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A B S T R A C T

Background: Stroke remains a leading cause of death and disability worldwide, with African populations bearing 
a disproportionately high burden due to limited healthcare infrastructure. Early prediction and intervention are 
critical to reducing stroke outcomes. This study developed and evaluated a stroke prediction system using Gated 
Recurrent Units (GRU), a variant of Recurrent Neural Networks (RNN), leveraging the Afrocentric Stroke 
Investigative Research and Education Network (SIREN) dataset.
Method: The study utilized secondary data from the SIREN dataset, comprising 4236 records with 29 phenotypes. 
Feature selection reduced these to 15 optimal phenotypes based on their significance to stroke occurrence. The 
GRU model, designed with 128 input neurons and four hidden layers (64, 32, 16, and 8 neurons), was trained 
and evaluated using 150 epochs, a batch size of 8, and metrics such as accuracy, AUC, and prediction time. 
Comparisons were made with traditional machine learning algorithms (Logistic Regression, SVM, KNN) and Long 
Short-Term Memory (LSTM) networks.
Results: The GRU-based system achieved a performance accuracy of 77.48 %, an AUC of 0.84, and a prediction 
time of 0.43 seconds, outperforming all other models. Logistic Regression achieved 73.58 %, while LSTM reached 
74.88 % but with a longer prediction time of 2.23 seconds. Feature selection significantly improved the model’s 
performance compared to using all 29 phenotypes.
Conclusion: The GRU-based system demonstrated superior performance in stroke prediction, offering an efficient 
and scalable tool for healthcare. Future research should focus on integrating unstructured data, validating the 
model on diverse populations, and exploring hybrid architectures to enhance predictive accuracy.

1. Introduction

The integration of modern technological paradigms into the 
healthcare sector has significantly advanced medical science. Health 
plays a critical role in ensuring a productive and fulfilling life for in
dividuals. Among the innovative technologies, Machine Learning (ML), 

a subset of Artificial Intelligence (AI), has emerged as a transformative 
tool in medicine [1]. Its application spans various medical processes, 
including disease prediction, diagnosis, surgical precision, and treat
ment, leading to more reliable, accurate, and faster outcomes [2–4]. 
Early prediction and diagnosis of diseases using ML are pivotal in 
developing treatment plans that can mitigate severe outcomes [5]. 
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Diseases vary in their intensity and impact; while some may leave no 
lasting effects, others cause disabilities that render individuals vulner
able. Stroke is a prominent example of such a debilitating condition. 
Employing ML for early stroke prediction and diagnosis can enable 
timely interventions and precautionary measures to prevent or reduce 
its occurrence [6].

Stroke is a severe cardiovascular condition that leaves victims with 
lifelong disabilities, making it a medical emergency requiring prompt 
attention and prevention. Also known as Cerebrovascular Accident 
(CVA) or Cerebrovascular Insult (CVI), stroke occurs when blood flow to 
the brain is interrupted or blocked, cutting off its vital supply [7]. 
Developing countries face a disproportionately high stroke mortality 
rate, accounting for nearly 87 % of global cases, with Sub-Saharan Africa 
being a particularly affected region [8]. Factors such as inadequate 
technological advancements, limited medical resources, and negligence 
contribute to these statistics. Stroke remains a leading cause of death 
and disability globally. In the United States, approximately 795,000 
individuals experience strokes annually [9].

Recognizing the severity of stroke, organizations such as the World 
Health Organization (WHO), American Heart Association (AHA), and 
World Stroke Organization (WSO) advocate for strategies to reduce 
stroke-related mortality, morbidity, and disabilities. These strategies 
focus on improving the accuracy and efficacy of stroke treatment 
methods, leveraging advanced technological tools, and raising aware
ness about risk factors. By identifying and managing these risk factors, 
potential stroke occurrences can be minimized [10]. This study aligns 
with these efforts by utilizing electronic medical records to analyze 
stroke-related phenotypes and predict its occurrence using a deep 
learning algorithm called Gated Recurrent Units (GRU).

Stroke is a prevalent and life-threatening condition that demands 
ongoing research to enhance prevention strategies. Numerous studies 
have explored methods for predicting stroke and raising awareness of 
associated phenotypes. For instance, a study employed electronic med
ical records from Okayama Prefecture, Japan, to predict stroke using 
GRU and CNN models [11]. The fused model demonstrated better per
formance with an Area Under the Curve (AUC) score of 0.669, though it 
lacked crucial risk factors like smoking and hypertension due to confi
dentiality constraints. Similarly, another used demographic and medical 
screening data to predict stroke, achieving superior results with an 
Artificial Neural Network (ANN) model [12]. Ahmed et al. implemented 
ML models, including Random Forest and Support Vector Machines, to 
predict stroke on an Apache Spark platform, with Random Forest 
yielding the highest performance [13].

