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ABSTRACT: Lubricants are complex mixtures of chemicals that
help machines function at the right level of friction and wear.
Lubricant formulation methods are based on empirical experience
of chemical substances that have been used as lubricants for
decades. In the last years, the discussion about their environmental
problem has triggered new legislations resulting in the search for
Environmentally Acceptable Lubricants, which should be bio-
degradable, minimally toxic, and nonbioaccumulative. Finding new
chemicals that comply with these three criteria is a long and
expensive process that can be boosted by machine learning (ML).
In this paper, we are addressing toxicity prediction with machine
learning models by exploring the application of ensemble learners to chemicals having imbalanced data distribution. We investigated
the effectiveness of sampling techniques to balance the data and improve the performance of the ensemble learning model. The
model can predict toxicity for nonundersampled groups, which in our case corresponds to the moderately to highly toxic groups. The
results of this work are useful for lubricant formulators since regulations accept moderate-to-highly toxic chemicals in lubricants if
their concentration is below 20 wt %.
KEYWORDS: environmentally acceptable lubricants, toxicity, machine learning, imbalance regression, molecular descriptors

1. INTRODUCTION
Lubricants are used for achieving the required level of friction
and wear in moving systems. They can be either liquid, solid,
or semisolid (greases). Their formulation is rather simple, i.e.,
it consists of a base fluid in the highest proportion (up to 95%)
and an additive package (chemical substances that provide the
main functionality and improve its properties). Additives can
radically change the properties of a lubricant and are essential
to its overall performance. Lubricants can be classified
depending on the nature of the base fluid, biological and
nonbiological. This already accounts for a vast collection of
compounds, mostly hydrocarbons. The base fluid can control
wear, friction, and other characteristics such as toxicity, but the
additive package is the main factor responsible for the overall
function of the lubricant and for accounting for its chemical
stability.
Lubricant formulation and production are a century-old

industry in which the development of formulations is still
based on existing recipes that add selected additives. Current
state of the art for producing lubricants is based on empirical
experience of substances (liquid or solid) that have been
functioning as lubricants for decades. In addition, the additives
giving functionality and improving lubricant performance are
typically found by trial-and-error development. An example of

this is the well-known zinc dialkyldithiophosphate (ZDDP),
which was originally developed as antioxidant and finally
turned out to be the best additive for wear control.1,2 This
approach brings only small incremental improvements to
lubricant formulations.
Nowadays environmental concerns are pushing the lubricant

industry to move toward coping with the new societal demands
on a greener economy. Europe is responsible for 19% of
lubricants demand, consuming 6.8 million tons of lubricants
every year.3 In the EU and in the world, about 50% of
lubricants purchased end up as waste (the remaining 50% is
burned or lost during the year).4 Therefore, the EU manages
about 3.5 million tons per year of Waste Lubricating Oil
(WLO). WLO is hazardous to public health and the
environment because it contains high concentrations of toxic
and carcinogenic substances, such as heavy metals, polychlori-
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nated hydrocarbons, polyaromatic compounds, etc. The
environmental effects of waste lubricant cause pollution,
from leaks, losses, combustion, or dumping, to both on the
soil, the water, and the air. Specifically, one liter of WLO can
contaminate up to one million liters of drinking water, plants
uptake contaminants in the soil, and burning WLO releases
more than 50% of lead, chromium, and zinc in the form of
particles.4,5 Therefore, the development of the greener
generation of lubricants is happening at lower speed than
required by the new environmental legislations.6

To cope with new legislation, a new generation of lubricants,
the so-called Environmentally Acceptable Lubricants (EALs),
should be developed faster. EALs should both be biodegrad-
able, nontoxic, and nonbioaccumulative. Finding new chem-
icals that comply with these characteristics is a long and
expensive process that can be boosted with the help of
machine learning (ML). Especially in toxicity prediction,
machine learning models can provide quick suggestions for
chemical compounds with no potential harmful effects to the
environment.
Machine learning has been applied in several fields of

tribology, ranging from composite to steel materials, drive
technology to manufacturing, and also lubricants.7 A few
examples of machine learning applications in this field include
predicting band gaps using artificial neural networks (ANN)8

and tuplewise graph neural networks.9 Additionally, ANN has
been employed to predict topological phases of matter,10 while
support vector machines, multiple linear regression, and
ensemble trees have been used to predict exfoliation
energies.11 One of the main challenges in the tribology field
that is common to other engineering fields is collecting quality
data. It can be difficult to obtain good size data sets with
similar experimental settings.
Previous works using machine learning to predict the

