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A B S T R A C T

The healthcare industry is currently seeing a significant rise in the use of mobile devices. These devices not only
provide ways for communication and sharing of multimedia information, such as clinical notes and medical
records, but also offer new possibilities for people to detect, monitor, and manage their health from anywhere
at any time. Digital health technologies have the potential to improve patient care by making it more efficient,
effective, and cost-effective. Utilizing digital devices and technologies can have a positive impact on many
health conditions. This research focuses on dysphonia, a change in the sound of the voice that affects around
one-third of individuals at some point in their lives. Voice disorders are becoming more common, despite
being often overlooked. Mobile healthcare systems can provide quick and efficient assistance for detecting
voice disorders. To make these systems reliable and accurate, it is important to develop an algorithm that can
classify intelligently healthy and pathological voices. To achieve this task, we utilized a combination of several
datasets such as Saarbruecken voice dataset (SVD), the Massachusetts Eye and Ear Infirmary database (MEEI),
and a few private datasets of various voices (healthy and pathological) Additionally, we applied multiple
machine learning algorithms, including decision tree, random forest, and support vector machine, to evaluate
and determine the most effective algorithm among them for the detection of voice disorders. The experimental
analyses are performed in terms of sensitivity, accuracy, receiver operating characteristic area, specificity,
F-score and recall. The results demonstrated that the support vector machine algorithm, depending on the
features selected by using appropriate feature selection methods, proved to be the most accurate in detecting
voice diseases.
1. Introduction

The implementation of mobile devices for transmitting digital data
or controlling and monitoring diseases has gained significant interest
from both the research and business fields (Al-Dhief et al., 2020). These
devices offer numerous benefits for developing efficient mobile health
(mHealth) systems, enabling doctors and patients to access audio-visual
notes, medical records and drug information (Sharma et al., 2022).
mHealth technology can help identify and prevent diseases, facilitate
decision-making, manage chronic emergencies, enhance the quality of
patient care, and reduce healthcare costs.

Pathological conditions, including widespread cardiovascular dis-
eases, can be detected and monitored using wearable sensors and

∗ Corresponding author.
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wireless communication. The development of these monitoring systems
has been made possible due to advancements in cloud technology and
the Internet of Things (IoT) (Philip et al., 2021). These discreet, conve-
nient, and user-friendly systems allow for the tracking and examination
of health information, benefiting those with cardiovascular issues and
supporting their physical therapy (Dias and Paulo Silva Cunha, 2018;
Subramaniam et al., 2022). While health monitoring systems for car-
diovascular diseases are widely recognized and appreciated, there are
others less well-known and often undervalued. A voice disorder known
as dysphonia affects the volume, sound, and pitch of the human voice.
Approximately 10% of the population experiences it, mostly as a re-
sult of unhealthy social practices and overuse of the voice (Kirmayer
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et al., 2003). Despite their commonality, many individuals with voice
disorders do not seek medical help. M-health solutions could offer an
effective way to diagnose and screen for voice disorders (Al-Dhief et al.,
2022).

The detection of voice pathology in a clinical setting is done through
various procedures, one of which is acoustic analysis. This involves
evaluating the voice signal to determine if there are any changes in
the vocal tract, using specific parameters as outlined by the SIFEL
(Società Italiana di Foniatria e Logopedia), protocol (Vernero and
Schindler, 2012). The SIFEL protocol was created by the Italian Society
of Logopedics and Phoniatrics based on guidelines from the European
Society of Laryngology’s Committee for Phoniatrics. Acoustic analysis is
a non-invasive diagnostic tool used in conjunction with other medical
exams such as the laryngoscopic examination, which involves visual
inspection of the vocal folds (Angerstein et al., 2019).

Assessing voice health involves measuring various acoustic parame-
ters (Paniagua et al., 2020). However, the accuracy of such parameters
in identifying voice disorders often relies on the algorithms used for
classification. Hence, researchers concentrate mainly on examining
voice features and using classification methods for improved accu-
racy (Calvo and D’Mello, 2010; Mamyrbayev et al., 2019; Xu et al.,
2020). Recently, speech pathology has shifted its focus to machine
learning methods. AI-based extrapolation of voice disorders in speech
and language pathology involves using artificial intelligence algorithms
to analyze speech patterns and detect changes or abnormalities that
may indicate a voice disorder. This can be done by analyzing features
such as pitch, loudness, and voice quality and comparing them to
a database of normal speech patterns. AI-based approaches have the
potential to improve the accuracy and efficiency of voice disorder
diagnosis in speech and language pathology (Idrisoglu et al., 2023).
However, more research is needed to fully understand the potential of
these methods and to ensure their accuracy and reliability.

Machine learning algorithms can objectively evaluate speech pro-
cessing to identify pathological and healthy voices (AL-Dhief et al.,
2020; Kim et al., 2020). These algorithms can greatly aid in the
early detection of voice disorders or the assessment of voice quality
before and after surgery. They offer techniques, methods, and tools that
can assist in diagnosis across various medical fields. Speech analysis
of voice pathology systems has employed various machine learning
algorithms, including Decision Tree (DT) (Mohammed et al., 2021),
Extreme Learning Machine (ELM) (Al-Dhief et al., 2021), Naïve Bayes
(NB) and Support Vector Machine (SVM) (Selvakumari and Radha,
2017). Thus, these algorithms have been shown to be effective and
efficient for the classification of pathological and healthy voices. How-
ever, some algorithms still experience challenges such as low accuracy
in classification, prolonged processing, or heavy resource utilization
in voice pathology identification and monitoring systems (Mittal and
Sharma, 2021; Muhammad and Melhem, 2014; Geng et al., 2022;
Al Mojaly et al., 2014). Moreover, several machine learning-based
techniques require the entire dataset to be retrained when new data
becomes available, resulting in longer processing times. This problem
is a significant challenge as it leads to prolonged wait times for results.
Another challenge is that a lot of research in voice disorder systems
is limited to small datasets and only focuses on specific vowels such
as /a/, ignoring others such as /i/ and /u/, as well as sentences. The
shortcomings of voice disorder identification and detection systems can
be summarized as follows:

• The previous studies primarily focused on binary classification,
specifically distinguishing between normal voices and a single
specific disorder, such as dysphonic voices or another isolated
condition. Applying such existing schemes in the practical sys-
tem would not be helpful for those patients with vocal laryngi-
tis, puberphonia and cord paralysis. However, in the proposed
study, a binary classification task is performed between normal
2

and abnormal voices, whether it is cord paralysis, vocal fold
granuloma, functional dysphonia, or any other voice disorder.
Therefore, practically, the proposed method can be more suitable
for classifying normal voices and other voices with any disorder.

• The majority of the voice pathology systems are limited to pro-
cessing a single voice data, usually the vowel /a/, and do not take
into account other vowels or sentences.

• Many studies employ small datasets of both healthy and patholog-
ical voice signals, resulting in low accuracy and lengthy process-
ing times. Small datasets often exhibit deficiencies in diversity,
increasing the risk of overfitting within machine learning models.
Moreover, smaller datasets tend to be more susceptible to noise or
outlier presence. Additionally, the complexity of algorithms might
encounter challenges in extracting substantial information and
patterns, thereby resulting in decreased accuracy and extended
processing times (Ezugwu et al., 2022; Harar et al., 2017; Verde
et al., 2018).

• Classifiers based on machine learning still struggle with achieving
high accuracy.

• Voice pathology, identification and detection systems are only
evaluated in terms of accuracy, sensitivity and area under the
curve (AUC).

Thus, developing a trustworthy voice pathology identification and
detection system using machine learning is essential to overcome such
vulnerabilities. The contributions of this research are as follows:

1. A machine learning-based classifying technique is proposed to
identify and detect specific types of voice pathology such as
dysphonia. This is done based on the features extracted from the
different voice signals.

2. The proposed system incorporates both healthy and pathologi-
cal voice samples from Saarbruecken voice dataset (SVD), the
Massachusetts Eye and Ear Infirmary database (MEEI), and a
primary dataset focusing on sentences and vowels /a/, /i/, and
/u/ spoken at three distinct pitch levels.

3. There is a significant amount of both pathological and healthy
voice samples utilized to train and evaluate the proposed system.

4. There are a number of different assessment metrics used in order
to evaluate and demonstrate how effective the proposed system
is.

The goal is to be able to accurately distinguish between pathological
and healthy voices. Moreover, we also aim to analyze the recognition of
voice disorders using patient information such as gender and age, along
with various features extracted from voice signals. The parameters
used in the analysis such as jitter, shimmer, time period Fundamental
Frequency (F0), and periodicity (Jothilakshmi, 2014; Mohammed et al.,
2020).

The novelty of the proposed work lies in several major things:
The proposed model demonstrates the ability to not only detect the
presence of pathology in the voice but also identify the specific type of
pathology. This added capability sets it apart and enhances its utility
compared to the existing models that only focus on the presence or
absence of pathology. Moreover, the proposed model is capable of de-
tecting specific types of voice disorders such as dysphonia. The primary
dataset used in the study is collected from various hospitals and medical
centers. This unique dataset is then combined with publicly available
datasets. The integration of these diverse data sources significantly
contributes to the enhanced accuracy of the proposed model compared
to relying only on online datasets.