Deep learning approaches have also been applied in stroke predic
tion. For example, Chen et al. used diffusion-weighted imaging data and 
a YOLOv5 algorithm to detect stroke lesions, achieving 79.86 % accu
racy with a modified model [14]. Yang et al. and Lin et al. investigated 
classifiers like XGBoost and Random Forest on datasets from hyperten
sive patients and Taiwan’s stroke registry, respectively, highlighting 
their effectiveness in ischemic and hemorrhagic stroke prediction [15, 
16]. Other researchers, such as Cheon, Kim, and Lim, leveraged deep 
neural networks for stroke prediction, while Zhao et al. combined 
traditional risk factors with multimodal retinal imaging for enhanced 
accuracy [17,18].

The rationale for this study stems from the critical need to improve 
early prediction and prevention of stroke, particularly in regions such as 
Sub-Saharan Africa, where the burden of stroke-related mortality and 
disability is disproportionately high due to limited technological ad
vancements and healthcare infrastructure. While numerous studies have 
utilized machine learning and deep learning approaches for stroke 
prediction, the novelty of this research lies in its focus on leveraging a 
structured Afrocentric stroke dataset, which addresses the underrepre
sentation of African-specific data in existing models. Additionally, the 
study employs Gated Recurrent Units (GRU), a powerful yet underutil
ized deep learning algorithm, known for its ability to process sequential 
and temporal data effectively. The primary objectives of this study are 

threefold: first, to analyze electronic medical records (EMRs) to identify 
key phenotypes and risk factors associated with stroke; second, to 
develop and implement a GRU-based model for accurate stroke predic
tion; and third, to provide insights that can inform the development of 
tailored intervention strategies and healthcare policies aimed at 
reducing the incidence and impact of stroke in African populations. By 
addressing these gaps, this study not only advances the state-of-the-art 
in stroke prediction but also contributes to a more inclusive and effec
tive global healthcare framework.

2. Methods

The proposed system comprises the following key components: Data 
Acquisition, Data Preprocessing, Feature Selection , Prediction, and 
Evaluation. Each component plays a critical role in ensuring the reli
ability and efficiency of the stroke prediction process. Data Acquisition 
involves collecting the necessary dataset, which forms the foundation 
for the entire prediction framework. Once acquired, the Data Pre
processing step is performed to clean and prepare the data by addressing 
inconsistencies, handling missing values, and normalizing the data to 
ensure compatibility with machine learning models. Following this, 
Feature Selection technique was applied to identify the most relevant 
features, reducing dimensionality and improving the computation time 
and model’s performance. The processed dataset is then divided into 
Training and Testing Sets, with the training set utilized for model 
training and the testing set reserved for evaluating the model’s 
performance.

Fig. 1 illustrates the workflow of the proposed system, starting from 
the dataset acquisition through preprocessing and feature selection, and 
leading to model training and evaluation. The trained model is subse
quently tested on the unseen testing dataset to validate its predictive 
accuracy. To ensure the robustness of the developed system, various 
machine learning algorithms were benchmarked against the proposed 
GRU-based model. Performance comparisons were conducted using 
evaluation metrics such as Accuracy, Area Under the Curve (AUC), Mean 
Absolute Error (MAE), F1-Score, and Prediction Time.

2.1. Data acquisition

The Afrocentric stroke dataset used in this study was obtained from 
the Stroke Investigative Research and Education Network (SIREN). Data 
collection involved collaboration with eight (8) centers across Nigeria 
and Ghana [19]. A total of twenty-nine (29) phenotypes were extracted 
from the dataset’s data dictionary based on insights from the reviewed 
literature. These phenotypes included a variety of demographic, life
style, and clinical factors such as Age, Gender, Smoking and Drinking 
Habits, History of Hard Drug and Sedative Use, Sleeping Disorders, Di
etary Habits (Fruits and Vegetables Consumption), Physical Activity 
Levels, Family History of Stroke or Heart Attack, Blood Pressure (Sys
tolic and Diastolic), Body Mass Index (BMI), Irregular Heartbeat, Atrial 
Fibrillation, Memory Impairment, History of Ischemic Stroke, Emotional 
Stress or Depression, Pulse, Migraine, Hypertension, Marital Status, 
Occupation, and Residence Type. The dataset comprised 4236 patient 
records, each containing information on these 29 phenotypes.

2.2. Data preprocessing

As with most medical datasets, the Afrocentric stroke dataset con
tained missing values. To address these, the median values of the 
respective phenotype columns were used to fill the gaps, ensuring 
robustness while mitigating the influence of outliers. For categorical 
data, a label encoder was applied to convert object values into integer 
format, since these were inherently numerical.

Certain phenotypes, such as Age, Systolic Blood Pressure (SBP), 
Diastolic Blood Pressure (DBP), and BMI, had significantly larger nu
merical ranges compared to binary phenotypes. To ensure even distri
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bution and prevent these larger values from dominating the machine 
learning algorithms, these columns were normalized using the MinMax 
Normalization technique, as employed by Al-Shammari et al. [20]. The 
normalization process, represented in Eq. 1, transforms the values into a 
range between 0 and 1, enhancing the dataset’s suitability for predictive 
modeling. 

x =
X − Xmin

Xmax − Xmin
(1) 

2.3. Feature selection

The researchers requested 29 phenotypes from the SIREN dataset, 
selected based on insights from the reviewed literature. However, these 
phenotypes required further analysis to identify the most significant 
ones contributing to the occurrence of stroke. To achieve this, a 
sequential forward-backward feature selection technique was employed 
to determine the optimal subset of phenotypes with the highest pre
dictive significance. The analysis revealed that the following 15 phe
notypes provided the best performance with the system: BMI, History of 
Hypertension, Cardiovascular Diseases, Diabetes, Depression, Blood 
Pressure, Atrial Fibrillation, Salt Consumption Habits, Vegetable Con
sumption, Education Level, Depression, Family History of Cardiovas
cular Diseases, and Stress. These selected phenotypes outperformed the 
others in contributing to the accuracy and reliability of the stroke pre
diction system.

