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Abstract
This study aimed to better understand the neuroanatomical correlates of decision-making strategies, particularly focusing on 
win-stay and lose-shift behaviours, using voxel-based morphometry (VBM) in a large cohort of healthy adults. Participants 
completed a forced-choice card-guessing task designed to elicit behavioural responses to rewards and losses. Using this 
task, we investigated the relationship between win-stay and lose-shift behaviour and both grey matter volume (GMV) and 
white matter volume (WMV). The frequency of win-stay and lose-shift behaviours was calculated for each participant and 
entered into VBM analyses alongside GMV and WMV measures. Our results revealed that increased lose-shift behaviour was 
associated with reduced GMV in key brain regions, comprising of the left superior temporal gyrus, right middle temporal 
gyrus, and the bilateral superior lateral occipital cortices. Interestingly, no significant associations were found between GMV 
or WMV, and win-stay behaviour. These results suggest that specific regions within the temporal and occipital lobes may 
be involved in modulating decision-making strategies following negative outcomes. Further analyses revealed that increased 
lose-shift behaviour was also associated with increased WMV in the left superior temporal gyrus. The absence of significant 
findings in relation to win-stay behaviour and the differential involvement of brain structures in lose-shift responses indicate 
that decision-making in the face of losses may involve distinct neuroanatomical mechanisms compared to decision-making 
following wins. This study advances our understanding of the structural brain correlates linked to decision-making strategies 
and highlights the complexity of brain-behaviour relationships in choice behaviour.
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Introduction

Human decision-making is often guided by the outcomes 
of previous decisions (Rushworth et al. 2011). To make 
appropriate and subjectively advantageous decisions, we 
adapt our decision-making strategies based on whether a 
similar prior decision elicited a positive or negative outcome 

(Donahue et al. 2013; Neville et al. 2021). Generally, if a 
decision results in a positive outcome (i.e. it is rewarding), 
the individual is more likely to repeat the decision (i.e., 
win-stay behaviour; Nowak and Sigmund 1993; Forder and 
Dyson 2016; Zhang et al. 2023). However, if a decision 
results in a negative outcome (i.e., a loss that is subjectively 
aversive or unpleasant), the individual is more likely to 
avoid using a similar decision strategy in the future. (i.e., 
lose-shift behaviour; Nowak and Sigmund 1993; Donahue 
et al. 2013; Wang et al. 2014; Deng et al. 2016; Forder 
and Dyson 2016; Gutiérrez-Roig et al. 2016; Zhang et al. 
2021; Chu et al. 2022). This process of updating decision 
strategies is an example of adaptive behavioural learning, 
where individuals will adjust their actions based on prior 
experiences to optimise outcomes. Adaptive behavioural 
learning has been identified as a core mechanism underlying 
behavioural flexibility and neural processes that facilitate 
decision-making in dynamic environments (O’Reilly 2013; 
Schulz et al. 2019). Variations in how individuals respond to 
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losses may reflect differences in adaptive capacity and could 
be a precursor to the pervasive use of aberrant decision-
making strategies, such as those associated with gambling 
disorder (Bechara 2005; Brevers et al. 2013; Diekhof et al. 
2008). While adaptive decision-making is fundamental 
to behavioural flexibility, less is known about how choice 
behaviour operates in tasks that lack a clearly defined 
optimal decision strategy, such as the one employed in this 
study.

When the outcomes of our decisions are uncertain, we 
can employ decision-making strategies such as win-stay and 
lose-shift (WSLS). This strategy can be applied to games 
like ‘rock, paper, scissors’, a zero-sum game where there 
is no clear optimal decision strategy (Paulus et al. 2005; 
Forder & Dyson 2016). It is thought that playing randomly 
is optimal under these circumstances as it diminishes the 
opponent’s ability to predict a sequence in a series of choices 
(i.e., consistently choosing “rock” after a win) but evidence 
suggests that humans struggle to play completely randomly 
(Forder and Dyson 2016) and instead rely on strategies such 
as WSLS (Lin et al. 2007; Bonawitz et al. 2014; Forder and 
Dyson 2016; Gutiérrez-Roig et al. 2016). Forder and Dyson 
(2016) showed that increasing win and loss amounts on a 
rock, paper, scissors task can increase win-stay and reduce 
lose-shift behaviour, respectively. In addition, they showed 
that decision-making following a win was characterised as 
slow and flexible, with a behavioural increase in the use of 
the win-stay strategy and neural modulation of feedback-
related negativity and stimulus-preceding negativity com-
ponents. In contrast, decision-making following a loss was 
described as relatively fast and inflexible, with a failure to 
utilise the lose-shift strategy and a lack of significant neural 
modulation (Forder and Dyson 2016). These findings sug-
gest that the WSLS heuristic may not be a singular decision 
strategy but rather a dissociation between the underlying 
cognitive and neural processes (Forder and Dyson 2016).

WSLS behaviours are not limited to paradigms like “rock, 
paper, scissors” (e.g., Foder and Dyson, 2016) but are evi-
dent in real-world scenarios. For instance, a business might 
continue investing in a profitable venture (win-stay) while 
discontinuing a failing strategy to minimise losses (lose-
shift). Similarly, in everyday life, a driver may stick to a 
frequently used route that avoids traffic (win-stay) or take an 
alternative path after encountering congestion (lose-shift). 
These behaviours highlight how WSLS strategies enable 
individuals to optimise outcomes in dynamic and uncertain 
environments. By investigating the neuroanatomical corre-
lates of these behaviours, the present study provides insights 
into the structural brain mechanisms that support adaptive 
decision-making in response to real-world challenges.

