.

"Web Data Scraping Technology Using Term Frequency Inverse Document Frequency

to Enhance the Big Data Quality on Sentiment Analysis." International Journal of

Electrical and Computer Engineering 17, no. 11 (2023): 300-307.

[29] Voigt, P. and Von dem Bussche, A. (2017) The EU General Data Protection Regulation

(GDPR): A Practical Guide. 1st Edition, Springer International Publishing, Cham.

https://doi.org/10.1007/978-3-319-57959-7

[30] Zhang, Y., Sun, S., Galley, M., Chen, Y.C., Brockett, C., Gao, X., Gao, J., Liu, J. and

Dolan, B., 2019. Dialogpt: Large-scale generative pre-training for conversational

response generation. arXiv preprint arXiv:1911.00536.