2.4. Prediction of stroke using Gated Recurrent Unit (GRU)

Machine learning has been extensively employed for the prediction 
of various medical diseases due to its ability to provide faster, easier, and 
more accurate results. For every prediction task, once the dataset is 
cleaned, it is subsequently fed into the desired model for analysis and 
prediction. In this research, Gated Recurrent Units (GRU), a variant of 
Recurrent Neural Networks (RNN), was chosen as the primary predictive 
model. This choice was made due to GRU’s superior speed and perfor
mance compared to Long Short-Term Memory (LSTM) networks. Addi
tionally, GRU has been less explored for structured datasets, as it is 
typically applied to streaming and time-series data, making this research 

a novel application of GRU.
What distinguishes RNNs from other deep learning algorithms is 

their ability to retain information through memory, making them 
particularly effective for sequential data. However, a key limitation of 
RNNs is their tendency to forget information over time, a challenge 
known as gradient vanishing. To address this issue, GRU and LSTM 
models were developed, incorporating specialized cells and gates to 
retain and process relevant information more effectively.

GRU simplifies the memory mechanism of LSTM by using just three 
gates and does not require internal cells to retain information. Instead, 
any information that needs to be preserved is integrated directly into the 
hidden state. The three gates of GRU are as follows: 

• Update Gate (z): Determines the extent to which previously acquired 
knowledge from past inputs should be retained and forwarded to 
future states.

• Reset Gate (r): Identifies which parts of past information should be 
forgotten or omitted.

• Current Memory Gate (ht): Often overlooked by researchers, this 
gate is embedded with the reset gate and is responsible for storing the 
current information. It is also referred to as the hidden state, where 
information is stored, replacing the role of internal cells found in 
LSTM.

Fig. 1. Block Diagram for Prediction of Stroke using GRU.

Fig. 2. Overview of Gated Recurrent Unit (Chung et al., 2014).
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Fig. 2 illustrates these GRU components, providing a visual repre
sentation for better comprehension of how the gates operate and 
interact. By employing GRU in this study, the system leverages its ability 
to effectively process structured data and mitigate gradient vanishing, 
thereby enhancing the accuracy and reliability of stroke prediction. 

Algorithm 1. shows the algorithmic execution of the developed sys
tem for the prediction of stroke using Gated recurrent units and the 
evaluation using classification report.

Algorithm 1. RNN-GRU for Prediction of stroke with structured data

Step 1:Split the SIREN dataset (Sd) into training and testing sets
SdTe=Sd x 0.8
SdTr=Sd x 0.2
Step 2:Convert the label testing set to Binary vector matrix using 

Utils.np
Step 3:Build the GRU models with input units.

Step 4:Initialize all the needed parameters matrices like Wr, Wz, Ur, 
Uz, bz, bh, among others

For I ← to n do
Compute z(t) = σg(WzX(t) + Uzht− 1 + bz)

Compute r = σg(WrX(t) + Urh(t) + br)

Compute ḧt = ϕ(WhX(t) + Uh(r(t) ⊙ h(t− 1) + bh

Compute ht = (1 − zt) ⊙ h(t− 1) + z(t) ⊙ ḧ(t)

End for;
Step 5:Assign appropriate output based on the value of the target 

label
Dense (2, activation function)
Step 6:Compile the model applying activation function, loss (cate

gorical_crossentropy) and optimizer
Activation function = Softmax (σ(z)i) 

Fig. 3. Flowchart of the Developed Stroke Prediction System.
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σ(z)i = ezi

∑k

j=1
ezj 

Adam Optimizer 

Mt = β1xMt− 1 +(1 − β1)gt 

Vt = β2xVt− 1 +(1 − β2)gt
2 

Wt+1 = Wt+1 = wt −
ղ

̅̅̅̅̅̅̅̅̅̅̅̅̅
Vt+ ∈

√ mt 

Step 7:Train the model using Epoch= 150, val_split = 0.2, 
Batch_Size= 64

Step 8: Predict with x_test.
Step 9:Print Classification report and Accuracy score.
Step 10: Evaluate with x_test and y_test
Fig. 3 illustrates the flowchart of the developed stroke prediction 

system, detailing its key components and processes. The system begins 
with data acquisition from the Afrocentric SIREN dataset, followed by 
data preprocessing, where missing values are imputed and normaliza
tion is applied. Next, feature selection identifies the most relevant 15 
phenotypes for model training. The preprocessed data is split into 
training and testing datasets, with the training set used to train the GRU- 
based model configured with optimized parameters. Finally, the system 
performs prediction and evaluation using metrics such as accuracy, 
AUC, and computation time. This flowchart provides a clear overview of 
the systematic approach used to develop and implement the predictive 
model.