The rest of the paper is structured as follows: Section 2 reviews
previous research on using machine learning for voice disorder identifi-
cation. Section 3 provides the material and the methodology proposed
in this study. Section 4 provides the details of the dataset, extracted
features, feature selection methods and classifiers used in the proposed
study. Moreover, the experimental results and analysis are also given in
Section 4. Section 5 concludes the proposed research and provides some
future recommendations that can be useful to improve the proposed

work.
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2. Related work

Speech, or the voice signal, has various uses, from recognizing emo-
tions (Kwon, 2019) to determining a patient’s healthcare status (Hos-
sain, 2016). m-health solutions presented in Cesari et al. (2018), Seedat
et al. (2020) and Spadaro et al. (2022) use voice signals to assess voice
health, and systems use them to gauge emotional condition (García
et al., 2019; Alaiad et al., 2019). Voice pathology detection often em-
ploys machine learning and various approaches have been developed
in the past few years to increase accuracy in identifying and detecting
pathological and healthy voices.

Recent research has aimed to improve accuracy and results in voice
pathology detection by exploring various voice quality parameters,
such as jitter, shimmer and fundamental frequency of a speech and a
voice signal (Vizza et al., 2019; Brockmann et al., 2008). Additionally,
several acoustic features have been studied in the past few decades,
including the Mel-Frequency Cepstral Coefficient (MFCC) (Kelly and
Gobl, 2011) and Multidimensional Voice Program (MDVP) (Nicastri
et al., 2004), which are extracted from speech signals for analysis. Com-
mon classifiers used in these studies include Artificial Neural Network
(ANN) (Souissi and Cherif, 2016), Hidden Markov Models (HMM) (Sri-
vastava et al., 2022) and SVM (Reid et al., 2022). Researchers have
utilized datasets such as the Saarbrücken Voice Database (SVD) (Reid
et al., 2022), Arabic Voice Pathology Database (AVPD) (Gidaye et al.,
2022) and Massachusetts Eye and Ear Infirmary Database (MEEI) (Zhou
et al., 2022) for the detection and identification of voice disorders.
Despite the fact that there has been progress made in this field, the
research is still in the preliminary phases and needs more investigation,
employing a larger variety of speech samples and datasets as well as
other machine learning algorithms.

The existing studies aim to identify parameters for measuring voice
quality and develop new classification systems for detecting voice
disorders. In the field of voice signal processing, a machine learning
algorithm known as SVM has been commonly used in recent years.

In Godino-Llorente et al. (2005), Godino et al. used SVM to classify
the pathological and healthy voices with 95% accuracy. Moreover,
the dataset used in their study was limited. It contained only 173
pathological and 53 healthy voice samples. The specific pathologies of
these voices are also not provided in their study.

In Yang et al. (2014), SVM was also utilized to determine the
presence of dysphonia, examining four types of pathology. The study
used MFCC and LDA for dimensionality reduction, resulting in an
accuracy of 86% in identifying a pathology. However, the dataset was
limited, consisting of only 70 pathological and 40 healthy voices from
the Saarbruechen Voice Database.

In Al-Dhief et al. (2021), Dhief et al. developed a voice pathol-
ogy detection system using voice signals from the Saarbrücken voice
database (/a/vowel). Mel-Frequency Cepstral Coefficients (MFCC) ex-
tract signal features, and Support Vector Machines (SVM) classify
healthy and pathological voices. The evaluation shows SVM achieves
84.37% accuracy, 90.90% specificity, and 80.95% sensitivity, indicat-
ing strong potential for identifying voice disorders.

MFCC parameters were evaluated in several other studies, includ-
ing Cordeiro et al. (2015) and Amara et al. (2016). In Cordeiro et al.
(2015), Cordeiro et al. analyzed subjects with nodules, edema, and
unilateral vocal fold paralysis, with a less-than-optimal accuracy of
77.90%. In Amara et al. (2016), Amara, et al. studied spasmodic
dysphonia and used to diagnose patients using machine learning al-
gorithms, but algorithms such as SVM and Gaussian Mixture Models
(GMM) were evaluated using limited voice samples from the MEEI
database, including healthy and pathological ones.

By evaluating MFCC, shimmer and jitter, El Emary et al. (2014)
classified speech and voice signals. They used the GMM algorithm to
detect neurological voice disorders on a small dataset of 38 pathological
and 63 healthy voices from the SVD database. In Fonseca et al. (2007),
3

Fonseca et al. employed an algorithm based on LS-SVM and linear
prediction coefficients to detect laryngeal voice disorder and tested it
on a private dataset.

In Barreira and Ling (2020), Barreira et al. presented a novel speech
pathology diagnosis system. Using Kullback–Leibler Divergence (KLD)
on histograms of voice and speech signals, the system generates two
modified spectra known as Higher Amplitude Suppression Spectrum
(HASS-KLD) and H-KLD (Barreira and Ling, 2020). These spectra quan-
tify the distribution of voice and speech frames and offer high accuracy
with limited parameters. H-KLD assesses the difference between the
probability distributions of the voice and speech frames, while HASS-
KLD evaluates the dynamic features of the voice and speech signals.
The extracted features are then input into two classifiers. The system
was tested using the MEEI dataset which includes 53 normal and 173
pathological voice samples achieving an accuracy of 99.55%. However,
the process is time-intensive, utilizing multiple classifiers and feature
extraction techniques.

In Wang and Jo (2007), Wang et al. used a private dataset col-
lected at the Busan National University Hospital. The authors used
HMM, GMM, and SVM to classify pathological voices, including vo-
cal cord palsy, vocal polyps, edema, glottic cancer, and laryngitis.
Many studies in the literature use private datasets, such as Ritchings
et al. (2002) and Boyanov and Hadjitodorov (1997). Without defining
the specific pathologies, Ritchings et al. (2002) used 77 pathological
voices from a private dataset collected from the Christie Hospitals in
Manchester to train and test their proposed system. While in Boy-
anov and Hadjitodorov (1997), Boyanov et al. gathered data from
the University Hospital of Sofia and utilized it in combination with
the K-nearest neighbors algorithm and linear discriminant analysis to
diagnose laryngeal pathology.

In Fonseca et al. (2020), Fonseca et al. proposed a system for
voice pathology identification and detection that uses three different
extractions, such as zero-crossing rate, signal entropy and energy.
The Saarbrücken Voice Database (SVD) was used, and the maximum
accuracy was 95%. Another work extracted glottal signal parameters
for voice disorder detection and applied k-NN and SVM to classify the
voice signal using SVD. SVM had an accuracy of 98.5% while k-NN had
88.2%, but with a limited set of voice samples.

Alhussein and Muhammad (2019) proposed a system for voice
pathology detection using a mobile platform and smart healthcare
framework that is based on a deep learning model known as Convo-
lutional Neural Network (CNN). Voice signals are recorded on smart-
phones, processed and analyzed in the cloud, and classified into three
different parallel models. Parallel CNNs achieved 95.5% accuracy on
the SVD dataset with 686 healthy voice samples and 1342 pathological
voice samples, but only for sustained vowel /a/ spoken at normal pitch.

In Upadhya and Cheeran (2018), Upadhya et al. proposed a system
to classify healthy and pathological voices that incorporates phonation
features such as fundamental frequency of pitch, energy and stability,
as well as cepstral features, including MFCC. A neural network having
three different layers is used as the classifier that achieved an accuracy
of 95.6% for phonation features and 81.1% accuracy for cepstral fea-
tures. However, due to the limited number of samples, the performance
may decrease if tested on a larger database.

In Chen et al. (2023), Chen et al. conducted a research where they
obtained recordings of sustained phonations of the vowels /a/ and /i/
from a clinical database. The dataset consisted of 238 individuals with
dysphonia and 223 healthy voices. To ensure consistency, all audio
clips were divided into multiple 1.5-second segments and normalized
for loudness. These segments were then utilized as input features for a
convolutional neural network (CNN) to perform a binary classification
task. The most favorable results were obtained when classifications
were based on all segments of both vowels, achieving an impressive
accuracy of 95%.

In Fang et al. (2019), Fang et al. collected voice samples, com-
prising 60 normal voice samples and 402 pathological voice samples

from individuals diagnosed with eight common clinical voice disorders.



Engineering Applications of Artificial Intelligence 133 (2024) 108047M. Ur Rehman et al.
To assess the performance of different machine learning algorithms,
namely the deep neural network (DNN) and support vector machine, a
fivefold cross-validation approach was employed. The accuracy of the
DNN algorithm in detecting voice disorders was found to be 94.26%
for male subjects and 90.52% for female subjects.

In Powell et al. (2019), Powell et al. proposed a study in which
they obtained acoustic recordings from a clinical database. The dataset
comprised recordings from 10 vocally healthy speakers and 70 patients
diagnosed with one of seven different voice disorders (with 10 patients
per diagnosis). To process the acoustic signals, spectrograms were
generated and used as input for a convolutional neural network (CNN)
developed with the Keras library. To assess the performance of the
models, a 10-fold cross-validation technique was employed for vali-
dation. The binary classification accuracies varied across the different
diagnostic categories, ranging from 58% to 90%.