WSLS behaviours have traditionally been linked to reward 
systems involving the striatum, anterior cingulate cortices 
and orbitofrontal cortices, which play critical roles in reward 

evaluation, reinforcement learning and decision-making 
(Haber and Knutson 2010; Peters and Büchel 2010). Such 
regions are involved in approach-avoidance behaviour, where 
approach behaviour is driven by positive outcomes (e.g., 
win-stay) and avoidance behaviour is driven by negative 
outcomes (e.g., lose-shift) (Amemori et al. 2015; Forder and 
Dyson 2016; LeDoux and Daw 2018). A well-established 
functional neuroimaging literature has demonstrated that 
receiving a reward is associated with increased activation 
within the mesolimbic dopaminergic system, particularly 
the ventral striatum (Balleine et al. 2007; Delgado et al. 
2000; Haber and Knutson 2010; O'Doherty et al. 2017; 
Pessiglione and Delgado 2015). Importantly, activation 
within the ventral striatum displays a differential response 
to reward and loss outcomes, with anterior regions activated 
by rewards and posterior regions by losses (Delgado et al. 
2000; Seymour et  al. 2007; Soares-Cunha et  al. 2016). 
However, emerging evidence suggests that the neural basis 
of WSLS behaviour may extend beyond traditional reward 
systems. For instance, decision-making following a loss has 
been associated with increased activation in the precuneus, 
superior temporal gyrus (Dong et al. 2015), insula (Dong 
et al. 2014; Xue et al. 2010), frontoparietal network (Xue 
et al. 2010), and regions such as the cingulate cortex and 
inferior frontal gyri (Dong et al. 2014; Xue et al. 2010).

While there is good evidence for the use of WSLS strate-
gies in human and animal behaviour (Nowak and Sigmund 
1993; Donahue et al. 2013; Wang et al. 2014; Deng et al. 
2016; Forder and Dyson 2016; Gutiérrez-Roig et al. 2016; 
Zhang et al. 2021; Chu et al. 2022), the relationship between 
such strategies and brain structure is not fully understood. In 
humans, reduced grey matter volume (GMV) in the insula 
and prefrontal cortex have been associated with loss aver-
sion (Markett et al. 2016) and heightened reward sensitivity, 
respectively (Adrián-Ventura et al. 2019), whilst increased 
GMV of the amygdala has been connected to greater loss 
sensitivity (Adrián-Ventura et al. 2019). In addition, research 
has highlighted the importance of considering the value 
of wins and losses, as this can influence the use of WSLS 
strategies (Sacré et al., 2017; Srihaput et al. 2020). Taken 
together, this research provides initial evidence that brain 
structure may be associated with internal representations of 
reward or loss outcomes.

The neural correlates of WSLS behaviour have been 
studied in rodents with some studies showing that lesions 
within the rodent striatum (dorsal medial and dorsal lateral) 
reduce lose-shift behaviour (Skelin et  al. 2014; Thapa 
and Gruber 2018) but not win-stay behaviour, suggesting 
that specific structural abnormalities may impact lose-
shift behaviour. In humans, reduced GMV within the 
thalamus and associated nuclei have been associated with 
increased use of WSLS behaviour in methamphetamine 
dependence (Harlé et al. 2015). Within WSLS paradigms, 
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responses to rewards and losses in healthy populations have 
been associated with increased neural activity compared 
to baseline (Forder and Dyson 2016; Xue et  al. 2012). 
Additionally, greater activation in the frontal pole and 
posterior cingulate cortex has been associated with the 
increased use of WSLS behaviour (Xue et al. 2012). WSLS 
behaviour may be a default strategy due to its associations 
with reinforcement learning (Barraclough et al. 2004; Huang 
et al. 2019), which is driven by the impact of rewards and 
losses (Forder and Dyson 2016). Therefore, WSLS behaviour 
may be related to a sensitivity to rewards and losses, which 
has been previously associated with GMV (Adrián-Ventura 
et al. 2019). In turn, GMV has previously been associated 
with the gambler’s fallacy (Huang et al. 2019), which is the 
mistaken belief that past independent events affect future 
outcomes. In healthy individuals, the gambler’s fallacy has 
been linked with increased GMV within the bilateral ventral 
striatum and orbitofrontal cortex and reduced GMV in the 
frontal pole, anterior cingulate and left medial temporal 
lobe (MTL) (Huang et al. 2019). WSLS strategy and the 
gambler’s fallacy are underpinned by different cognitive 
processes. The WSLS involves recognising and adjusting to 
actual outcome patterns, while the gamblers’ fallacy involves 
erroneous beliefs about the connection of independent 
events. However, both strategies are reflective of cognitive 
processes that monitor outcomes. As demonstrated by a 
recent investigation (Michel et al., 2024), it is important to 
consider both GMV and white matter volume (WMV) when 
measuring aspects of cognition, as such metrics provide 
distinct yet complementary evidence related to cognitive 
performance; specifically processing power (grey matter) 
and efficient communication (white matter). Given that the 
gambler’s fallacy has been associated with GMV in healthy 
individuals (Huang et al. 2019), we expect WSLS behaviour 
to also be associated with both GMV and WMV in healthy 
individuals.