toxicity of chemical compounds have been mainly carried out
in drug discovery.12−16 In these studies, toxicity prediction is
often considered as a classification problem, where the aim is
to predict whether a certain chemical compound is toxic or
not. However, in available data sets for compounds considered
in lubricant generation, toxicity is measured as a continuous
value. Both highly toxic chemicals and nontoxic chemicals are
less reported in such data sets, which results in imbalance
target distribution. Regression models are used to predict
continuous values; however, the problem of imbalance target
distribution is less studied in regression than in classification.
In regression problems, target values are treated with equal
importance, and the model is evaluated and optimized based
on the most common values in the target distribution.
This presents two challenges that this paper will address:

first to develop a model that can accurately predict continuous
toxicity values and second to account for the imbalance in the
toxicity target value. Preprocessing techniques are carried out
to prepare and balance the data, and an ensemble model,
namely, eXtremeGradient Boosting (XGBoost), is used to
provide the toxicity value prediction. Our main aim is to
thoroughly investigate the challenges encountered in predict-
ing toxicity targeting lubricants, and to this extend, this paper
will:

1. Explore the application of ensemble learners to predict
the toxicity value for different types of chemicals that
have imbalanced data distribution.

2. Investigate the effectiveness of sampling techniques to
balance the data and improve the performance of the
ensemble learning model.

3. Compare two different types of chemical descriptor
generators, namely, Morgan FingerPrints (MFP) and
descriptors generated by a commercial software
(AlvaDesc).

2. METHODS
2.1. Data Collection. An experimental database for aquatic

toxicity was retrieved from ECOTOX database as of March 2023.17

The database contained 1,141,099 experimental results from 12,732
chemicals using 13,864 species. The ECOTOX database was collected
from 53,927 references. This is the initial database, which will be
further curated and filtered to include only the toxicity tests of
chemicals performed on water flea.

2.1.1. Curation of the Molecular Structures. Chemical Abstracts
Service Registry Numbers (CASRN) were used as queries to retrieve
chemical information, such as chemical name, chemical formula,
molecular mass, International Chemical Identifier code (InChiKey),
and Simplified Molecular-Input Line-Entry System (SMILES). This
chemical information was retrieved via CompTox Chemicals
Dashboard.18 The queries generated 12,792 chemical records from
12,732 CASRN inputs, which were then manually checked. It was
found that 60 CASRN generated a record twice. All records that had a
mismatch CASRN were deleted. In addition, 1794 chemical records
with no molecular weight information and 2 chemical records with no
SMILES information were deleted. In total, 10,936 chemical
information corresponding to 10,936 chemicals were retained.
Retrieving back 10,936 chemicals from the ECOTOX database
resulted in a cured database containing 1,076,925 experimental results
using 13,584 species from 52,193 references.

2.1.2. Data Filtering. The cured database includes data from
several test conditions, such as test locations (laboratory or field),
exposure media (water or soil), and exposure types (both aquatic and
terrestrial or aquatic only). The cured database also includes data
from acute and chronic toxicity tests with various species groups.
Acute toxicity tests are performed as a short-term exposure to several
concentrations of the chemical. Two end points were normally used
for acute toxicity test, i.e., Lethal Concentration (LC50) and Effective
Concentration (EC50) in mg/L. LC50 is defined as the concentration
of the chemical in water causing 50% of death of the test species
population, and EC50 is the concentration of chemical in water to
produce a certain effect in 50% of the test population. Chronic
toxicity tests are performed by long-term exposure of the species to
the chemical. Several end points were used for the chronic toxicity
test, such as No Observed Effect Concentration (NOEC) and Lowest
Observed Effect Concentration (LOEC). The tested species groups in
the database consist of animals and plants such as amphibians,
crustaceans, fish insects, algae, fungi, etc. Workflows using Rstudio
(v2023.03.0) programming language were used to extract LC50 or
EC50 (L(E)C50) values for water flea tested in lab over a test
duration of 48 h based on The Organization for Economic Co-
operation and Development (OECD) test Guideline number 202.
The resulting water flea database now contained 9705 L(E)C50
experimental values from 1863 chemicals, meaning several chemicals
were tested in more than one experiment. In the case of chemicals
with more than one experiment, the median L(E)C50 values were
selected because they are not affected by low or high extreme values.
Then, all median L(E)C50 values were transformed to a logarithmic
scale (−Log mol/L). One outlier data was discharged due to a high
log value. The resulting database filtered from the cured database
contained 1862 chemicals with the corresponding CASRN and
−Log(L(E)C50). From the 1862 chemicals, 1331 chemicals are
organic compounds, 50 are inorganic compounds, 422 are ionic
compounds, and 59 are mixture compounds.
Besides the database obtained from ECOTOX, a database from a