2.5. System development and implementation

This study developed a system for stroke prediction using Python 3.9, 
implemented on Google Colab, alongside a local machine setup. A series 
of Python libraries, including NumPy, Pandas, TensorFlow, Scikit-learn, 
and Matplotlib, were employed to handle data preprocessing, model 
development, and visualization.

The GRU model was executed in two environments: 

1. Local Machine Setup: A PC running Windows 10, equipped with 6 GB 
RAM and an Intel Celeron CPU.

2. Google Colab Virtual Machine: This environment provided a RAM of 
12.68 GB and a disk space of 107.72 GB, enabling efficient execution 
of deep learning models.

The dataset used in this research was obtained as secondary data 
from the Stroke Investigative Research and Education Network (SIREN). 
It consisted of 4236 records, encompassing 29 requested phenotypes, 
making it a comprehensive resource for stroke prediction modeling.

2.6. GRU model architecture

The GRU model was designed with an input layer of 128 neurons and 
four hidden layers comprising 64, 32, 16, and 8 neurons, respectively. 
This architecture resulted in a total of 100,002 trainable parameters. 
Key configurations of the model included: 

• Use of Bias and Return Sequence: Both set to True.
• Activation Functions: 

a. Tanh for the input and hidden layers, ensuring non-linearity.
b. Softmax for the dense activation layer, used for multi-class clas

sifcation but was employed for binary classification in this study.
• Regularization: A dropout rate of 0.2 was applied to reduce 

overfitting.

• Loss Function: The model was compiled with categorical_crossen
tropy, suitable for multi-class classification problems but used for 
binary classification.

• Optimizer: The Adam optimizer, known for its efficiency in deep 
learning applications, was utilized to minimize the loss.

This configuration enabled the GRU model to process the structured 
dataset effectively, leveraging its sequential processing capabilities for 
accurate stroke prediction. The system’s implementation highlights a 
balance between computational resource constraints and model 
complexity, ensuring optimal performance across both local and virtual 
environments.

2.7. Evaluation method and metrics

The hold-out evaluation method was employed in this study, with 
20 % of the entire dataset set aside as the testing dataset. This approach 
ensured that the model was evaluated on unseen data, providing an 
unbiased estimate of its performance. To assess the performance of the 
developed system, several evaluation metrics were utilized, including 
accuracy, F1 score, Area Under the ROC Curve (AUC), Mean Absolute 
Error (MAE), and computation time.

Among these metrics, the AUC is particularly significant as it mea
sures a binary classifier’s ability to correctly distinguish between classes. 
A higher AUC value indicates better model performance in separating 
positive and negative cases. The Mean Absolute Error (MAE) was also 
employed to quantify the average absolute difference between predicted 
and actual values, providing a direct measure of the model’s prediction 
accuracy. Additionally, computation time was evaluated to assess the 
model’s efficiency in making predictions.

Some of these evaluation metrics are mathematically represented in 
Eqs. 2 and 3, offering a formal framework for their computation and 
interpretation. These metrics collectively ensured a comprehensive 
assessment of the system’s performance, focusing on both its predictive 
accuracy and computational efficiency. 

Accuracy =
TP + TN

(TP + FP + TN + FN)
(2) 

F1score =
2 ∗ precision ∗ recall
precision + recall

(3) 

3. Results

The developed GRU-based system was tested with varying parame
ters to assess its performance under different configurations. Addition
ally, comparisons were made with other machine learning algorithms 
and existing systems to identify the best-performing approach. Consis
tently, a validation split and a dropout rate of 0.2 were employed 
throughout the experiments. This section provides an in-depth analysis 
of the experimental results and highlights the impact of parameter 
variations.

3.1. Empirical results with varying GRU parameters

To determine the optimal configuration for the GRU model, experi
ments were conducted using different combinations of input layers, 
hidden layers, epochs, and batch sizes. The testing began with small 
input and hidden layers, progressively increasing the number of neurons 
to evaluate their influence on the system’s accuracy. The results, as 
summarized in Tables 3 and 4, compare the performance when using all 
29 phenotypes with the performance with when using only the 15 
optimal phenotypes identified earlier.

As presented in Table 3, when all 29 requested phenotypes were used 
as inputs, the system achieved its highest average performance accuracy 
of 72.88 %. This was attained with a configuration that included 64 
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neurons in the input layer, two hidden layers with 32 and 16 neurons, 
respectively, 50 epochs, and a batch size of 16. While other configura
tions, such as those yielding 72.76 % and 72.52 % average accuracy, 
came close, they did not outperform the optimal setup.

The findings demonstrate that adjusting parameters, such as the 
number of neurons, batch size, and epochs, can significantly affect the 
system’s performance. However, beyond certain thresholds, 

improvements diminish, highlighting the importance of balancing 
model complexity with computational efficiency. These insights 
emphasize the adaptability of the GRU model to structured datasets, 
providing a strong foundation for accurate and efficient stroke 
prediction.