White matter is essential for neural connectivity, 
facilitating efficient communication between brain regions 
and enabling coordinated cognitive and behavioural 
regulation (Fields 2008; Filley 2010). Recent studies have 
highlighted the significance of WMV in predicting cognitive 
performance and decision-making outcomes. For example, 
Michel et al. (2024) found that WMV was the strongest 
predictor of cognitive performance, even when compared 
to more microstructural measures such as diffusion 
tensor imaging (DTI), emphasising its role as a robust 
macrostructural marker of brain function. Other studies have 
reported similar findings, linking WMV to temperament and 
character in young females (Van Schuerbeek et al. 2011), 
cognitive performance in older adults (Fletcher et al. 2013; 
Feng et al. 2013), and both processing speed (Magistro et al. 
2015) and deception (Yang et al. 2005). Together, these 

findings underscore the importance of examining both GMV 
and WMV in the context of Voxel-based Morphometry 
(VBM) based protocol/analysis to provide a comprehensive 
understanding of brain-behaviour relationships.

WSLS behaviours reflect decision-making strategies that 
rely on immediate feedback to guide future choices, distin-
guishing them from the more complex risk-taking behav-
iours observed in gambling contexts (Worthy et al. 2013). 
While WSLS involves a relatively straightforward evaluation 
of outcomes—repeating decisions after wins and altering 
strategies following losses—gambling behaviours often 
incorporate subjective risk preferences, probabilistic reason-
ing, and emotional biases, such as overconfidence or loss 
aversion (Kahneman & Tversky 1979; Tom et al. 2007). For 
instance, a gambler may persist in betting despite repeated 
losses due to cognitive biases such as the “gambler's fal-
lacy,” which assumes that a win is due after a series of losses 
(Croson and Sundali 2005). This contrasts with the lose-shift 
behaviour, which encourages individuals to change their 
approach to minimise losses. Additionally, while WSLS 
focuses on discrete, immediate decisions, gambling often 
involves long-term strategies and anticipation of uncertain 
outcomes, further complicating the neural and behavioural 
mechanisms involved (Clark et al. 2009). Understanding 
these distinctions helps position WSLS within a broader 
framework of decision-making strategies and highlights its 
role in adaptive behaviours that are less influenced by risk 
tolerance or irrational beliefs.

The current study investigated the neuroanatomical cor-
relates of choice behaviour, specifically WSLS behaviour, 
in contexts where optimal decision-making processes are 
absent. A prior investigation found that whole brain GMV 
was associated with “switching” behaviour (changing 
response selection) regardless of the outcome of a previous 
trial (Sun et al. 2018), with a positive relationship between 
the frequency of response-switching and GMV of the pos-
terior cingulate gyrus, left insula and frontal pole, and a 
negative correlation with GMV of the MTL and right insula. 
However, Sun et al. (2018) did not investigate the effect of 
the valence of a previous outcome (reward or loss) on this 
relationship. We, therefore, aimed to build upon the find-
ings of Sun et al. (2018) to determine whether whole-brain 
GMV is associated with general switching behaviour and to 
identify associations between GMV and WSLS behaviour.

On the basis of the literature reviewed here, three hypoth-
eses were formulated which were pre-registered on the Open 
Science Framework (https:// osf. io/ e563n) but have since 
been refined to improve specificity. We predicted that: 1. 
There would be a significant positive correlation between 
GMV in the frontal pole, posterior cingulate and left insula, 
and the overall tendency to switch response option, 2. There 
would be a significant negative correlation between GMV 

https://osf.io/e563n
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in the MTL and right insula, and the overall tendency to 
switch response options, and 3. There would be a significant 
correlation between GMV of the right insula and MTL, and 
frequency of switching after loss trials.

Method

Participants

We obtained structural MRI scans that were collected by the 
Human Connectome Project (HCP; Van Essen et al. 2013) 
from 1113 participants originally released within the 1200 
subjects release dataset on March 1st, 2017. Informed con-
sent had previously been obtained for all participants (con-
sent procedure outlined in Van Essen et al. 2013). 889 par-
ticipants had both T1-weighted MRI scans and behavioural 
data from the card value task. A further 16 participants 
were excluded due to incomplete behavioural data, three 
were missing a full T1 structural scan, one participant was 
discounted for having all response times faster than 200ms, 
and a further 19 were excluded as they did not engage with 
the task (pressed only one response throughout). The final 
sample size was, therefore, 850 participants. Participants 
were aged between 21 and 36 years of age (M = 26.92, 
SD = 3.49) of which 390 were male (Median age for all par-
ticipants = 27.5). Handedness was also assessed as part of 
the restricted HCP dataset using the Edinburgh Handedness 
Inventory (Oldfield 1971). (EHI). Based on their EHI scores, 
participants were classified into five handedness groups—
strong right-handed (+ 100 to + 80; n = 478), moderate right-
handed (+ 79 to + 40; n = 262), ambidextrous (+ 39 to − 39; 
n = 56), moderate left-handed (− 40 to − 79; n = 35), and 
strong left-handed (− 80 to − 100; n = 19). Ethical approval 
for this study was granted by the School of Human and 
Health Sciences – School Research Ethics and Integrity 
Committee (SREIC) at the University of Huddersfield. All 
participants included in the HCP Healthy Young Adult 1200 
dataset had corrected to normal vision and had no significant 
history of psychiatric disorder, substance abuse, neurologi-
cal or cardiovascular disease, head injuries or genetic dis-
orders. For a full list of exclusion criteria, please see sup-
plementary data 01 in Van Essen et al., (2013). All data 
utilised in the current study were reviewed by a radiologist 
at the HCP (see Marcus et al. 2013). In addition, each scan 
was checked for artefacts by an experienced member of the 
research team. The current study was preregistered on the 
Open Science Framework (https:// osf. io/ e563n/).