In Al-Dhief et al. (2021), Laverde et al. proposed a voice pathology
detection and identification system using ANN and SVM classifiers and
Particle Swarm Optimization for optimal parameters. Three types of
features such as noise features, common voice features and acoustic
features are extracted from each voice sample including healthy and
pathological. The voice dataset (SVD) is divided into three groups (D1,
D2, and D3), with each group containing the same number of voice
samples. D1 consists of normal-pitched vowel /a/ sounds; D2 contains
sentences; and D3 holds recorded sentences. The SVM provides an accu-
racy of 92.77%, while the ANN has a 93.27% accuracy, both based on
group D3 of recorded sentences. However, the system’s performance for
other vowels such as /u/ and /i/ pronounced with varied intonations
was not assessed using the speech database (SVD).

A system based on LP analysis for classifying healthy and disordered
voice samples is proposed in Ali et al. (2017). The voice tract is divided
into multiple tubes using LP analysis. The MEEI dataset was used,
which contains 173 pathological and 53 healthy samples. The GMM
algorithm is used with an increasing number of Gaussian mixtures (4
to 50) to classify the voice signals with an accuracy of 99.94% for the
vowel /a/ and 99.75% for recorded sentences. However, similar to the
work proposed in Al-Dhief et al. (2021), the system is only evaluated
on vowel /a/ and has limited normal sample data.

The summary of existing studies on voice disorder detection is out-
lined in Table 1, encompassing strengths, vulnerabilities, and potential
solutions.

3. Material and methods

The proposed research evaluated the accuracy of various machine
learning algorithms to classify healthy and pathological voices, with
the goal of finding the most reliable algorithm. The selected algorithm
will be used in the proposed m-healthcare system, which will allow
speech signals to be recorded using a smartphone, tablet, or other smart
device equipped with a voice recorder. The features such as jitter,
shimmer, and fundamental frequency will be extracted and analyzed
by the classifier to determine if the patient has a voice disorder, as
displayed in Fig. 1.

Specifically, the SVM which is the most commonly used algorithm
in the literature due to the kernel function is used, as well as a few other
classifiers for detecting voice disorders are also incorporated to gauge
the performance of each classifier. The performance and experimental
analysis are carried out using WEKA (Arora, 2012), a widely used tool
for data mining that was chosen for its affordability, versatility, and
efficiency in data analysis.

The following sections introduce the dataset utilized in the proposed
research, the features that are extracted from the speech and voice
signal for classification purposes, and the machine learning algorithm
4

used for comparison purposes.
3.1. Dataset used in the proposed research

The proposed research involves a dataset that is made up of a
combination of various existing datasets such as MEEI (El Emary et al.,
2014), SVD (Souissi and Cherif, 2015), and the private dataset. The
aim of combining multiple datasets is to increase the overall size of
the dataset for improved training. In addition to the existing datasets,
we also gathered a dataset that consists of 2015 healthy voice samples
and 3678 pathological voice samples. This combined dataset, referred
to as the ‘‘Collected and Multiple Existing Dataset (CMED)’’, includes
2857 healthy voice and speech samples and 5301 pathological voice
samples. Each sample is taken from a different speaker, ensuring that
no speaker contributes more than one sample to the dataset. The voice
samples are stored in the ‘‘.wav’’ format, representing the format used
for each voice signal recording.

To avoid biases and maintain consistent class distribution across
various data subsets, especially when dividing data into training and
testing sets in machine learning, a commonly employed method called
stratification is utilized. The implementation of this technique follows
Algorithm 1.

Algorithm 1 Process for the implementation of stratification
Start
Input Different datasets: (SVD, MEEI, and private dataset)
Define Features and labels: Features: X, Labels: Y
classDistribution = tabulate(Y) ⊳ Identify distribution of classes
Split dataset into test_dataset and train_dataset
testdataset = 0.2; traindataset = 0.8
[trainInd, testInd] = splitDataWithStratification(X, Y, testdataset)
function [trainInd, testInd] = splitDataWithStratification(X, Y, tes-
tRatio) ⊳ Spliting data while maintaining class
proportions

classes = unique(Y);
trainInd = [ ];
testInd = [ ];
for i = 1:numel(classes)

classIdx = find(Y == classes(i));
n = numel(classIdx);
nTest = round(n * testRatio);
shuffledIdx = classIdx(randperm(n)); ⊳ Randomly

shuffle indices for each class
trainInd = [trainInd; shuffledIdx(nTest + 1:end)];
testInd = [testInd; shuffledIdx(1:nTest)];

end
end
End
This dataset includes voice samples of the vowels /a/, /i/, and /u/.

It is preferable to use vowels for evaluating the patient’s voice quality
because it eliminates language-related issues and is common in voice
disorder detection. In the clinical context, the vowel /a/ is often used
for detecting and identifying voice disorders.

In the case of the SVD dataset, the SVD is primarily used for speech
and voice analysis. It contains recordings of various speech and voice
samples rather than reports of diagnosed voice disorders. Therefore,
specific voice disorders reported within the SVD may not be explicitly
documented. However, in the proposed research this database is used
to study aspects of voice quality, and speech pathology, which may
indirectly contribute to understanding voice disorders like dysphonia,
vocal nodules, and other speech impairments.

Fig. 2 shows the healthy and pathological voice and speech signals.
The healthy signals in Fig. 2(a, c, and e) have a repetitive pattern
or periodicity, indicating a healthy voice. Whereas, the pathological
signals in Fig. 2(b, d, and f) have a high degree of unpredictability
or randomness, indicating they the patient is suffering from any voice

disorder. The proposed model identifies pathological voices with a
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Table 1
Summary of existing studies on voice disorder detection.
Methodology Application Advantages Vulnerabilities Potential
name domain solutions

Pathological and High Limited dataset, Utilize larger
SVM (Godino-Llorente et al., 2005) healthy voice accuracy lack of pathology and diverse

classification (95%) specifies datasets

KLD-based Speech High Time-intensive Optimize process,
system (Barreira and Ling, 2020) Pathology accuracy process streamline

diagnosis technique

SVM, MFCC, Voice Strong accuracy, Dataset limited Explore diverse
/a/ vowel (Al-Dhief et al., 2021) pathology specificity, to specific vowels,

detection and sensitivity vowel augment dataset

Pathology Voice Limited Explore diverse
ANN, SVM detection using High vowels vowels,
PSO (Al-Dhief et al., 2021) ANN and SVM accuracy tested augment

dataset

CNN-based Dysphonia Good Limited Augment dataset,
study (Chen et al., 2023) detection accuracy dataset explore more

using CNN diverse data

Acoustic Voice Algorithm Varied Optimize model,
recordings, disorder based accuracies explore diverse
CNN (Powell et al., 2019) classification classification datasets

using CNN

Voice High Limited Expand
ML disorder accuracy dataset dataset
algorithms (Fang et al., 2019) detection usage diversity

using ML

Analysis of Study domain- Lower Investigate
Voice nodules, specific accuracy new features,
analysis (Cordeiro et al., 2015) edema, vocal voice expand

fold paralysis disorder dataset

Neurological ML-based Small Augment dataset,
GMM, SVD disorder neurological dataset explore new
database (El Emary et al., 2014) detection voice disorder algorithms

detection

SVM, MFCC, Dysphonia Good Small Expand dataset,
LDA (Yang et al., 2014) identification accuracy (86%) dataset explore more

features
Fig. 1. Classification of normal and pathological voices.
severity level categorized as moderate or severe, based on the statistical
values of individual features.

For the experiments, we selected a total of 5693 samples, including
both healthy and pathological voices. The distribution of the data
samples in each dataset is shown below.
5

For MEEI dataset:

• Pathological voice samples = 173; Male = 51; Female = 122
• Healthy voice samples = 53; Male = 38; Female = 15
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Fig. 2. Healthy and pathological voice and speech signals.
For SVD dataset:

• Pathological voice samples = 1342; Male = 563; Female = 1342
• Healthy voice samples = 686; Male = 518; Female = 168

Primary dataset:

• Pathological voice samples = 70; Male = 59; Female = 31
• Healthy voice samples = 40; Male = 16; Female = 24

Private dataset used in El Emary et al. (2014):

• Pathological voice samples = 38; Male = 12; Female = 26
• Healthy voice samples = 63; Male = 34; Female = 29

For CMED dataset:

• Pathological voice samples = 5301; Male =2788; Female = 2513
• Healthy voice samples = 2857; Male =1990; Female = 867

Table 2 shows details about the chosen samples, including the
number and percentage (up to two digits after decimal) of voices for
each age and gender. There are fewer female samples due to the higher
occurrence of voice disorders in male subjects. Different researchers
have mentioned the labels of the samples in the dataset to ensure they
are all named or labeled the same way (Chaiani et al., 2022; Fang
et al., 2019). Additionally, a portion of the dataset (primary dataset) is
also collected from various hospitals and medical centers. The collected
dataset is then merged with existing datasets such as SVD, MEEI and
dataset used in El Emary et al. (2014) to create a new dataset for voice
6

pathology detection. All datasets used in the proposed research utilized
voice recordings across various pitch levels—normal, high, or low.
Furthermore, the features extracted from each voice concern sustained
vowels, aiding in the detection of normal, high, and low-pitch voices.
The differentiation depends on the statistical values of the features that
are extracted from these different recorded voices.

The samples within the collected dataset are properly labeled by
doctors and medical practitioners, ensuring accurate and reliable anno-
tations. All available pathological and healthy voices from the CMED
(SVD + MEEI + dataset used in El Emary et al. (2014) + primary
dataset) are used. Moreover, the flow diagram of the proposed work for
the classification of healthy and pathological voices is shown in Fig. 3.