As shown in Table 4, when only 15 phenotypes were used, the 
developed system achieved the highest average performance accuracy of 
77.48 %, with a prediction time of 0.42 seconds. This configuration 
outperformed other setups, demonstrating the significance of selecting 
optimal phenotypes for improved performance. The closest accuracy to 
this was 76.65 %, obtained from a system designed with an input layer 
of 12 neurons and hidden layers comprising 64, 32, 16, and 8 neurons, 
with 100 epochs and a batch size of 32. This system had a slightly longer 
prediction time of 0.43 seconds.

The results presented in Table 4 highlight that the system using only 
15 phenotypes consistently outperformed those using all 29 phenotypes. 
This demonstrates the importance of effective feature selection, as 
reducing the dataset to the most relevant phenotypes not only improved 
performance accuracy but also resulted in comparable or faster predic
tion times. These findings underscore the efficiency of the developed 
system and its ability to achieve superior performance with fewer, well- 
selected phenotypes.

3.2. 3.2 Experimental result of the developed system

The best performance in this study was achieved using the pre
processed SIREN dataset and a GRU model configured with 128 neurons 
in the input layer and four hidden layers comprising 64, 32, 16, and 8 
neurons, respectively. This design delivered the highest performance 
metrics when utilizing 15 phenotypes out of the 29 initially requested. 
These selected phenotypes included BMI, history of hypertension, car
diovascular diseases, diabetes, depression, blood pressure, atrial fibril
lation, salt habit, vegetable consumption, education, family history of 
cardiovascular diseases, and stress. The model achieved an accuracy of 
77.48 %, an AUC of 0.84, and a prediction time of 0.42 seconds.

The performance evaluation, as presented in Table 4, highlights the 
significance of the selected phenotypes and the effectiveness of the GRU 
model configuration. By leveraging the most impactful phenotypes and a 
well-optimized deep learning architecture, the developed system 
demonstrated superior performance compared to configurations using 
all 29 phenotypes.

3.3. Training and validation performance

Fig. 4 illustrates the training and validation accuracies achieved 
during the training of the developed system, which was configured with 
150 epochs and a batch size of 8. The model’s training accuracy 
exhibited a consistent range between 73 % and 74 % across epoch 
values from 20 to 150, indicating that the optimal performance was 
achieved as early as the 20th epoch. Meanwhile, the validation accuracy 
fluctuated between 71 % and 72 % from epochs 20–100 and signifi
cantly improved between epochs 100 and 150, reaching a maximum 
value of 76 %.

Throughout the training process, the training accuracy slightly 
exceeded the validation accuracy, except during the final five epochs, 
where the validation accuracy surpassed the training accuracy. This 

Table 1 
Requested phenotypes from the SIREN stroke database.

S/N Name of Phenotypes Description Data type

1 Formal education? The level of education the 
patients have and ranges from 
none to PhD

Ordinal

2 Primary occupation? The source of living of the 
patients

Categorical

3 Hypertension To show the hypertension 
status of the patients

Nominal

4 Diabetes mellitus This shows whether a patient is 
DM patient or not

Nominal

5 Cardiac disease This shows whether a patient is 
have any CVD

Nominal

6 Family history of cvd This shows if any of the 
patient’s family had CVD

Nominal

7 Bmi The value of patient’s body 
mass index

Numeric

8 Alcohol usage The alcohol status of the 
patient

Nominal

9 Blood pressure The value of patient’s BP Numeric
10 Do you have history of 

substance use
This shows maybe the patient 
is consuming any hard drugs.

Nominal

11 Physical activity This shows maybe the patients 
use to do any physical exercise.

Nominal

12 Do you sprinkle salt on 
your food after 
cooking?

This indicates maybe patients 
add salt to food after cooked.

Nominal

13 Do you add salt on the 
table

This indicates maybe the 
patients add salt to cooked 
food while eating.

Nominal

14 Do you have atrial 
fibrillation

This shows the AF status of the 
patient

Nominal

15 Are you a vegetarian This shows maybe the patients 
eat vegies.

Nominal

Table 2 
Summary of the SIREN Dataset.

Dataset Data Size No of Phenotypes Training Size Testing Size

SIREN 4236 15 3388 848

Table 3 
Performance Evaluation of GRU with Different Parameters with 29 phenotypes.

S/ 
N

Layers 
(Input 
and 
Hidden)

Epoch 
and 
Batch 
size

Average 
Accuracy 
(%)

Average 
Precision 
(%)

Average 
Recall 
(%)

Average 
F1Score 
(%)

1 64–8 50, 50 72.52 73 73 73
2 64–16 50, 16 72.88 73 73 73
3 64–16 100, 50 72.76 73 73 73
4 128–8 50, 4 71.82 70 70 70

Table 4 
Performance Evaluation of GRU with Different parameters with 15 phenotypes.