Card guessing paradigm

The current study utilised data collected from an adapted 
version of the Delgado et al. (2000) reward paradigm in 

which participants guessed whether the hidden number of a 
playing card (i.e., 1–9) was greater or less than the value of 
5. Each trial began with a question mark (1500ms), which 
cued participants to make a guess as to the value of a single 
card using one of two buttons, one on the right indicating 
“higher” and one on the left indicating “lower”. The 
outcome of each trial was predetermined, categorising trials 
into either a ‘reward’ trial (correct guess; + $1), a ‘loss’ trial 
(incorrect guess; −$0.50) or a neutral event (i.e., the card 
was 5; no gain or loss). Feedback on whether the response 
was correct or incorrect was then presented for 1000 ms, 
followed by an intertrial interval in which a fixation (“ + ”) 
was presented for 1000 ms. The task was presented in blocks 
of eight trials that were either mostly reward or mostly loss 
but still contained a mix of trial types. In each of the two 
runs, there were two mostly reward and two mostly loss 
blocks interleaved with four fixation blocks (duration 15 s). 
Each participant completed a total of 64 trials. Trials on 
which participants changed their response (i.e., higher to 
lower or lower to higher) were identified as ‘switch’ trials 
and were further split into switches following reward and 
switches following loss. Neutral trials were infrequent in 
occurrence and were excluded from analyses (6 trials in 
total). Any trial with a response quicker than 200ms was 
also excluded from the analyses (Fig. 1).

Structural MRI data collection

Structural MRI scans were acquired at Washington Uni-
versity in St Louis between August 2012 and October 
2015 on a Siemens 3.0 T “Connectome Skyra” (Siemens 
AG, Erlanger, Germany), using a 32-channel head coil. 
T1-weighted images were acquired using 3D, gradient echo 
pulse sequence (MPRAGE) with a resolution of 0.7 × 0.7x 
0.7  mm3 isotropic (FOV = 224 × 224, matrix = 320 × 320, 
256 sagittal slices; TR = 2400 ms and TE = 2.14 ms). For 
further information on quality control procedures, see HCP 
quality control documentation (Marcus et al. 2013).

Voxel‑based morphometry pre‑processing

Raw T1 data were pre-processed using statistical paramet-
ric mapping software (SPM12; Wellcome Department of 
Cognitive Neurology, London, UK, https:// www. fil. ion. ucl. 
ac. uk/ spm/) implemented in MATLAB (Mathworks Inc., 
Natick, MA). Initially, T1-weighted images were segmented 
into grey matter, white matter and cerebrospinal fluid using 
an extension of the standard unified segmentation model in 
SPM12. The resulting grey matter volumes from the seg-
mentation step were normalised to Montreal Neurological 
Institute (MNI) standard space generating template images 
and flow fields. Grey matter volumes were spatially normal-
ised across all participants using the DARTEL algorithm 

https://osf.io/e563n/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
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(Ashburner 2007) voxel size: 0.7 × 0.7x 0.7  mm3 in MNI 
space. Finally, the data were smoothed with a 6mm FWHM 
(full-width half-maximum) Gaussian Filter (Shen and Sterr 
2013). Images were then modulated to create Jacobian-
scaled grey matter images using deformations estimated in 
the DARTEL step. Total intracranial volume was calculated 
by summing the values of grey matter, white matter, and 
cerebrospinal fluid using the 'tissue volumes' option within 
SPM12.

Behavioural data analysis

Win-stay behaviour was categorised as repeating the pre-
vious choice following a reward. Lose-shift behaviour was 
categorised as changing responses from a previous selection 
following a loss. To assess WSLS behaviour, a paired sam-
ples t-test comparing behavioural strategies (WSLS behav-
iour) was conducted on the behavioural task data using SPSS 
26 (IBM, SPSS Statistics, Chicago, IL, USA).

MRI quality check

Quality control procedures were undertaken for the HCP 
dataset by trained radiologists (see Marcus et al. 2013). 
We also conducted a thorough quality assessment of the 
data using tools available in the CAT12 toolbox within the 
SPM framework (see supplementary document S1 & S2). 
Preprocessing included automated quality control checks for 
image homogeneity and noise, as implemented in CAT12. 
Pre- and post-processing noise values (measured as mean 
correlation and overall image quality index) were examined 

to detect images with excessive artefacts or poor signal 
quality.

The majority of the images (97.3%) fell within the accept-
able range of homogeneity, with Z-scores tightly distributed 
around the median value of approximately 1.3 (considered 
as excellent image quality by the CAT12 manual). A small 
number of images appeared as outliers with higher Z-scores 
(> 2.5), representing less homogeneous data but remain-
ing within an acceptable range for inclusion in the analy-
sis. Overall, the results confirmed excellent to good image 
quality across the dataset, with the majority of images dem-
onstrating high homogeneity and low noise. A total of 23 
outliers with higher Z-scores (between 4 and 5) were visu-
ally inspected and retained, as they did not exhibit significant 
artefacts or distortions that would warrant exclusion.

VBM analysis

Voxel-based morphometry (VBM) analysis was conducted 
following established guidelines (Ashburner and Friston 
2000; Good et al. 2001). Behavioural measures—the fre-
quency of win-stay and lose-shift behaviours—were entered 
into a multiple regression model using the “Basic Models” 
module in SPM12. Covariates included age, sex, and total 
intracranial volume to account for potential confounding fac-
tors. Previous neuroimaging studies have indicated that total 
GMV decreases linearly with age in normal adult brains, 
with additional interactions by sex (Good et al. 2001; Ren 
et al. 2024). Further, we controlled for sex, age, and total 
GMV, consistent with prior neuroimaging studies (e.g., 
Ren et al. 2024). To eliminate noisy voxels, we masked the 

Fig. 1  Card guessing task 
collected as part of the HCP 
data set. The top panel depicts 
a ‘reward’ trial. The lower 
panel depicts a ‘loss’ trial. 
Participants were required to 
guess whether the value of a 
card was higher or lower than 5. 
If correct, participants received 
a reward of $1. If incorrect, they 
incurred a loss of $0.50. Note: 
This figure has been created for 
illustrative purposes and is not a 
direct visual example of the task
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smoothed images with an absolute threshold masking of 
0.2 as in previous studies (e.g., Ren et al. 2024). All VBM 
analyses were performed using SPM12, run under MATLAB 
software (The Mathworks, Inc., Natick, MA). A cluster size 
threshold of 5 voxels was selected.