3.2. Data pre-processing

To enhance the quality of voice recording, a few processing tech-
niques are applied to each recording. The details of the processing are
given in the following steps:

• Short-Time Fourier Transform (STFT): The voice recordings are
divided into small frames of length 𝑁 samples. After the division
into short frames, the short-time Fourier transform (STFT) is ap-
plied to each short frame to convert the signal into the frequency
domain from the time domain. For a given frame 𝑥[𝑛] of length
𝑁 , the STFT is calculated using Eq. (1):

𝑋(𝑘, 𝑚) = 𝑆𝑇𝐹𝑇 {𝑥[𝑛]} =
𝑁−1
∑

𝑥[𝑛] ⋅𝑤[𝑛 − 𝑚𝐻] ⋅ 𝑒−𝑗2∕𝑁 (1)

𝑛=0
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Fig. 3. Flow diagram of the proposed work.
Table 2
Healthy and pathological voice samples in the CMED dataset.

Voice Age Gender No. of %age of
samples bracket samples (NoS) NoS

15–30 Female 267 3.28%
31–40 Female 286 3.50%

Pathological 41–50 Female 469 5.74%
51–60 Female 897 10.99%
61–70 Female 594 7.28%

15–30 Male 82 1.00%
31–40 Male 364 4.46%

Pathological 41–50 Male 425 5.20%
51–60 Male 794 9.73%
61–70 Male 1123 13.76%

15–30 Female 631 7.73%
31–40 Female 539 6.60%

Healthy 41–50 Female 330 4.04%
51–60 Female 214 2.62%
61–70 Female 276 3.38%

15–30 Male 280 3.43%
31–40 Male 251 3.07%

Healthy 41–50 Male 149 1.82%
51–60 Male 115 1.40%
61–70+ Male 72 0.88%

Total (T1) 15–70+ Female 4503 55.19%
Total (T2) 15–70+ Male 3655 44.80%
Total (T𝑡) 15–70+ T1 + T2 8158 100%
Voice samples (a) – Male+Female 4610 56.50%
Voice samples (i) – Male+Female 2561 31.39%
Voice samples (u) – Male+Female 987 12.09%

where, 𝑋(𝑘, 𝑚) is the complex value of the 𝑘th frequency bin at
7

frame 𝑚. 𝑤[𝑛−𝑚𝐻] is the window function applied to the frame,
𝐻 is the hop size, 𝑘 ranges from 0 to 𝑁–1 and 𝑚 represented the
frame index.

• Noise Estimation: Now estimate the level of noise by computing
the average for the magnitude spectrum of the noisy frames as
|𝑁(𝑘)|. Then calculate the magnitude of the noisy version of the
signal’s spectrum |𝑌 (𝑘, 𝑚)| which is obtained from STFT.

• Spectral Subtraction: Subtract the estimated noise spectrum
from the noisy signal spectrum using Eq. (2).

|𝑋𝑐𝑙𝑒𝑎𝑛(𝑘, 𝑚)| = 𝑚𝑎𝑥(|𝑌 (𝑘, 𝑚)| − 𝛼|𝑁(𝑘)|, 0) (2)

where, |𝑋𝑐𝑙𝑒𝑎𝑛(𝑘, 𝑚)| denotes the magnitude of the spectrum of the
clean signal, and 𝛼 is the scaling factor which is set to 1.9 for
controlling the amount of noise reduction.

• Inverse STFT: Apply inverse STFT (ISTFT) using Eq. (3) to obtain
the clean time-domain signal.

𝑥𝑐𝑙𝑒𝑎𝑛[𝑛] = 𝐼𝑆𝐹𝐼𝑇 {𝑋𝑐𝑙𝑒𝑎𝑛(𝑘, 𝑚)}

=
𝑀−1
∑

𝑚=0

(

𝑋𝑐𝑙𝑒𝑎𝑛(𝑘, 𝑚) ⋅ 𝑒𝑗2𝜋𝑘𝑛∕𝑁
)

⋅𝑤′[𝑛 − 𝑚𝐻] (3)

where, 𝑥𝑐𝑙𝑒𝑎𝑛[𝑛] is the cleaned signal and 𝑤′[𝑛−𝑚𝐻] is the inverse
window function.

Repeat each step for every voice signal to acquire a clean and enhanced
version of the voice recordings.

3.3. Features used in the proposed research

Feature extraction is crucial for enhancing the experimental anal-
ysis and classification. The selection of speech signal features for the
proposed study is based on two categories: (A) the key parameters
utilized by experts in clinical evaluations and (B) the main features
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Table 3
Summary of the features used in the proposed work.

Features Mathematical equations Explanation

Jitter 𝑗𝑖𝑡𝑡𝑒𝑟(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) = T𝑖: length of each period in seconds,
(absolute) 1

𝑃−1

∑𝑃−1
𝑖=1 (|𝑇𝑖 − 𝑇𝑖−1|) 𝑃 : total number of periods

Local 𝑗𝑖𝑡𝑡𝑒𝑟(𝑙𝑜𝑐𝑎𝑙) =

jitter
1

𝑃−1

∑𝑃−1
𝑖=1 (|𝑇𝑖−𝑇𝑖−1 |)

1
𝑃
−
∑𝑃

𝑖=−1 (𝑇𝑖 )
//

Relative Average 𝑅𝐴𝑃 (𝑗𝑖𝑡𝑡𝑒𝑟) = //

Perturbation (RAP) Jitter
1

𝑃−1

∑𝑃−1
𝑖=1 (|𝑇𝑖−(

1
3

∑𝑖+1
𝑝=𝑖−1 (𝑇𝑝 ))|)

1
𝑃
−
∑𝑃

𝑖=−1 (𝑇𝑖 )

Five-Point Period 𝑃𝑃𝑄5 = //

Perturbation Quotient (PPQ5)
1

𝑃−1

∑𝑃−1
𝑖=1 (|𝑇𝑖−(

1
5

∑𝑖+1
𝑝=𝑖−1 (𝑇𝑝 ))|)

1
𝑃
−
∑𝑃

𝑖=−1 (𝑇𝑖 )

Shimmer Shimmer (absolute) = //
(absolute) 1

𝑃−1

∑𝑃−1
𝑖=1 (|20 ∗ 𝑙𝑜𝑔( 𝐴𝑖=+1

𝐴𝑖
)|)

Shimmer Shimmer (local) = 𝐴𝑖: Amplitude of the

(local)
1

𝑃−1

∑𝑃−1
𝑖=1 (|𝐴𝑖−𝐴𝑖+1 |)

1
𝑃
−
∑𝑃

𝑗=1 (𝐴𝑖 )
× 100 recorded voice signal

Shimmer Shimmer (APQ3) = //

(APQ3)
1

𝑃−1

∑𝑃−1
𝑖=1 (|𝐴𝑖−(

1
3

∑𝑖+1
𝑝=𝑖−1 (𝐴𝑝 ))|)

1
𝑃
−
∑𝑃

𝑖=1 (𝐴𝑖 )

Shimmer Shimmer (APQ5) = //

(APQ5)
1

𝑃−1

∑𝑃−2
𝑖=2 (|𝐴𝑖−(

1
5

∑𝑖+2
𝑝=𝑖−2 (𝐴𝑝 ))|)

1
𝑃
−
∑𝑃

𝑖=1 (𝐴𝑖 )

Other features → Fundamental frequency, –
periodicity
commonly employed in the existing studies that apply machine learning
algorithms for the classification of healthy and pathological voices.

Instead of using dynamic range as input to the AI/ML model, various
technical aspects such as Frequency, Periodicity, Jitter (absolute), Local
jitter, Relative Average Perturbation (RAP) Jitter, Five-Point Period
Perturbation Quotient (PPQ5), Shimmer (absolute), Shimmer (local),
Shimmer (APQ3), and Shimmer (APQ5) are employed to determine and
compare the accuracy of the proposed model.

A detailed explanation of such features can be found in Shafique
et al. (2021) and Li et al. (2007). The summary of the features used in
the proposed work is provided in Table 3.

Each item (𝑖), in the dataset used for the proposed research consists
f the following data:

• Patient ID: An alphanumeric value serves as the identifier for the
patient.

• Age: Measured in years
• Features: F0, periodicity, Jitter (absolute), Local jitter, Relative

Average Perturbation (RAP) Jitter, Five-Point Period Perturbation
Quotient (PPQ5), Shimmer (absolute), Shimmer (local), Shimmer
(APQ3) and Shimmer (APQ5).

• Class/Target value: Healthy voice and Pathological voice

The choice of feature extraction techniques, namely fundamental
requency, periodicity, various jitter measurements (absolute, local,
AP, PPQ5), as well as shimmer measurements (absolute, local, APQ3,
PQ5), is founded on extensive research in the field of voice disor-
er detection and voice pathology analysis. These features have been
idely utilized in existing literature (Mesallam et al., 2017; Mamun
t al., 2022; Chaiani et al., 2022) for their effectiveness in capturing
mportant aspects of voice quality and characteristics associated with
athological conditions. Moreover, these features ensure the compre-
ensive coverage of important parameters for accurate detection and
lassification of voice pathology.