S/N Layers (Input and Hidden) Epoch and Batch size Avg. Accuracy (%) Avg. Precision (%) Avg. Recall (%) Avg. F1Score (%) Prediction Time (Sec)

1 64–8 50, 50 72.64 73.00 73.00 73.00
2 128–8 100,64 75.00 75.00 75.00 75.00 0.82
3 128–8 120,32 74.41 74.00 74.00 74.00 2.18
4 128–8 100, 32 76.65 77.00 77.00 77.00 0.43
5 128–8 150,8 77.48 77.00 77.00 77.00 0.42
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behavior implies that the model avoided overfitting or underfitting, 
demonstrating effective generalization and consistent performance 
across the dataset.

Fig. 5 depicts the training and validation losses recorded during the 
model’s training. As expected, both training and validation losses 
decreased progressively, indicating that the model was learning effec
tively. Between epochs 100 and 150, the validation loss dropped slightly 
below the training loss, signifying that the validation split of the dataset 
contributed to better performance and provided a lower validation loss 
value.

These observations collectively highlight the robustness of the 
developed system, its ability to generalize well across training and 
validation datasets, and its consistent performance without overfitting 
or underfitting during training.

As shown in Table 5, the developed system demonstrated a robust 
performance, achieving an average accuracy of 77.48 %, a prediction 
time of 0.42 seconds, and an evaluation time of 0.071 seconds. These 
results highlight the system’s efficiency, particularly in terms of speed, 
as the time required to perform a single test is remarkably low at just 
0.071 seconds. Furthermore, the system recorded a Mean Absolute Error 
(MAE) of 0.31, indicating a high level of precision in its predictions. This 
combination of accuracy, speed, and minimal error underscores the 
effectiveness and practicality of the developed system for stroke 

prediction, making it a reliable tool for real-time and large-scale 
applications.

3.4. Comparison of the developed system with some machine learning 
algorithm

The developed system utilized Gated Recurrent Units (GRU), a 
variant of Recurrent Neural Networks (RNN), as the primary prediction 
algorithm. GRU distinguishes itself from other neural networks due to its 
ability to incorporate memory, enabling the retention of relevant in
formation over time. This feature makes GRU particularly suitable for 
sequential data and prediction tasks.

In this study, the performance of GRU was compared with several 
commonly used machine learning algorithms, including Support Vector 
Machine (SVM), K-Nearest Neighbor (KNN), Logistic Regression (LR), 
and Long Short-Term Memory (LSTM), which is another widely adopted 
RNN variant. The comparison followed the same methodology, using 
identical datasets and evaluation metrics to ensure a fair assessment.

Given that LSTM, like GRU, is a variant of RNN, it was specifically 
compared in detail, using varying parameters to analyze their respective 
performance. The results of this comparison, including accuracy and 
prediction time as the evaluation metrics, are presented in Table 6. 
These results provide insights into the relative efficiency of GRU 
compared to LSTM and other traditional algorithms, emphasizing the 
advantages of GRU in terms of accuracy and computational speed.

As presented in Table 6, while both LSTM and GRU layers were 
evaluated, they were not built with identical configurations of input and 
hidden neurons. This discrepancy arises from the inherent structural 
differences between the two models. LSTM, having a greater number of 
gates compared to GRU, generates more parameters when designed with 
the same number of neurons. Consequently, this impacts its computa
tional efficiency and model complexity.

From Table 6, the GRU-based system outperformed LSTM in terms of 
both accuracy and prediction time. The GRU achieved the highest per
formance accuracy of 77.48 % with a prediction time of 0.43 seconds, 
whereas the LSTM recorded a lower accuracy of 74.88 % and a signifi
cantly longer prediction time of 2.23 seconds.

As shown in Table 7, a comparison was made between the developed 
system, built with Gated Recurrent Units (GRU), and traditional ma
chine learning algorithms such as Logistic Regression (LR), Support 
Vector Machine (SVM), and K-Nearest Neighbors (KNN) with k = 3. 
Among these models, the developed GRU-based system achieved the 
highest performance accuracy of 77.48 %, outperforming all the tradi
tional algorithms. Logistic Regression was the closest competitor, 
achieving an accuracy of 73.58 %, while KNN (k = 3) recorded the 
lowest accuracy at 71.82 %.

4. Discussion

This study successfully developed and evaluated a stroke prediction 
system using Gated Recurrent Units (GRU), a variant of Recurrent 
Neural Networks (RNN), and benchmarked its performance against 
traditional machine learning algorithms and Long Short-Term Memory 
(LSTM) networks. The results underscore GRU’s potential as a robust 
and computationally efficient model for stroke prediction, particularly 

Fig. 4. Training and Validation accuracy graph.

Fig. 5. Training and Validation Loss Graph.

Table 5 
Evaluation Result of the developed system.

S/N EVALUATION METRICS RESULT

1 Average Accuracy (%) 77.48
2 Average F1Score (%) 77.00
3 Area Under Curve (AUC) 0.85
4 Mean Absolute Error (MAE) 0.31
5 Prediction time (secs) 0.42
6 Evaluation Time (sec) 0.071
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when paired with optimal feature selection. The GRU-based system 
achieved an accuracy of 77.48 %, with a prediction time of 
0.43 seconds, outperforming Logistic Regression (73.58 %), K-Nearest 
Neighbors (71.82 %), and LSTM (74.88 %), which also demonstrated 
significantly longer prediction times of 2.23 seconds. These findings 
highlight the key advantages of GRU, including its improved perfor
mance, faster inference, and suitability for real-time applications, 
making it a promising tool for stroke prediction in resource-limited 
settings.