In all regression models, collinearity diagnostics con-
firmed that multicollinearity was not a concern, with VIF 
values below 1.1 and Tolerance values exceeding 0.9 for 
all predictors. These results indicate that the win-stay and 
lose-shift behavioural variables were sufficiently independ-
ent. Consistent with our hypothesis, lose-shift behaviour 
demonstrated significant negative associations with GMV 
across the left superior temporal gyrus (LSTG), right mid-
dle temporal gyrus (RMTG), and bilateral lateral occipital 
cortices (Right LOC, Left LOC). In contrast, no significant 
associations were observed between win-stay behaviour and 
GMV, suggesting that distinct neuroanatomical mechanisms 
underpin adaptive decision-making following wins versus 
losses.

For VBM analysis (Ashburner and Friston 2000; Good 
et al. 2001), the frequency of ‘stays’ after rewards and fre-
quency of ‘shifts’ after losses were entered into a multiple 
regression model within SPM12 that controlled for age, 
sex and total intracranial volume. To control for multiple 
comparisons, the Family Wise Error (FWE) was set at a 
threshold of p < 0.05.” We also conducted an exploratory 
analysis to examine four possible behavioural strategies: 1. 
Win-stay: Repeating a choice after a reward, 2. Win-shift: 
Switching a choice after a reward, 3. Lose-stay: Repeating 
a choice after a loss, and 4. Lose-shift: Switching a choice 
after a loss. For this analysis, a whole-brain VBM analy-
sis was performed using multiple regression, with all four 
behavioural strategies entered as predictors. The aim of this 
follow-up analysis was to determine whether GMV was 
associated with any additional strategies beyond win-stay 
and lose-shift behaviour.

Results

Random effects testing

Following the approach used by Zhang et  al. (2021), 
we implemented a one-way ANOVA to assess whether 
participants’ shift and stay behaviours were random (i.e., 
not influenced by any specific strategy) or systematically 
affected by the outcome of the previous trial (win or loss). 
This analysis compared the proportions of four decision 
strategies: win-stay, win-shift, lose-stay, and lose-shift. 
The results revealed a significant effect of decision strategy 
F(3,3399) = 63.54, p < 0.001, η2 = 0.05, indicating that the 
proportions of these strategies differed significantly. These 

findings suggest that participants' choices were not random 
and were systematically influenced by the outcome of the 
preceding trial, reflecting a structured adaptation rather than 
random behaviour (Table 1).

Descriptive statistics

Post‑hoc pairwise comparisons

We conducted post-hoc Tukey’s HSD tests to examine pair-
wise differences between the strategies.

The comparisons in Table 2 confirm that the differences 
between most strategy pairs are statistically significant, 
except for Lose-shift vs. Win-Switch, where the adjusted 
p-values are marginally above the threshold for significance 
(Fig. 2).

Behavioural analysis

In our study, we initially focused on two main behavioural 
conditions: 1. The frequency of win-stay behaviour 
(repeating a choice following a reward), and 2. The 
frequency of lose-shift behaviour (switching a choice 
following a loss). To further examine the relative dominance 
of different decision strategies and explore participants’ 
choice behaviour to prior outcomes, we conducted a series 
of pairwise comparisons using paired-sample t-tests. 
Participants tended to use the win-stay strategy (M = 54.53% 
SD = 4.89) more than the lose-shift strategy (M = 45.47% 
SD = 4.11; t(850) = 10.88, p < 0.001). Participants 
also tended to use the lose-stay strategy (M = 55.57%, 

Table 1  The descriptive statistics for each strategy

Strategy Mean (%) SD SE Coefficient 
of variation

Lose-stay 28.08 8.49 0.29 0.30
Lose-shift 22.00 8.41 0.29 0.38
Win-stay 26.81 9.89 0.34 0.37
Win-shift 23.12 9.76 0.34 0.42

Table 2  Post-hoc Tukey’s HSD test to examine pairwise differences 
between each of the four strategies

Comparison Mean difference SE t p (Tukey)

Lose-stay vs. lose-shift 6.08 0.44 13.68  < .001
Lose-stay vs. win-stay 1.27 0.44 2.86 0.022
Lose-stay vs. win-shift 4.97 0.44 11.17  < .001
Lose-shift vs. win-stay −4.81 0.44 −10.82  < .001
Lose-shift vs. win-shift −1.12 0.44 −2.51 0.058
Win-stay vs. win-shift 3.69 0.44 8.31  < .001
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SD = 15.54), more that the win-shift strategy (M = 44.43%, 
SD = 15.54; t(850) = 10.44, p < 0.001). When comparing 
strategies following win outcomes, participants tended to use 
the win-stay strategy (M = 53.65%, SD = 19.56) more than a 
win-shift strategy (M = 46.35%, SD = 19.56, t(850) = 4.44, 
p < 0.001). Following loss outcomes, participants tended 
to use the lose-stay strategy (M = 56.03%, SD = 16.72) 
more than the lose-shift strategy (M = 43.97%, SD = 16.73, 
t(850) = 10.47, p < 0.001).