Apart from the features used in the proposed research, the de-
ermination of the scale of vocal variations relies on factors such as
he qualities of acoustic transducers and voice recording devices. It
ecessitates a comprehensive analysis to accurately assess vocal varia-
ions. This analysis involves extracting essential features like frequency
nd shimmer from each speech signal within the dataset. The speech
amples in the dataset are not recorded using any particular micro-
hone or acoustic transducer. However, the transducers can have a
8

significant impact on voice and speech. Therefore, determining the
precise scale or level of such vocal variations that are only based on
acoustic transducers would require further analysis and context-specific
information. The proposed model in this research only works on speech
samples not recorded by any acoustic transducer. An acoustic trans-
ducer refers to any device like a microphone. However, the proposed
model specifically works with human voice recordings that are not
captured using a microphone. The aim is to exclude any potential
inaccuracies or disturbances caused by microphone-related noise or
faults. Therefore, the model only utilizes voices directly sourced from
humans to ensure accuracy and reliability in its construction.

3.4. Classifiers used in the proposed study

To conduct a comprehensive comparison, we chose various machine
learning algorithms to serve as representatives of the target class with
similar features. These algorithms are:

3.4.1. Support vector machine (SVM)
SVM is a supervised machine learning algorithm used for classifi-

cation and regression analysis. It is based on the concept of finding
the hyperplane (a line or a higher-dimensional plane) that maximally
separates the classes in the training data.

In a two-class problem, the SVM algorithm finds the hyperplane
that separates the two classes with the largest margin, known as the
maximum margin classifier. This hyperplane is called the maximum
margin hyperplane, and the points closest to the hyperplane on either
side are called support vectors. The margin is the space between the
hyperplane and the data points that are closest to it.

To classify data, multiple inputs or features must be present. The
dimensions of the dataset are determined by the number of features
used. If a dataset has 10 features, it is considered 10-dimensional. it
can be expressed as :

For Multiple (N) dimensional dataset: 𝑍 = 𝐷1, 𝐷2, 𝐷3,… , 𝐷𝑁

where 𝐷1, 𝐷2, 𝐷3,… , 𝐷𝑁 are the independent variables of features and
𝑍 is the output variable or target class.

When creating a dataset, the number of features and the number of
output categories do not have to match. It depends on the desired num-
ber of categories the data points should be classified into. SVM utilizes a
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line or hyperplane to classify the data. In a 2D dataset, a line (called the
support vector) is used to categorize the data with the largest margins.
However, for higher-dimensional datasets, a hyperplane is used instead
which can be expressed as:

𝐴𝑋 + 𝑌 = 0

Whereas the bias 𝑌 and the input feature vector 𝑋 are related by
the vector 𝐴, which has the same number of dimensions as 𝑋. In the
roposed work, an 11-dimensional dataset is used, so the product of 𝐴
nd 𝑋 can be represented as 𝐴𝑋.

1∗x1 + A2∗x2 + A3∗x3 + A4∗x4 + A5∗x5 + A6∗x6 + A7∗x7

While predicting the target class, the following equation can be
sed.

= 𝑠𝑖𝑔𝑛(𝐴𝑋 + 𝑌 ) (4)

The sign of input depends on whether it is positive or negative. If it
s positive, the sign returns + 1, and if it is negative, the sign returns

1. The input consists of a feature vector 𝑋𝑖 and a label 𝑍𝑖 which can
ither be +1 or −1. This can be expressed as:

𝐴𝑋 − 𝑌 ≥ +1 𝑍𝑖 = +1
𝐴𝑋 − 𝑌 ≤ −1 𝑍𝑖 = −1

(5)

SVM also utilizes various types of kernels, such as radial basis
unction (RBF) or polynomials. In the proposed work, such kernels
re used in the implementation of SVM and the results are reported
n Section 4.1. The other classifiers used in the proposed research are
ecision tree, Naive byes, and K-nearest neighbor. The details of such
lassifiers can be found in Myles et al. (2004), Reddy et al. (2022) and
howmik et al. (2022).

.4.2. Selection of hyperparameters
The details of hyperparameters for DT, NB, RF and KNN are given

elow:

1. Decision Trees (DT):

• max_depth: A positive integer, i.e., 5.
• min_samples_split: a small integer i.e., 2.
• min_samples_leaf: a small integer, i.e., 5.
• criterion: Gini

2. Naive Bayes (NB):

• Smoothing parameter: A small positive value, i.e., 0.1.

3. Random Forest (RF):

• n_estimators: A positive integer i.e., 50.
• max_depth: A positive integer i.e., 76.
• min_samples_split: A small integer., i.e., 5.
• min_samples_leaf: A small integer, i.e., 2.
• criterion: Gini

4. k-Nearest Neighbors (KNN):

• n_neighbors: An odd positive integer, i.e., 5
• weights: distance rather uniform
• p: Set to 2 for Euclidean distance.

.5. Evaluation metrics

The effectiveness of the proposed machine learning-based m-health
lassification system is assessed using performance metrics such as ac-
uracy, sensitivity, specificity, and ROC area. Such parameters depend
9

n the following measures.
• True Positives (𝜏𝑃 ): When the voice sample falls into the cat-
egory of ‘‘Pathological voice’’ and the algorithm also recognizes
that it is a Pathological voice.

• True Negatives (𝜏𝑁): When the voice sample falls into the
category of ‘‘healthy voice’’ and the algorithm also recognizes that
it is a healthy voice sample.

• False Positives (ϝ𝑃 ): When the voice sample falls into the cate-
gory of ‘‘pathological voice’’ and the algorithm recognizes that it
is a healthy voice sample.

• False Negatives (ϝ𝑁): When the voice sample falls into the
category of ‘‘healthy voice’’ and the algorithm recognizes that it
is a pathological voice sample.

Accuracy: Accuracy refers to the fraction of predictions made by
model that is correct. The mathematical formulation to find the

ccuracy of the model is given in Eq. (6) (Albadr et al., 2021).

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝜏𝑃 + 𝜏𝑁
𝜏𝑃 + 𝜏𝑁 + ϝ𝑃 + ϝ𝑁

(6)

Sensitivity: Sensitivity refers to the ability of a model to correctly
lassify positive examples (i.e., instances where the target variable is
ositive). Mathematically, it can be express using Eq. (7) (Albadr et al.,
022c):

𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝜏𝑃
𝜏𝑃 + ϝ𝑁

(7)

Specificity: Specificity in machine learning refers to the ability of
a model to correctly identify negative cases, i.e. samples that belong to
the non-target class. Mathematically, it can be given represented using
Eq. (8): (Albadr et al., 2022b)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝜏𝑁
𝜏𝑁 + ϝ𝑃

(8)

Recall: Recall measures the ability of a classifier to correctly iden-
tify positive instances among all actual positive instances in a dataset.
Mathematically it can be expressed using Eq. (9) (Albadr et al., 2022a).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝜏𝑃
𝜏𝑃 + ϝ𝑁

(9)

F-score: F1-Score is a measure of a model’s accuracy that balances
precision and recall. It can be calculated using Eq. (10) (Albadr et al.,
2023):

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(10)

Receiver Operating Characteristic (ROC): The ROC area mea-
sures the accuracy of a classification algorithm. This metric plots
the sensitivity of the algorithm against the inverse of specificity (1-
specificity) and calculates the area under the curve (AUC). The AUC
value can be thought of as the average sensitivity score across all
specificity levels. A perfect classification will result in an AUC of 1,
while an AUC of 0 means that the algorithm is completely inaccurate
and misclassifies all positive cases as negative and vice versa.

4. Experimental results and discussion

All the steps performed in the development of the proposed model
follow a Python 3.7 based implementation, employing pandas for data
pre-processing and loading, while scikit-learn facilitates classifier im-
plementation. Experimentation is conducted on a system equipped with
an Intel i7 processor 12 GB RAM and Windows 11.

In our experiments, we employed cross-validation to avoid overfit-
ting and enhance the unreliability of our predictions. Specifically, we
utilized 10-fold cross-validation, which involved dividing the training
dataset into 10 smaller subsets. For each of these 10 folds, a model is
trained using k-1 folds as the training data and then evaluated on the
remaining part of the dataset. During the development of the proposed
model, 20% percent of the dataset comprises an equal distribution: half
of it consists of samples from normal patients, while the other half
contains samples of pathological voices. Each sample corresponds to

a different speaker.
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Fig. 4. Feature selection using information gain, correlation method and PCA.
Table 4
Statistical results obtained when incorporating SVM with RBF and polynomial kernel for different values of 𝑞 and 𝛾 (Considering all
features).
𝑞 (RBF) q = 0.4 q = 0.8 q = 1.2 q = 1.6 q = 2.0 q = 2.4 q = 2.8 q = 3.2 q = 3.6 Mean S.D

Accuracy (%) 90.32 89.9 88.76 90.25 90.65 91.67 88.61 87.46 85.66 89.25 1.73
Sensitivity (%) 89.66 88.45 90.13 90.66 90.45 91.73 90.56 90.36 86.99 89.88 1.31
Specificity (%) 86.92 87.65 89.99 90.12 91.56 90.24 90.46 91.56 88.99 89.72 1.50
F score 0.88 0.95 0.903 0.86 0.88 0.91 0.90 0.89 0.90 0.89 0.02
Recall 0.89 0.84 0.83 0.88 0.89 0.80 0.90 0.91 0.90 0.87 0.03
ROC area 0.86 0.85 0.88 0.89 0.90 0.88 0.89 0.87 0.90 0.88 0.01

𝑞 (polynomial) q = 0.4 q = 0.8 q = 1.2 q = 1.6 q = 2.0 q = 2.4 q = 2.8 q = 3.2 q = 3.6 Mean SD