previous study that was published in ref 16 was collected for
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comparison. This database was selected based on having a
comparative study performed on toxicity of chemicals; however,
that work does not specifically target lubricants. We have not found
any work performed on predicting the toxicity of lubricants or any
other environmental acceptability descriptor for lubricants using
machine learning. This database is referred to as the “ITA database”
and consists of 546 organic chemicals with toxicity Log(LC50) values
as well as CASRN and SMILES information. Due to the availability of
logarithmic values and CASRN, the ITA database did not go through
our molecular structure curation protocol.

2.1.3. Data Set Preparation. Three data sets were prepared for this
study, namely, the ECOTOX chemicals (referred as “All” data set),
the ECOTOX organic chemicals that do not overlap with the ITA
data set (referred as “Clean” data set), and the ITA data set alone.
Before generating the molecular descriptors, all chemicals in the

data sets were checked for their molecular objects. Molecular objects
are algorithms that store all information related to the molecular
structure geometry and topology. This was done in Python using the
RDkit package (v2023.03.1). The chemicals that cannot generate
molecular objects were removed from the data set. Nine chemicals
were removed from the “All” data set, four chemicals were removed
from the “Clean” data set, and one chemical was removed from the
ITA data set. In the end, the “All” data set consisted of 1853
chemicals, the “Clean” data set consisted of 909 chemicals, and the
ITA data set consisted of 545 chemicals.
2.2. Molecular Descriptor Generation. To predict the toxicity

of molecules using machine learning (ML), the molecules should be
represented in a numeric format for the computer to understand the
input. Molecules in the machine-readable format can thus be passed
to the learning algorithms while still capturing the comprehensive
structure. Selecting a proper molecular representation that corre-
sponds with the data set is essential for downstream analysis.
Molecules can be represented in several ways, mostly based on

their feature representation. The simplest way to describe molecules is
by listing their physicochemical characteristics in a numeric format or
commonly addressing them by the molecular descriptor. These
descriptors, such as molecular weight, density, polar surface area
(PSA), hydrophobicity, etc., define the molecules’ structure−activity
that interact with the biological environment as well as their molecular
toxicity. This approach has been used in Quantitative Structure−
Activity Relation (QSAR) in drug design and molecule toxicity
prediction.13 Molecular descriptors can correlate positively or
negatively with toxicity. For example, hydrophobicity often shows a
positive correlation with toxicity as hydrophobic molecules penetrate
cell membranes more easily, while higher PSA reduces membrane
permeability and toxicity.19,20

However, predicting which combination of the molecular
descriptors performs best is still a major challenge. There are different
kinds of software that can be used for representing molecules, but it is
not the goal of this paper to review all of them. A well-known
molecule representation for ML application is the Morgan Fingerprint
(MFP) working with structure-similarity identification, and it is
available in the python-based package RDkit.21 In this work, we have
generated the molecular descriptors using both commercial and open
source software, AlvaDesc 2.0.14 and MFP, respectively. MFP
molecular descriptors were generated with several radius and bit
lengths. The standard linear molecule symbols, i.e., SMILES, were
used to convert the chemical names to a machine-readable format.

AlvaDesc Descriptors. AlvaDesc is commercial software that has
generated 4179 descriptors (1D and 2D) for our databases. AlvaDesc
provides the 1D descriptors as computed descriptors derived from the
chemical formula for example number of atoms, molecular weight,
etc., while for the 2D descriptors, they are taken from the
representation of the molecule.22 The number of descriptors
calculated for each AlvaDesc block is shown in Table 1. AlvaDesc is
also equipped with built in molecular descriptor reduction, such as
constant value and near constant value reduction, pair absolute
correlation reduction, etc. By applying these molecular descriptor
reductions, the final results for our “All” data set were 1260
descriptors.