GMV VBM analysis

Whole brain corrected VBM analysis (FWE = 0.05) using 
multiple regression was conducted to assess whether GMV 
was associated with each strategy (win-stay, win-shift, 
lose-stay, lose-shift). As previous studies have indicated 
that total GMV decreases linearly with age in normal 
adult brains, and interacts with sex (Good et al. 2001; Ren 
et al. 2024), we controlled for sex, age, and total GMV. No 
clusters were associated with lose-stay, win-stay or win-shift 
behaviour. However, lose-shift behaviour was negatively 
correlated with GMV in the left superior temporal gyrus 
(STG), right middle temporal gyrus (MTG) and bilateral 
occipital cortices (see Fig. 3). Correlation analyses revealed 
significant but small negative associations between GMV 
and lose-shift behaviour across key regions (r = correlation 
coefficient,). The left superior temporal gyrus (STG; r = 
− 0.04, p < 0.001) and right superior lateral occipital 
cortex (SLOC; r = − 0.04, p < 0.001) explained 0.16% of 
the variance in lose-shift behaviour. Similarly, the right 
middle temporal gyrus (MTG; r = − 0.03, p < 0.001) and 
left SLOC (r = − 0.03, p < 0.001) explained 0.09% of the 
variance. Collinearity analyses were conducted to ensure 
the independence of the predictors in the regression models. 
Variance inflation factor (VIF) values for all predictors—
age, total intracranial volume (TIV), win-stay, and lose-
shift behaviours—remained below the threshold of 5 
(range: 1.014–1.090), indicating no substantial collinearity. 
Tolerance values similarly supported the independence of 
the regressors (range: 0.918–0.986) (Table 3).

Fig. 2  Boxplot depicting the percentage of overall trials within the 
four decision strategies. The black straight line indicates the median 
values for each strategy. The black dotted line indicates the mean 
value for each strategy. For lose-stay and lose-shift behaviour, the 
median and mean lines overlap. On average, participants employed 
the Win-Stay strategy in 26.81% of trials, Lose-Stay in 28.06%, Win-
Shift in 23.12%, and Lose-Shift in 22.00% of trials

Fig. 3  Whole brain statistical maps in MNI space showing negative 
correlations between GMV and lose-shift behaviour. Slices were 
chosen to best display the area of interest alongside plots comparing 
GMV against lose-shift behaviour. FWE = .05. A: Coronal view 
of left STG (r = −0.04, p < .001). B: Coronal view of right MTG 

(r = −0.03, p < .001). C: Sagittal view of right SLOC (r = −0.04, 
p < .001). D: Axial view of left SLOC (r = −0.03, p < .001). Slices 
were chosen to clearly identify brain regions associated with lose-
shift behaviour. T maps are shown in radiological inversion
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WMV VBM analysis

Whole-brain white matter VBM multiple regression 
(FWE = 0.05) showing a positive correlation (Z = 5.83, 
cluster size = 1137, MNI coordinates: x = −58.4, y = −16.8, 
T = 8.3, p < 0.001) between WMV in the STG and lose-shift 
behaviour. No clusters were associated with win-stay, win-
shift, or lose-stay behaviour (Fig. 4).

Discussion

In the current study, we explored the relationship between 
brain morphometry and switching behaviour, with a focus 
on the use of the Win-stay, Lose-shift (WSLS) strategy. 
In our first hypothesis, we predicted that there would be a 
significant positive correlation between GMV in the frontal 
pole, posterior cingulate and left insula and the overall 
tendency to switch response options irrespective of the 
outcome of the previous trial. In our second hypothesis, 
it was predicted that there would be a significant negative 
correlation between GMV of the MTL and right insula and 
the overall tendency to switch response options irrespective 
of the outcome of the previous trial. Contrary to these 
hypotheses, we found no significant associations between 
GMV or WMV and the overall tendency to switch response 
options, irrespective of the outcome of the previous trial. 
Finally, it was hypothesised that lose-shift behaviour would 
be associated with GMV of the right insula and right 

MTL. Contrary to our hypothesis, we found that lose-shift 
behaviour was associated with reduced GMV within the 
right STG, left MTG and bilateral SLOC. In addition, lose-
shift behaviour was positively correlated with WMV within 
the left STG. No correlations between win-stay and brain 
morphometry survived correction. This is, to the authors’ 
knowledge, the first time that lose-shift behaviour has been 
linked with reduced GMV and increased WMV.

Our findings broaden the understanding of approach-
avoidance systems, including WSLS behaviour, by empha-
sising the involvement of brain regions that are not tradition-
ally associated with this framework, such as the STG, MTG, 
and SLOC. While core regions related to approach-avoid-
ance, such as the striatum, insula, anterior cingulate cortex 
and prefrontal cortices, drive immediate reward-seeking or 
loss-avoidance behaviours (Livermore et al. 2021; Zorowitz 
et al. 2019), the STG appears to play a key role in contextual 
outcome processing and integration of negative feedback 
to guide subsequent decision-making (Paulus et al. 2005). 
Similarly, reduced GMV in the MTG may impair work-
ing memory-dependent mechanisms, such as retaining and 
updating prior outcome information, which are essential 
for flexible behavioural adjustments (Foerde et al. 2013). 
Indeed, several studies have implicated neighbouring regions 
of the STG, such as the supramarginal gyrus (Canessa et al. 
2017), posterior insula (Canessa et al. 2013; Markett et al. 
2016), and opercular cortex (Canessa et al. 2022), in pro-
cesses related to loss aversion. While it is possible that 
shared functions related to loss aversion may influence the 
findings of this study, it is crucial to exercise caution when 