Accuracy (%) 90.36 91.23 90.65 90.23 91.03 90.66 90.33 93.64 90.56 90.96 0.99
Sensitivity (%) 89.69 90.23 90.25 91.035 91.25 90.44 89.65 89.99 90.55 90.34 0.51
Specificity (%) 90.55 91.26 92.54 90.66 89.56 90.55 90.78 90.66 90.65 90.80 0.74
F score 0.89 0.91 0.92 0.90 0.92 0.93 0.90 0.89 0.91 0.90 0.01
Recall 0.90 0.89 0.89 0.91 0.90 0.89 0.88 0.91 0.90 0.89 0.01
ROC area 0.91 0.89 0.88 0.87 0.89 0.90 0.91 0.90 0.92 0.89 0.01

𝛾 (RBF) 𝛾 = 0.4 𝛾 = 0.8 𝛾 = 1.2 𝛾 = 1.6 𝛾 = 2.0 𝛾 = 2.4 𝛾 = 2.8 𝛾 = 3.2 𝛾 = 3.6 Mean SD

Accuracy 90.66 90.12 90.21 90.65 91.06 90.56 92.56 91.46 90.57 90.87 0.70
Sensitivity 90.23 89.89 89.99 90.56 91.23 91.56 91.65 92.03 91.05 90.91 0.73
Specificity 88.98 89.68 90.89 89.99 90.56 90.36 91.56 90.32 92.55 90.54 0.98
F score 0.88 0.86 0.87 0.89 0.90 0.89 0.90 0.91 0.90 0.88 0.01
Recall 0.90 0.91 0.89 0.89 0.90 0.91 0.92 0.93 0.93 0.90 0.01
ROC area 0.88 0.87 0.90 0.91 0.90 0.91 0.90 0.89 0.88 0.89 0.01

𝛾 (polynomial) 𝛾 = 0.4 𝛾 = 0.8 𝛾 = 1.2 𝛾 = 1.6 𝛾 = 2.0 𝛾 = 2.4 𝛾 = 2.8 𝛾 = 3.2 𝛾 = 3.6 Mean SD

Accuracy 90.20 90.56 91.56 90.23 90.56 90.11 89.99 90.64 89.89 90.41 0.47
Sensitivity 89.65 88.78 89.78 90.12 90.56 88.98 89.15 90.13 91.33 89.83 0.76
Specificity 89.98 90.34 91.23 91.48 91.37 90.49 90.03 89.99 88.95 90.42 0.90
F score 0.88 0.89 0.91 0.91 0.90 0.90 0.91 0.92 0.91 0.90 0.01
Recall 0.88 0.90 0.91 0.91 0.91 0.90 0.89 0.91 0.90 0.90 0.01
ROC area 0.89 0.88 0.89 0.90 .091 0.90 0.91 0.89 0.90 0.91 0.02
4.1. Feature selection

The attribute selection process is significant in improving the anal-
ysis of a dataset by eliminating unnecessary features, resulting in
reduced memory consumption and increased computational efficiency.
In this research, the efficiency of the m-health system is examined by
applying it to the entire dataset as well as to three subsets of the dataset
created by selecting specific features from the data using the following
feature selection methods:

4.1.1. Information gain
Information gain is a measure used in decision to assess the rel-

evance of a feature in a dataset. It is a measure of how much a
feature reduces entropy or randomness in the data, and is calculated
as the reduction in entropy (uncertainty) of the target variable after a
feature is used to split the data into smaller groups. Features with high
information gain are considered to be more important or relevant in
predicting the target variable. Information gain ranges from 0 to 1, with
0 indicating no reduction in entropy and 1 indicating that the feature
perfectly separates the target classes.
10
We set 0.6 as the threshold value for determining relevant features
and removed any irrelevant features as shown in Fig. 4.

4.1.2. Correlation technique
This evaluates the capability of each feature to predict the target

class. It allows us to choose the set of features that have a strong
relationship with the target class. We have set a threshold of 0.65 for
determining significant features and any features below this value were
removed based on Fig. 4.

4.1.3. Principal Component Analysis (PCA)
PCA is a statistical technique for dimensionality reduction in which

a large set of variables is transformed into a smaller set of uncorrelated
variables called principal components. PCA can also be used in feature
selection by reducing the number of features in a dataset. In PCA, the
features are transformed into a set of linearly uncorrelated principal
components. The first principal component contains the most informa-
tion and each subsequent component contains less and less information.
By retaining only the first few principal components, which contain the
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Table 5
Statistical results obtained when incorporating SVM with RBF and polynomial kernel for different values of 𝑞 and 𝛾 (Considering features
selected using information gain method).
𝑞 (RBF) q = 0.4 q = 0.8 q = 1.2 q = 1.6 q = 2.0 q = 2.4 q = 2.8 q = 3.2 q = 3.6 Mean S.D

Accuracy (%) 90.23 91.56 92.65 93.56 91.56 92.34 94.65 94.65 92.65 92.65 1.38
Sensitivity (%) 89.99 90.56 91.65 92.36 91.64 92.34 93.02 89.99 90.13 91.29 1.09
Specificity (%) 89.65 90.65 91.35 91.46 91.37 91.89 89.88 90.54 90.49 90.80 0.71
F score 0.88 0.89 0.90 0.87 0.86 0.87 0.89 0.90 0.91 0.88 0.01
Recall 0.90 0.91 0.92 0.89 0.93 0.92 0.90 0.91 0.93 0.91 0.01
ROC area 0.90 0.88 0.90 0.89 0.87 0.92 0.91 0.90 0.93 0.90 0.01

𝑞 (polynomial) q = 0.4 q = 0.8 q = 1.2 q = 1.6 q = 2.0 q = 2.4 q = 2.8 q = 3.2 q = 3.6 Mean SD

Accuracy (%) 89.99 90.56 93.23 91.56 93.56 91.59 90.53 91.67 91.55 91.58 1.12
Sensitivity (%) 89.66 90.56 91.65 92.32 90.45 90.56 90.68 91.56 90.89 90.92 0.74
Specificity (%) 90.88 90.35 91.56 92.67 93.56 94.65 91.66 93.56 91.32 92.24 1.35
F score 0.89 0.90 0.93 0.91 0.92 0.89 0.88 0.89 0.87 0.89 0.01
Recall 0.90 0.91 0.93 0.89 0.94 0.92 0.91 0.93 0.93 0.91 0.01
ROC area 0.89 0.91 0.90 0.93 0.89 0.88 0.91 0.92 0.93 0.90 0.01

𝛾 (RBF) 𝛾 = 0.4 𝛾 = 0.8 𝛾 = 1.2 𝛾 = 1.6 𝛾 = 2.0 𝛾 = 2.4 𝛾 = 2.8 𝛾 = 3.2 𝛾 = 3.6 Mean SD

Accuracy 90.65 91.56 89.49 90.44 93.57 91.65 91.89 89.99 91.47 90.35 1.13
Sensitivity 89.99 89.66 90.65 91.34 92.78 90.88 91.66 93.45 91.65 90.44 0.86
Specificity 91.33 92.56 94.65 94.65 90.66 90.54 91.36 92.65 91.66 91.52 1.24
F score 0.90 0.89 0.87 0.90 0.92 0.93 0.91 0.89 0.88 0.90 0.01
Recall 0.89 0.91 0.92 0.90 0.89 0.88 0.90 0.91 0.92 0.90 0.01
ROC area 0.91 0.92 0.91 0.91 0.93 0.89 0.93 0.92 0.91 0.91 0.01

𝛾 (polynomial) 𝛾 = 0.4 𝛾 = 0.8 𝛾 = 1.2 𝛾 = 1.6 𝛾 = 2.0 𝛾 = 2.4 𝛾 = 2.8 𝛾 = 3.2 𝛾 = 3.6 Mean SD

Accuracy 89.99 90.65 91.36 94.56 91.66 91.54 91.65 92.32 91.56 91.35 1.23
Sensitivity 90.66 91.58 92.33 93.42 91.54 90.65 94.65 91.58 91.56 92.66 1.41
Specificity 89.99 89.54 90.65 92.25 92.35 91.66 91.33 94.12 92.64 90.37 0.86
F score 0.90 0.91 0.91 0.93 0.92 0.89 0.90 0.93 0.94 0.91 0.01
Recall 0.91 0.92 0.9 0.91 0.92 0.91 0.89 0.91 0.92 0.91 0.01
ROC area 0.91 0.92 0.93 0.94 0.92 0.89 0.93 0.91 0.91 0.90 0.01
majority of the information, PCA can be used to effectively reduce the
number of features in a dataset.

In the proposed research, PCA is used in combination with other
methods, such as the correlation method or information gain, to further
improve the feature selection process. By combining PCA with these
methods, it is possible to select the most important features and reduce
the dimensionality of the dataset in an efficient manner. We chose
the principal components that received at least 50% of the ranking.
Threshold is set based on the priority-based selection method (i.e., if
any feature has a value greater than 0.5, priority will be given to
that feature and will be retained in the dataset). Fig. 4 shows that
we obtained four new parameters that are a combination of several
features.

4.2. Classification performance

We performed a set of experiments where the values of the q
exponent and 𝛾 parameter are altered in both the RBF and polynomial
kernel expression. The performance of accuracy, ROC area, specificity,
and sensitivity is assessed across the entire dataset as well as the
three subsets derived from the feature selection techniques outlined in
Section 4.1. The results are displayed in Tables 4–7.