Morgan Fingerprint Using the Rdkit Python Package. MFP
consists of binary vectors that represent whether a specific fragment or
substructure in a chemical structure is present (1) or absent (0). MFP
is calculated using Morgan algorithms developed in 1965.23 The
information is compressed using the algorithm and encoded in a
binary vector with a predetermined length defined as bits (512, 1024,
or 2048). Bits were used with radius properties to differentiate
between fragments. The radius determines how far out from each
atom the algorithm will look to define the neighborhood, for example,
radius 0 considers only the atom itself, radius 1 includes the atom and
all its directly bonded neighbors, radius 2 extends to the neighbors of
the neighbors, and so on.24 In this study, MFPs with radii 2, 5, and 10
in combination with bits 512, 1024, and 2048 were generated.
2.3. Machine Learning. Machine learning is used in this work to

facilitate the prediction of toxicity for different organic, inorganic,
ionic, and mixture chemicals. Traditionally, toxicity is measured as
continuous values and then categorized in different groups ranging
from nontoxic to highly toxic. However, changing the prediction
problem from predicting continuous values (regression) to predicting
discrete values (classification) can result in a loss of information.
Examining the toxicity values used in this study, it is found that

they suffer from imbalance distribution; chemicals that are highly
toxic or highly nontoxic have a smaller number of examples in the
data set compared to chemicals with moderate toxicity (Figure 1). As
this work targets chemicals that are safe to be used in EALs, being
able to identify highly toxic and nontoxic chemicals is essential. Thus,
predicting toxicity in this work is considered and treated as an
imbalance regression problem. As imbalance regression is a rather less
studied problem in machine learning theory compared to imbalance
classification,25 this will be the major challenge this work aims to
address.
To predict continuous values in a regression problem, we can use

either: (a) a single learning algorithm, such as support vector
regressor, decision trees, or artificial neural network, among others, or
(b) a combination of multiple learners, such as ensemble learners. In
ensemble learners, a predefined number of learning models is trained
to solve the same prediction problem. However, each learner is
trained on a slightly different version of the data and their prediction
is combined using voting or averaging approaches.26

Table 1. Calculated 1D and 2D Descriptors from AlvaDec’s
Software

no. block of descriptors # of descriptors
1 constitutional indices 50
2 ring descriptors 35
3 topological indices 79
4 walk and path counts 46
5 connectivity indices 37
6 information indices 51
7 2D matrix-based descriptors 608
8 2D autocorrelations 213
9 burden eigenvalues 96
10 P_VSA-like descriptors 69
11 ETA indices 40
12 edge adjacency indices 324
13 functional group counts 153
14 atom-centered fragments 115
15 atom-type E-state indices 346
16 pharmacophore descriptors 165
17 2D atom pairs 1596
18 charge descriptors 11
19 molecular properties 26
20 drug-like indices 30
21 MDE descriptors 19
22 chirality descriptors 70
total 4179
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Generally, ensemble learners can outperform single learners if the
set of learners they combine is diverse and have a reasonable
performance.26,27 Furthermore, ensemble learners can provide several
statistical benefits,28 such as (a) combining multiple predictors that
can compensate for the possible bad prediction a single learner can
have for specific target values, (b) provide with a “divide and conquer”
strategy where each predictor learn different parts of the data in
complex data sets, such as the toxicity data sets used in this work, and
(c) can perform better with data fusion, where the data are collected
from different sources, which is the case for the data used in this work.
Based on the advantages mentioned above, this paper will explore

the application of ensemble learners for imbalance toxicity prediction.
2.3.1. Data. As presented in Section 2.1.2, the final data set consists

of 1853 chemicals out of which 1326 are organic compounds. The
remaining chemicals are inorganic, ionic, and mixed chemicals. The
maximum recorded toxicity value (−Log mol/L) in this data set is
10.1497 (meaning the most toxic substance), while the minimum
recorded value is 0.2163 (meaning the least toxic substance); both the
mean and standard deviation of the toxicity are 4.7795 and 1.7271,
respectively.
Figure 1 shows a histogram with the distribution of the toxicity

values (−Log mol/L) in the ECOTOX data set with respect to the
number of samples. As can be seen, most of the toxicity values lie in
the middle region of the histogram, with 75.72% of the data having a
value between 3 and 7 and 90.93% of the data having a value between
2 and 8. The higher and lower toxicity values have a far smaller
number of examples. The disproportionate sample distribution among
the target values is an issue found in real world regression problems.
This problem is referred to as imbalance data distribution,29 where
certain class(es) in classification problems or certain numeric value
interval(s) in regression problems are oversampled in the data.
Meanwhile, the remaining classes/target values are undersampled.
Solutions to data imbalancement in machine learning have been