Table 3  Results from the 
whole-brain VBM multiple 
regression showing a negative 
correlation with lose-shift 
behaviour (FWE = .05)

Region Cluster size  (mm3) Side Peak T value X Y Z p

Superior temporal gyrus 79.96 Left 6.47 −66.1 −31.5 7.1  < .001
Middle temporal gyrus 104.96 Right 6.00 71.8 −35.7 −1.5  < .001
Superior lateral occipital cortex 68.94 Right 5.95 58.5 −64.4 27  < .001
Superior lateral occipital cortex 14.06 Left 5.74 −52.8 −78.4 17  < .001

Fig. 4  Figure in MNI space illustrating increases in WMV within the left superior temporal gyrus associated with lose-shift behaviour. T-map is 
shown in radiological inversion
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interpreting the involvement of neighbouring brain regions. 
Spatial proximity does not necessarily imply a shared func-
tion (Alexander-Bloch et al. 2013; Mišić et al. 2014) and 
further research is needed to delineate the specific contribu-
tions of these regions to loss aversion and related cognitive 
processes. Future work could benefit from higher-resolution 
imaging to disentangle these closely situated regions and 
further clarify their specific roles in the context of loss aver-
sion. Finally, reductions in GMV in the occipital cortex align 
with recent evidence suggesting its role in processing visual 
uncertainty cues and outcome salience (Zhang et al. 2024). 
These findings indicate that loss-shift behaviour, rather 
than solely resulting from reward-punishment systems, may 
involve a more complex interaction of contextual evalua-
tion, memory integration, and uncertainty monitoring. By 
identifying structural correlates in these regions, our results 
expand current models of adaptive learning and loss-related 
decision-making.

The STG and MTG findings align with established 
frameworks of feedback-based learning and contextual 
processing. The STG has been implicated in integrating 
negative feedback and contextual cues to guide adaptive 
decision-making, suggesting that reduced GMV may 
reflect diminished neural resources for responding to losses 
(Paulus et al. 2005). Similarly, the MTG plays a critical 
role in working memory modulation and retaining outcome 
history, processes necessary for flexible behavioural 
adjustment following negative outcomes (Foerde et  al. 
2013). Specifically, lose-shift behaviour may engage 
processes of aversive response modulation and goal-
directed decision-making, which are potentially linked to 
regions such as the STG and MTG. These regions have 
been implicated in processing salience and integrating 
multimodal information, supporting their role in associating 
the context of a negative outcome with adaptive shifts in 
subsequent behaviour (Menon and Uddin 2010; Visser et al. 
2012; Humphreys et al. 2015; Zou et al. 2024). In contrast, 
the lack of significant findings for win-stay behaviour 
underscores the possibility of distinct neural mechanisms 
driving responses to positive feedback compared to 
negative feedback, suggesting that the two types of strategy 
may rely on fundamentally different cognitive and neural 
pathways (Kahneman 2011). Furthermore, the association 
between reduced GMV in the occipital cortex and lose-shift 
behaviour aligns with its role in processing visual salience 
and uncertainty cues, which are essential for recognising 
and adapting to unfavourable outcomes (Zhang et al. 2024). 
These findings expand traditional approach-avoidance 
models, which focus predominantly on regions such as the 
striatum, insula, anterior cingulate cortex and prefrontal 
cortices (Livermore et al. 2021; Zorowitz et al. 2019). We 
suggest that lose-shift behaviour reflects an interaction 

of contextual evaluation (STG), memory-based updating 
(MTG), and uncertainty monitoring (occipital cortex), 
highlighting a broader neural basis for adaptive feedback-
based strategies.

The role of adaptive behavioural learning in this task war-
rants careful consideration. Adaptive behavioural learning 
is a core mechanism underpinning behavioural flexibility 
and the neural processes that support decision-making in 
dynamic environments (O’Reilly 2013; Schulz et al. 2019). 
Notably, paradigms investigating adaptive behavioural learn-
ing often focus on the development of strategies aimed at 
achieving optimal decision-making outcomes (e.g., Trimmer 
et al. 2015; Schiffer et al. 2017; Sharif et al. 2024). However, 
the task employed in this study lacks a clearly defined opti-
mal decision-making strategy, which is needed to support 
adaptive behavioural learning. As such, while it is plausible 
that the task engages some neural mechanisms similar to 
those involved in adaptive behavioural learning, it should 
also be interpreted in the context of its design, which does 
not necessitate learning of optimal outcomes.

While lose-shift behaviour was associated with 
both GMV and WMV, the current study found no such 
association with win-stay behaviour, suggesting that its 
neural underpinnings may not be directly related to brain 
morphology. This raises the possibility that win-stay 
strategies could involve more complex neural interactions or 
functional activations not captured by structural volumetric 
measures. Supporting this idea, Van de Steen et al. (2020) 
found that during the same task, increased activation in the 
occipital cortex was linked to win and loss outcomes but not 
to neutral trials, implying that specific neural activations are 
more responsive to outcome valence. This finding suggests 
that win-stay strategies likely depend on dynamic brain 
responses to trial-by-trial win outcomes, whereas there is 
evidence that responses to losses can remain more stable 
across tasks (see Spektor et al. 2024). Further, activation 
in the occipital cortex has been associated with processing 
visual cues related to uncertainty and free energy (Zhang 
et al. 2024). In the “Free energy” principle proposed by 
Friston (2009), the brain is thought to attempt to minimise 
“free energy,” which is a measure of the difference between 
top-down predictions and actual sensory inputs, to enable 
the agent to adapt to their environment (Friston 2009). This 
explanation may account for the association between reduced 
GMV in the occipital cortices and the increased frequency 
of 'lose-shift' behaviour. Specifically, individuals with lower 
GMV in these areas may struggle more with adapting to loss 
outcomes, making them more likely to switch strategies after 
a negative outcome. Additionally, individual differences 
in sensitivity to losses (Adrián-Ventura et  al. 2019) or 
uncertainty (Zhang et al. 2024) may influence decision-
making in the task used in the current study, as it may 
increase the drive to minimise prediction errors, resulting 
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in more frequent lose-shift behaviour. Given the stability of 
individual differences in responses to losses across different 
task types (Spektor et al. 2024), future longitudinal research 
should examine how lose-shift behaviour in this task relates 
to broader measures of loss aversion.