Table 4 displays the statistical results of the proposed work’s perfor-
mance when all features are selected. The best performance is achieved
with an RBF kernel having a 𝑞 value of 2.4 on the dataset that includes
all parameters. With this value, the proposed system has an accuracy of
91.67% in classifying healthy and pathological voices with dysphonia,
and a sensitivity of 91.73%.

When using SVM, with a polynomial kernel, the parameter 𝛾 rep-
resents the kernel coefficient. Higher values of 𝛾 can lead to a more
omplex decision boundary, potentially causing overfitting, while lower
alues might result in a smoother decision boundary. In the proposed
esearch, it is found that a 𝛾-value of 1.6, detailed in Table 5, produced
he optimal performance. This value corresponded to an accuracy rate
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f 94.56%, a sensitivity of 93.42%, a specificity of 92.25%, and an
ROC area of 0.94%. These outcomes are achieved by employing the
parameters selected through the information gain method in the SVM
utilizing a polynomial kernel.

By incorporating the features selected using the correlation method,
the highest accuracy achieved of 95.68%, the sensitivity of 94.89%,
specificity of 95.66% and ROC area is 0.91 when the kernel is polyno-
mial and 𝛾-value is 2.8 as shown in Table 6.

Finally, using only parameters selected through PCA, the highest
accuracy is obtained using an RBF kernel with a 𝛾-value of 3.2, yielding
99.97%, a sensitivity of 98.64%, specificity of 98.51% and the ROC area
is 0.98. The detailed statistical results obtained when only considering
features selected using PCA are displayed in Table 7.

The most accurate result (99.97% accuracy) in detecting speech
and voice disorders is attained with a polynomial kernel, using all
classification parameters and the gamma value of 1. This result is
verified through subsequent experiments, where features are selected
using two of the three feature selection methods. Specifically, when
only features selected by PCA are considered, the highest classification
accuracy is achieved using SMO (96.16% and 98.75%, respectively).
However, using correlated features, on the other hand, the decision
tree algorithm is the most accurate for the classification of a healthy
voice and a pathological voice, with an accuracy of 98.97%. Moreover,
various machine learning algorithms, such as SVM, DT, NB, RF, and
KNN are analyzed to determine the best fit for the system being
proposed.

The existing models are implemented in Python 3.7, and the results
presented in Table 8 are computed using this implementation. Table 8
displays the results of performance metrics for these algorithms where
it can be seen that SVM (with an accuracy of 99.97%) and DT (with
an accuracy of 98.96%) are the best options for classifying healthy
and pathological voices when the features are selected using PCA. In
addition, a thorough comparison is also made between the proposed
and existing models. The results represented in Table 8 show that the
proposed model classifies healthy and pathological voices with a high

degree of accuracy as compared to the existing models. While existing
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Table 6
Statistical results obtained when incorporating SVM with RBF and polynomial kernel for different values of 𝑞 and 𝛾 (Considering features
selected using Correlation method).
𝑞 (RBF) q = 0.4 q = 0.8 q = 1.2 q = 1.6 q = 2.0 q = 2.4 q = 2.8 q = 3.2 q = 3.6 Mean S.D

Accuracy (%) 93.12 92.34 91.22 93.45 93.89 91.59 92.59 91.99 92.49 92.36 1.56
Sensitivity (%) 92.34 91.26 92.49 92.10 92.33 92.14 90.14 92.66 92.45 91.56 1.06
Specificity (%) 91.25 92.48 92.67 92.89 92.99 92.15 91.99 91.89 92.98 92.64 1.48
F score 0.90 0.91 0.92 0.91 0.90 0.93 0.92 0.91 0.93 0.91 0.01
Recall 0.91 0.90 0.91 0.92 0.93 0.91 0.92 0.91 0.93 0.92 0.01
ROC area 0.89 0.88 0.90 0.89 0.88 0.88 0.87 0.89 0.90 0.90 0.01

𝑞 (polynomial) q = 0.4 q = 0.8 q = 1.2 q = 1.6 q = 2.0 q = 2.4 q = 2.8 q = 3.2 q = 3.6 92.35 .48

Accuracy (%) 92.11 91.56 92.33 92.89 91.89 91.99 92.49 92.89 92.33 91.86 1.36
Sensitivity (%) 92.31 92.02 91.22 91.56 91.49 91.57 91.66 91.33 91.78 92.67 1.55
Specificity (%) 92.45 91.66 91.48 92.46 91.01 91.65 92.12 92.33 92.45 91.65 1.67
F score 0.91 0.90 0.930 0.92 0.91 0.92 0.90 0.91 0.91 0.91 0.01
Recall 0.91 0.93 0.92 0.91 0.91 0.92 0.90 0.90 0.91 0.90 0.01
ROC area 0.88 0.87 0.89 0.89 0.90 .087 0.88 0.89 0.88 0.92 0.01

𝛾 (RBF) 𝛾 = 0.4 𝛾 = 0.8 𝛾 = 1.2 𝛾 = 1.6 𝛾 = 2.0 𝛾 = 2.4 𝛾 = 2.8 𝛾 = 3.2 𝛾 = 3.6 Mean SD

Accuracy (%) 91.22 91.32 92.54 93.22 91.45 92.33 93.01 93.00 93.89 92.87 1.74
Sensitivity (%) 92.45 91.64 92.44 93.45 91.56 91.33 92.54 92.36 92.45 91.53 1.08
Specificity (%) 92.15 92.14 93.48 91.00 91.15 91.57 92.88 92.98 92.36 92.57 1.56
F score 0.91 0.90 0.91 0.90 0.92 0.91 0.91 0.92 0.90 0.90 0.01
Recall 0.91 0.92 0.91 0.93 0.92 0.91 0.90 0.90 0.91 0.91 0.01
ROC area 0.88 0.89 0.87 0.88 0.88 0.89 0.87 0.88 0.90 0.90 0.01

𝛾 (polynomial) 𝛾 = 0.4 𝛾 = 0.8 𝛾 = 1.2 𝛾 = 1.6 𝛾 = 2.0 𝛾 = 2.4 𝛾 = 2.8 𝛾 = 3.2 𝛾 = 3.6 Mean SD

Accuracy (%) 91.23 92.32 91.20 90.45 92.44 91.24 95.65 93.03 91.77 93.64 1.12
Sensitivity (%) 91.23 91.57 91.68 91.44 91.67 92.45 94.89 91.33 92.79 92.45 1.43
Specificity (%) 92.33 92.48 92.48 92.98 93.21 92.11 95.66 91.22 93.94 92.45 1.30
F score 0.91 0.93 0.92 0.90 .091 0.91 0.4 0.93 0.91 0.91 0.01
Recall 0.91 0.92 0.90 0.90 0.91 0.91 0.93 0.90 0.91 0.90 0.01
ROC area 0.88 0.89 0.88 0.89 0.87 0.86 0.91 0.90 0.89 0.91 0.01
Table 7
Statistical results obtained when incorporating SVM with RBF and polynomial kernel for different values of 𝑞 and 𝛾 (Considering features
selected using Correlation method).
𝑞 (RBF) q = 0.4 q = 0.8 q = 1.2 q = 1.6 q = 2.0 q = 2.4 q = 2.8 q = 3.2 q = 3.6 Mean SD

Accuracy (%) 97.56 96.99 97.45 97.89 97.89 97.99 97.86 98.02 97.03 97.63 0.37
Sensitivity (%) 97.56 97.10 98.12 97.06 96.99 96.67 97.55 97.89 97.66 97.51 0.38
Specificity (%) 97.55 97.61 97.49 97.98 96.87 96.88 97.05 97.65 97.45 96.89 0.40
F score 0.97 0.96 0.97 0.96 0.97 0.96 0.98 0.96 0.97 0.96 0.01
Recall 0.97 0.98 0.97 0.96 0.97 0.96 0.98 0.97 0.97 0.97 0.01
ROC area 0.97 0.96 0.97 0.95 0.96 0.95 0.97 0.96 0.96 0.96 0.01

𝑞 (polynomial) q = 0.4 q = 0.8 q = 1.2 q = 1.6 q = 2.0 q = 2.4 q = 2.8 q = 3.2 q = 3.6 Mean SD

Accuracy (%) 97.65 97.66 97.89 97.46 96.88 96.99 97.64 97.66 97.65 94.43 0.35
Sensitivity (%) 97.66 97.54 97.12 96.84 98.66 97.65 97.16 97.66 97.40 97.54 0.37
Specificity (%) 97.61 97.00 97.13 97.43 97.41 96.49 97.66 97.15 97.54 97.34 0.36
F score 0.97 0.96 0.97 0.96 0.98 0.97 0.96 0.97 0.96 0.96 0.01
Recall 0.97 0.96 0.96 0.97 0.98 0.97 0.96 0.97 0.96 0.97 0.01
ROC area 0.96 0.97 0.96 0.96 0.96 0.97 0.95 0.96 0.97 0.97 0.01

𝛾 (RBF) 𝛾 = 0.4 𝛾 = 0.8 𝛾 = 1.2 𝛾 = 1.6 𝛾 = 2.0 𝛾 = 2.4 𝛾 = 2.8 𝛾 = 3.2 𝛾 = 3.6 Mean SD