often discussed in classification problem scenarios, where multiple
solutions were proposed,30 such as applying sampling techniques
(undersampling and oversampling), using a modified performance
measure, and introducing a new weighting scheme that takes into
consideration the distribution of samples per class. A noticeable
sampling technique that was introduced in 2002 for imbalance data
problem is the Synthetic Minority Oversampling TEchnique
(SMOTE) sampling,31 in which the K-nearest neighbor is used to
interpolate new examples from existing minority class data points.
This technique was developed for classification problems, and later, it
was extended to regression problems using similar sampling
techniques.32,33 This paper examines this approach to balance the
toxicity value distribution.
As mentioned earlier, two software packages were used to generate

the molecular descriptors, namely, AlvaDesc and MFP. The number
of molecular descriptors generated from AlvaDesc is 1260 descriptors,
while for MFP, a grid search was performed to identify the suitable
radius and number of bits; these were found to be 10 and 1024 bits,
respectively.

This work will compare the impact AlvaDesc and MFP descriptors
can have on toxicity prediction since the basis for these two molecular
descriptor generators, as well as the nature of these descriptors, is
different. MFP focuses on finding a series of binary representations
that indicate the absence or presence of a connection within a
predefined radius, while AlvaDesc generates continuous descriptors.

2.3.2. Modeling Method. In this paper, a sampling algorithm is
used to encounter the imbalance data distribution. This algorithm is
Synthetic Minority Over-Sampling Technique for Regression with
Gaussian Noise (SMOGN),33 which is one of the few sampling
methods presented in the literature for imbalance regression
problems. It is based on a previous regression sampling technique,
known as Synthetic Minority Over-Sampling Technique for
Regression (SMOTER) that was presented in ref 32. SMOGN is a
distance-based algorithm that facilitates K-Nearest Neighbors (KNN)
to add new points in the data through (SMOTER) when the
examples are in proximity and add Gaussian noise when the examples
are far from each other. Due to this added noise, the distribution of
the sampled data is not unique and variations could happen from one
run to the other. The resampled data are used to train an ensemble
learner.
The ensemble learner used in this study is XGBoost, which is a

well-known robust learning algorithm. The performance of the
XGBoost will be assessed using three metrics; these are: (1) the
coefficient of determination (R2) that measures the goodness of the
regression model fit. It is a linear measure that quantifies the
proposition of the variance in the dependent variable (target value/
toxicity value) that is predictable from the independent variable
(features/descriptors) in a regression model. It ranges between 0 and
1 (the higher its value, the better the model fits the data); (2) the
quadratic error measurement using Root Mean Square Error (RMSE),
which highlights the model sensitivity to outliers, and (3) the linear
error measurement using Mean Absolute Error (MAE).
The methodology followed in this work can be summarized as

follows:
1. First, the data are split into 75% training data Dtr and 25%
testing data Dts.

2. SMOGN is applied to the training data to oversample the
minority class and undersample the majority class, resulting in
a new data distribution Dtr‑sampled.

3. Feature/descriptor selection is applied using mutual informa-
tion, where only 20% of the features/descriptors (the most
informative molecular descriptors) are retained as Dtr‑reduced.
Using the same setting, feature/descriptor selection is also
applied to the testing data resulting in Dts‑reduced.

4. Apply a 10-fold cross validation that is repeated 3 times to
estimate the training accuracy of the model. However, as the
test accuracy is measured by applying the fully developed
model to previously unseen data, we can only measure it once,
and we cannot use it to refine the final model’s parameters.

5. XGBoost ensemble with decision trees as base learners is
trained and fine-tuned using Dtr‑reduced.

6. The obtained model is tested on Dtr‑reduced.
7. R2, RMSE, and MAE are recorded for both training and testing
data.

Furthermore, to test the effectiveness of using these sampling
techniques, the experiments are repeated using the original data
distribution without applying SMOGN. The flowchart presented in
Figure 2 illustrates the methodology followed in this work.
Including all features increased the model’s complexity and

execution time without significantly enhancing its accuracy.
Conversely, utilizing only 20% of the features not only reduced
model complexity and the risk of overfitting but also maintained
similar accuracy compared to the complete feature set. The results in
Table 2 illustrate the performance of our largest data set when using
all features versus when only 20% of the features were used.
Furthermore, different ratios of 60:40, 75:25, and 80:20 were tested

in this study using the largest data set with AlvaDesc descriptors. A
comparison of these data split percentages is illustrated in Table 3.