Contrary to our hypotheses, and the findings by Sun 
et al. (2018), we did not find an association between overall 
response-switching and GMV regardless of the outcome of 
the previous trial. It is unclear what might have caused this 
discrepancy as although the tasks were different, they elic-
ited similar percentages of switch responses (current study: 
40%, Sun et al. 2018: 43%). One intriguing possibility might 
be that the findings reflect cultural differences between US 
and Asian populations in how rewards and losses are pro-
cessed (e.g., Chen et al. 2020). However, further research 
would be required to substantiate this. Alternatively, these 
different findings might be due to the disparity in ages 
between the two studies (average age: 28.7 years, Sun et al.’s 
(2018) average age was 19.9) as prior evidence suggests that 
grey matter volume changes with age (Bourisly et al. 2015; 
Hafkemeijer et al. 2014; Fjell and Walhovd 2010; Resnick 
et al. 2003).

Several limitations of this study should be acknowledged. 
First, the task was presented in blocks of eight trials that 
were either mostly reward or mostly loss, but still contained 
a mix of trial types. The organisation of these blocks may 
have influenced participants by making rewards and losses 
less or more impactful, thus influencing choices through-
out the experiment. In blocks where losses predominated, 
participants may have experienced a heightened sensitivity 
to losses, potentially increasing the likelihood of lose-shift 
behaviour as they adjusted their choices in response to the 
negative outcomes. Conversely, in blocks where rewards 
were more frequent, the impact of occasional losses might 
have been diminished as a win is two times the value of a 
loss, possibly leading to a reduced tendency to shift behav-
iour after a loss.

Second, reduced GMV in the temporal and occipital cor-
tices associated with lose-shift behaviour may not directly 
reflect the neuroanatomical basis for loss aversion, or 
impairments in attention or memory processing, particularly 
given the absence of an optimal decision-making strategy in 
the task. While these effects are statistically significant due 
to the large sample size, the small proportion of explained 
variance suggests subtle structural contributions to lose-shift 
behaviour. To better understand this relationship, future stud-
ies should investigate how brain morphometry is associated 
with WSLS behaviour in tasks that include clear optimal 
decision strategies. This could help determine whether vari-
ations in WSLS behaviour contribute to maladaptive deci-
sion-making. While factors such as outcome history and risk 
preferences are known to influence decision-making (Sitkin 
and Weingart 1995), these parameters were not included in 

the current analysis. The forced-choice card-guessing task 
used in this study lacked a clearly defined or optimal deci-
sion strategy, making it less suited to capturing risk propen-
sity, adaptive decision making or learning. Instead, the task 
encouraged heuristic responses, such as WSLS behaviours. 
Moreover, including additional parameters could have intro-
duced unnecessary complexity and confounded the interpre-
tation of our results, particularly as these behaviours are not 
inherently tied to explicit risk-reward structures. Thirdly, it 
should be noted that the associations we found were cor-
relational, so it remains unclear whether behaviour was the 
consequence or the cause of the variation in GMV. Finally, 
while the use of VBM to analyse WMV has faced scru-
tiny due to concerns regarding segmentation accuracy and 
partial volume effects (Ashburner 2007), these limitations 
have been addressed through advancements in preprocessing 
pipelines. In particular, the DARTEL algorithm used in our 
study improves normalisation accuracy, enhancing sensitiv-
ity to subtle volumetric differences (Ashburner 2007). Addi-
tionally, by controlling for TIV we minimised confounds 
associated with individual differences in brain size, further 
strengthening the validity of our results (Whitwell 2009). 
Our inclusion of WMV aligns with literature emphasising 
its role in structural connectivity and its contributions to 
cognitive and behavioural processes. For instance, WMV 
reductions have been linked to age-related visual changes 
in eye disease (Hernowo et al. 2014), theory of mind abili-
ties (Soylu et al. 2023), and cognitive impairments in con-
ditions such as early-onset psychosis (Si et al. 2024) and 
Alzheimer’s disease (Li et al. 2012). These studies derived 
WMV through VBM demonstrating that WMV variations 
can serve as meaningful markers of brain-behaviour rela-
tionships across domains. Future research should replicate 
these results with the same sample using combined metrics 
of WMV and diffusion tensor imaging, as in Michel et al. 
(2024) to further understand the contributions of white mat-
ter in behavioural choice adaptations. Furthermore, future 
studies could explore how structural findings interact with 
functional activations during feedback-based tasks, provid-
ing a more comprehensive understanding of the neural basis 
of win-stay and lose-shift behaviour.

In summary, this study provides evidence that lose-shift 
behaviour is associated with reductions in GMV within the 
STG, MTG, and bilateral occipital cortex and a reduction in 
WMV in the STG. These results may be explained through 
the roles of specific brain regions, such as the occipital cor-
tices, in directing attention to task-relevant stimuli, which, 
in turn, impact lose-shift behaviour. Further research is 
required to more systematically examine the precise role 
each brain region plays in decision-making processes.
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