The findings of this study align with existing evidence in the domain 
of machine learning for medical prediction. GRU’s ability to handle 
sequential data with fewer gates and parameters compared to LSTM 
makes it not only computationally efficient but also well-suited for 
structured datasets. Studies have highlighted GRU’s advantage in 
balancing computational demands with performance, which is particu
larly important for real-time applications where speed is crucial [21,22]. 
The efficiency of GRU observed in this study is consistent with evidence 
from prior research suggesting that RNN variants, including GRU, 
perform well in tasks requiring temporal or sequential data analysis, 
such as stroke prediction, which involves patterns over time that are 
crucial for accurate outcomes.

An important aspect of this study was the role of feature selection in 
improving model performance. By reducing the original 29 phenotypes 
to 15 optimal ones, the system achieved higher accuracy and faster 
prediction times. This result resonates with the findings of Shivani et al., 
who demonstrated that reducing noise in datasets through feature se
lection enhances machine learning model performance by enabling the 
model to focus on the most relevant variables [23]. Similarly, Hassan 
et al. observed that employing feature selection techniques in 
time-series algorithms improved prediction accuracy for stroke risk 
factors [24]. The ability of GRU to deliver high accuracy with a reduced 
feature set suggests its practical applicability in environments where 
computational resources may be limited. This makes the GRU-based 
system not only accurate but also efficient and scalable, which is crit
ical in low-resource settings such as Sub-Saharan Africa, where health
care infrastructure may be challenged by limited computational 
capacity.

LSTM has been a popular choice in predictive modeling for medical 
applications due to its ability to handle long-term dependencies in 
sequential data. However, this study found that GRU consistently out
performed LSTM in terms of both accuracy and computational effi
ciency. While LSTM achieved an accuracy of 74.88 %, with a prediction 

time of 2.23 seconds, GRU achieved 77.48 % accuracy with a signifi
cantly faster prediction time of 0.43 seconds. These results highlight 
GRU’s efficiency, particularly in structured datasets where LSTM’s 
additional gates, while useful in time-series data, do not significantly 
enhance performance but instead increase computational costs. This 
observation is in line with conclusions drawn by Tu et al., where GRU 
demonstrated superior performance in specific prediction tasks, partic
ularly when processing datasets with minimal temporal complexity 
[25]. The ability of GRU to provide similar or better predictive accuracy 
with less computational overhead makes it a more suitable choice for 
stroke prediction in real-world healthcare applications.

In comparison to traditional machine learning algorithms, the GRU- 
based system also demonstrated superior performance. Logistic 
Regression, which achieved 73.58 % accuracy, was the closest 
competitor to GRU. However, its reliance on linear assumptions and 
inability to capture complex, non-linear relationships within the data 
limited its predictive power. K-Nearest Neighbors (KNN) and Support 
Vector Machine (SVM) achieved even lower accuracies, with KNN 
(k = 3) producing an accuracy of 71.82 %, highlighting the limitations 
of traditional algorithms in handling multidimensional and complex 
datasets. These results align with prior research, which noted the limi
tations of traditional algorithms when applied to high-dimensional 
medical datasets [26]. Traditional algorithms such as Logistic Regres
sion, KNN, and SVM struggle to capture complex interactions between 
variables, which is essential for accurate stroke prediction. In contrast, 
deep learning models like GRU excel at capturing non-linear relation
ships, making them more suitable for complex, high-dimensional med
ical data.

The results of this study have significant implications for the devel
opment of stroke prediction systems, particularly in resource-limited 
settings like Sub-Saharan Africa. The GRU-based model’s combination 
of high accuracy and fast prediction time makes it a promising tool for 
real-time stroke prediction, which is critical for timely intervention and 
improving patient outcomes. The integration of machine learning into 
stroke care could enable early identification of individuals at high risk, 
allowing for preventive measures or more focused monitoring to be 
implemented. Moreover, the ability to work with fewer features without 
sacrificing accuracy is particularly beneficial in regions where data 
collection may be incomplete or where the computational infrastructure 
is not robust enough to support more complex models.

Future research should aim to refine and validate the GRU-based 
model in a broader range of clinical settings, using diverse datasets 
that capture a variety of demographic, environmental, and clinical 
factors. While this study focused on a specific set of phenotypes, addi
tional research exploring the inclusion of other variables, such as life
style factors, environmental exposures, or genetic predispositions, could 
further enhance prediction accuracy. Moreover, future studies could 
investigate the integration of multimodal data, combining clinical re
cords, imaging data, and even wearable health data, to improve the 
predictive power of the model. Another avenue for future research could 
involve exploring the integration of the GRU-based stroke prediction 
system into clinical decision support tools, enabling healthcare pro
viders to make data-driven, real-time decisions that could potentially 
save lives.

5. Strengths of the study

This study demonstrated significant contributions to the field of 

Table 6 
Comparison of LSTM and GRU Evaluation Metrics.