Accuracy (%) 97.66 97.67 97.89 98.66 97.99 98.78 98.66 99.97 97.98 97.24 0.32
Sensitivity (%) 97.66 97.46 97.89 98.00 97.59 97.99 97.6 98.64 97.99 97.62 0.35
Specificity (%) 97.66 97.46 97.49 96.89 98.88 98.46 97.67 98.51 97.78 97.33 0.36
F score 0.98 0.97 0.96 0.97 0.97 0.97 0.97 0.96 0.97 0.96 0.01
Recall 0.97 0.96 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.01
ROC area 0.97 0.96 0.97 0.97 0.97 0.96 0.97 0.988 0.97 0.096 0.01

𝛾 (polynomial) 𝛾 = 0.4 𝛾 = 0.8 𝛾 = 1.2 𝛾 = 1.6 𝛾 = 2.0 𝛾 = 2.4 𝛾 = 2.8 𝛾 = 3.2 𝛾 = 3.6 Mean SD

Accuracy (%) 97.65 97.64 96.99 97.56 97.66 96.98 96.66 97.89 97.89 97.37 0.35
Sensitivity (%) 97.66 97.49 98.66 96.66 97.66 97.89 98.84 97.88 97.65 97.16 0.36
Specificity (%) 97.66 97.89 97.88 97.66 967.46 97.65 97.65 97.66 97.79 97.37 0.35
F score 0.96 0.97 0.96 0.97 0.96 0.97 0.98 0.97 0.97 0.97 0.01
Recall 0.96 0.97 0.96 0.97 0.97 0.98 00.96 0.97 0.97 0.96 0.01
ROC area 0.97 0.96 0.97 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.01
models for voice order detection typically offer accuracy of around
97%, the proposed model surpasses this benchmark, achieving over
97% accuracy. This suggests that prioritizing the proposed model is
ideal for ensuring accurate output results. The achieved test accuracies
demonstrate that the proposed model is capable of identifying voice
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disorders in unknown speakers as well.
Fig. 5 displays the optimal results achieved by the proposed model
utilizing SVM with features selected through PCA. Fig. 5(a) shows
the model’s confusion matrix without K-fold analysis. Additionally,
Fig. 5(b) and (c) represent the confusion matrices obtained through
5-fold and 10-fold analyses, respectively.

Recent studies have demonstrated commendable accuracy in ma-

chine learning models. However, upon comparison with our proposed
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Table 8
Performance comparison of several machine learning algorithms.
When considering all features

Metrics SVM DT NB RF KNN

Accuracy (%) 96.56 96.78 97.66 97.56 97.33
Sensitivity (%) 97.65 98.56 97.88 97.44 97.60
Specificity (%) 97.56 98.61 97.26 97.65 97.55
F score 0.97 0.98 0.97 0.96 0.97
Recall 0.96 0.97 0.96 0.97 0.97
ROC area 0.98 .097 0.96 0.97 0.98

When considering the features
selected using information gain method

Accuracy (%) 97.65 98.66 97.64 96.44 97.31
Sensitivity (%) 96.67 96.88 97.45 97.61 97.66
Specificity (%) 97.66 97.41 98.31 96.66 97.86
F score 0.97 0.96 0.97 0.9 0.97
Recall 0.97 0.96 0.96 0.97 0.98
ROC area 0.960 .97 0.97 0.98 0.97

When considering the features
selected using correlation method

Accuracy (%) 97.66 97.45 96.99 96.87 97.16
Sensitivity (%) 97.64 97.55 97.48 96.88 97.90
Specificity (%) 97.66 97.48 97.61 97.21 98.03
F score 0.97 0.96 0.97 0.98 0.96
Recall 0.97 .096 0.98 0.97 0.96
ROC area 0.97 0.97 0.96 0.98 0.97

When considering the features
selected using PCA

Accuracy (%) 99.897 98.86 98.67 98.88 98.91
Sensitivity (%) 98.64 98.66 97.66 98.64 97.66
Specificity (%) 98.51 98.12 97.61 98.31 97.66
F score 0.99 0.98 0.96 0.97 0.98
Recall 0.99 0.96 0.96 0.98 0.97
ROC area 0.98 0.98 0.96 0.97 0.97

Comparison with the existing models

Ref Schlegel et al.
(2020)

Al-Hussain
et al. (2022)

Cesari et al.
(2018)

Alhussein and
Muhammad
(2018)

Darouiche
et al. (2022)

Accuracy (%) 98.65 97.55 97.84 97.65 97.88
Sensitivity (%) 97.56 97.65 96.99 97.45 97.60
Specificity (%) 97.64 97.12 98.36 96.45 97.45
F score 0.96 0.97 0.97 0.97 0.96
Recall 0.98 0.96 0.97 0.97 0.96
ROC area 0.97 0.96 0.98 0.97 0.96
Fig. 5. Confusion matrices for the proposed model: (a) When SVM is applied with No K-folds, (b) When SVM is applied with 5 K-folds, (c) When SVM is applied with 10 K-folds.
model, their accuracy diminishes, highlighting the superior perfor-
mance and reliability of our approach for real-time applications. Fur-
thermore, existing studies (Schlegel et al., 2020; Cesari et al., 2018)
utilized Phonovibrogram (PVG)-based features and cepstral features
rather than the characteristic voice signal features employed in our
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model. This distinction shows the uniqueness of our proposed model
compared to existing ones, offering a novel approach in this domain.

4.2.1. K-fold analysis
The proposed study extends the evaluation of the proposed learn-

ing model by employing K-fold validation. This technique involves
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Fig. 6. Boxplots for the 10-fold and 5-fold cross-validations.
Table 9
K-fold analysis (When considering the features selected using PCA).

Parameters → SVM DT NB RF KNN

Accuracy

K-folds↓

K = 5 99.78 98.86 98.66 98.76 98.79
K = 10 99.68 98.64 99.66 98.83 98.71

Sensitivity (%)

K = 5 0.95 0.32 0.91 0.92
K = 10 0.96 0.34 0.83 0.83 1.00

Specificity (%)

K = 5 0.99 1.00 0.90 0.90 0.78
K = 10 0.98 1.00 0.80 0.80 0.60

F score (%)

K = 5 0.98 0.33 0.94 0.95 0.99
K = 10 0.97 0.33 0.96 0.96 1.00

Recall (%)

K = 5 1.00 1.00 0.93 0.93 0.79
K = 10 0.99 1.00 0.95 0.95 0.81

ROC area

K = 5 97 50 94 95 89
K = 10 95 50 95 96 90

assessing the model’s performance by rotating each dataset sample
as a testing point while utilizing the rest for training. The proposed
model is evaluated using 5-fold and 10-fold cross-validation tests.
Table 9 shows the outcomes of these K-fold analyses, revealing the
model’s exceptional accuracy, which is more than 98%. This robust
performance solidifies the model’s effectiveness as demonstrated in the
study. Moreover, boxplots are generated as shown in Fig. 6 to display
the top-performing accuracy, sensitivity, specificity, recall, and F-score
achieved by the proposed method during both the 10-fold and 5-fold
cross-validations.

5. Conclusions, limitation and future work

Recently, the use of mobile apps and multimedia services in the
healthcare industry has grown rapidly. These applications give people
the convenience of accessing important medical information and data
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from anywhere at any time. This is especially helpful in monitoring,
identifying and detecting voice pathologies, such as dysphonia, which
is a common voice disorder often ignored but affects many people.

There has been a lot of attention given to researching mobile
systems that can automatically identify voice disorders. This is because
these systems are objective and non-invasive. Machine learning algo-
rithms can aid in exploring new methods of speech and voice signal
processing and be easily integrated into m-health solutions. This study
compares the effectiveness of various voice pathology identification
methods using machine learning techniques, such as Decision Tree,
Support Vector Machine, Logistic Model Tree and Naïve Bayes. The pro-
posed study also focuses on determining the best voice signal features
to use by comparing different classifiers. All the analyses are done using
a large dataset (CMED) of 8158 voice samples.

In the proposed study, several experimental results and analyses are
conducted on the entire dataset and three subsets using three different
feature selection methods. The results showed that the Support Vector
Machine algorithm provided the highest accuracy in detecting voice
pathologies, with an accuracy rate of around 99.97% when the features
are selected using PCA.

The speech samples in the dataset are not recorded using any partic-
ular microphone or acoustic transducer. However, the transducers can
have a significant impact on voice and speech. Therefore, determining
the precise scale or level of such vocal variations that are only based on
acoustic transducers would require further analysis and context-specific
information. The proposed model in this research only works on speech
samples not recorded by any acoustic transducer. This limitation of the
model will be addressed and improved in the future.

Furthermore, existing studies in the literature have reported lower
accuracy levels, primarily due to the limited and often inaccessible
datasets used. Our future focus is to enhance the classification outcomes
within telemedicine. We aim to integrate hybrid classifiers and deep
learning algorithms into a mobile health platform, enabling the detec-
tion of voice disorders and facilitating patient monitoring and treat-
ment remotely. Additionally, we plan to employ paraconsistent feature
engineering techniques, including feature fusion, adaptive model learn-
ing, ensemble methods, fuzzy logic, and probabilistic approaches, to
augment our proposed model. Exploring the incorporation of signal
mass and the Enhanced Teager Energy Operator (ETEO) as features in
voice analysis algorithms will also be a consideration, further bolstering
the capabilities of our model in telemedicine applications.
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