S/N LSTM layers GRU layers Epochs and Batch-size LSTM Avg. Accuracy % GRU Avg. accuracy % LSTM Prediction time GRU prediction time

1 128–16 128–8 100, 8 74.88 77.48 2.23 0.43
2 64–16 64–8 50, 50 66.27 72.29
2 100–16 128–8 100,64 63.09 76.65 0.68 0.43

Table 7 
Comparison of the Developed systems with some Machine Learning Algorithms.

S/ 
N

Algorithm Average 
Accuracy 
(%)

Average 
Precision 
(%)

Average 
Recall (%)

Average F1 
score (%)

1 Logistic 
Regression

73.58 74 74 74

2 Support 
Vector 
Machine

72.88 73 73 73

3 K-Nearest 
Neighbor 
(k = 3)

71.82 72 72 72

4 Developed 
Stroke

77.48 77 77 77
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stroke prediction, particularly in underrepresented regions. By 
leveraging advanced machine learning techniques and a region-specific 
dataset, the study provided insights into the potential of Gated Recur
rent Units (GRU) for efficient and accurate medical predictions. 

1. Use of Afrocentric Dataset: The study utilized the SIREN dataset, 
which is specific to African populations. This addresses a critical gap 
in stroke prediction research, as most existing models are based on 
data from Western populations. The dataset provided culturally and 
regionally relevant insights, enhancing the applicability of the 
findings to underserved regions.

2. Application of Gated Recurrent Units (GRU): The use of GRU as 
the prediction algorithm highlighted its advantages over other ma
chine learning models. GRU demonstrated superior performance in 
accuracy and computational efficiency, making it a practical tool for 
structured medical datasets.

3. Feature Selection for Optimization: The study reduced the dataset 
from 29 to 15 phenotypes, focusing on the most impactful features. 
This optimization not only improved the system’s accuracy but also 
reduced computational complexity, aligning with best practices in 
machine learning.

4. Comprehensive Model Comparison: By comparing the GRU-based 
system with traditional machine learning algorithms and Long Short- 
Term Memory (LSTM) networks, the study ensured a robust evalu
ation. The GRU model consistently outperformed these benchmarks, 
underscoring its effectiveness.

5. Computational Efficiency: The developed system achieved low 
prediction and evaluation times, making it highly suitable for real- 
time applications in healthcare settings where timely decisions are 
critical.

6. Generalization and Robustness: The system demonstrated no signs 
of overfitting or underfitting, as evidenced by consistent training and 
validation performance. This indicates the model’s reliability and 
potential for practical implementation.

6. Limitations of the study

While the study achieved notable success, certain limitations high
light areas for future improvement and research. These limitations 
provide context for interpreting the results and suggest directions for 
further exploration. 

1. Reliance on Secondary Data: The study utilized the SIREN dataset, 
which, while comprehensive, may carry inherent biases or limita
tions from the original data collection process. Despite applying data 
cleaning and imputation techniques, primary data collection or 
alternative datasets could yield more robust results.

2. Focus on Structured Data: The system exclusively worked with 
structured data, limiting its applicability to other medical data types, 
such as unstructured imaging or text from electronic health records. 
Expanding the model to incorporate such data could enhance its 
utility.

3. Lack of External Validation: The model was tested on a single 
dataset, which may restrict its generalizability to other populations 
or regions. Validation with datasets from different contexts would 
provide stronger evidence of the system’s robustness.

4. Limited Scope of Features: Although the feature selection process 
identified the most impactful 15 phenotypes, it is possible that other 
unmeasured factors relevant to stroke prediction were not included. 
Future research could explore the inclusion of additional features for 
a more holistic analysis.

5. Exclusion of Hybrid Models: While GRU performed well, the study 
did not explore hybrid architectures, such as combining GRU with 
convolutional layers or attention mechanisms. Such hybrid models 
could potentially enhance performance further.

7. Conclusion

This study successfully developed a stroke prediction system using 
Gated Recurrent Units (GRU), achieving a high accuracy of 77.48 % 
with efficient prediction and evaluation times of 0.43 seconds and 
0.071 seconds, respectively. By leveraging an Afrocentric dataset and 
employing optimized feature selection, the system demonstrated sig
nificant potential for enhancing stroke prediction in real-time healthcare 
applications. The GRU-based model outperformed traditional machine 
learning algorithms and Long Short-Term Memory (LSTM) networks, 
proving to be a reliable and efficient approach for structured datasets. 
The use of 15 carefully selected phenotypes, derived from the original 
29, played a critical role in achieving these results, highlighting the 
importance of data-driven optimization in machine learning.

Based on the findings of this study, it is recommended that future 
research focus on further improving the model’s performance by inte
grating additional data types, such as imaging or textual data from 
electronic health records. Expanding the system to include hybrid ar
chitectures, such as combining GRU with convolutional or attention 
layers, could also enhance its predictive capabilities. Furthermore, to 
increase the applicability and generalizability of the system, testing and 
validation on diverse datasets from different regions and populations 
should be considered. This would ensure that the model is robust and 
adaptable to varying healthcare environments. Finally, implementing 
the system in practical healthcare settings could help evaluate its real- 
world performance and provide actionable insights for early stroke 
detection and intervention.
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