Figure 1. Toxicity value (−Log mol/L) distribution with respect to
the number of samples.
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Using 60% of the data set for training and 40% for testing resulted
in poorer performance compared to the other two split ratios. This is
primarily because the learning algorithm had fewer training data from
which to learn from. In contrast, the other two cases exhibited
comparable performance, with the 75:25 ratio being slightly better.
Therefore, the 75:25 ratio was used in this study.

3. RESULTS
The methodology discussed above is applied to three data sets:
“All” data set, “Clean” data set, and the ITA data set. The aim
of using these three data sets is to examine the model
performance on (a) different types of chemicals, (b) only
organic chemicals, and (c) to compare its performance to
previous work on toxicity prediction.
The parameter setting for SMOGN algorithm differs

depending on the data set used:
The number of K neighbors considered for sampling
using KNN ranged from 3 to 15 depending on the size
of the data, where larger data set such as the “All” data
set required 15 to sample the data, the “Clear” data set
required 7 neighbors, and the ITA data set required only
3 neighbors.

The perturbation added to Gaussian noise (usually takes
a value between 0 and 1) ranged between 0.02 and 0.04.
The threshold for performing over/undersampling
(usually takes a value between 0 and 1) ranged between
0.2 and 0.4.

Grid search was used to choose the parameter setting of the
XGBoost. The final tuned ensemble model had the following
characteristics: the XGBoost learners combined were 1000
decision trees, learning rate was 5 × 10−3, and to avoid
overfitting, the maximum depth of the trees was set to 5, and
each tree is trained using 80% of the data and 80% of the
descriptors.
3.1. Results with SMOGN. Table 4 shows the training and

testing accuracies for all three data sets when XGBoost learner

is applied with SMOGN sampling. The results are recorded for
both AlvaDesc descriptors and MFP descriptors.
Generally, XGBoost trained on AlvaDesc descriptors has a

better representation of the underlying data than MFP. This is
apparent when comparing the coefficient of determination
(R2) for both training and testing for the two descriptors.
Furthermore, the training and testing error for AlvaDesc
descriptors is lower than MFP in terms of both RMSE and
MAE.

Figure 2. Methodology followed in this work, where CV refers to
cross validation and TR refers to the subsamples of the training data.
The training phase is highlighted with the blue components of the
flowchart, while the testing phase is highlighted with the orange
components.

Table 2. Comparing Model Accuracy with and without Applying Feature Selection

data set feature percentage train/test descriptors R2 RMSE MAE

All 20% train AlvaDesc 0.9403 0.4172 0.2559
All 20% test AlvaDesc 0.6589 1.0403 0.7699
All 100% train AlvaDesc 0.9509 0.3787 0.2379
All 100% test AlvaDesc 0.6611 1.0324 0.7608

Table 3. Comparing the Different Split Ratios for the
Training and Testing Data

data
set split ratio train/test descriptors R2 RMSE MAE

All (75:25) train AlvaDesc 0.9403 0.4172 0.2559
All (75:25) test AlvaDesc 0.6589 1.0403 0.7699
All (60:40) train AlvaDesc 0.9606 0.3486 0.2192
All (60:40) test AlvaDesc 0.5569 1.1126 0.8090
All (80:20) train AlvaDesc 0.9456 0.4048 0.2457
All (80:20) test AlvaDesc 0.6158 1.0462 0.7683

Table 4. XGBoost Training and Testing Accuracies
Measured by R2, RMSE, and MAE, when SMOGN Is
Applied

data set train/test descriptors R2 RMSE MAE

All train AlvaDesc 0.9403 0.4172 0.2559
All test AlvaDesc 0.6589 1.0403 0.7699
All train MFP 0.7890 0.7852 0.5780
All test MFP 0.4637 1.3014 0.9688
Clean train AlvaDesc 0.9239 0.4969 0.3670
Clean test AlvaDesc 0.6764 0.9825 0.7631
Clean train MFP 0.7245 0.9368 0.7332
Clean test MFP 0.5863 1.1408 0.9068
ITA train AlvaDesc 0.8206 0.6903 0.5091
ITA test AlvaDesc 0.6769 0.9945 0.7709
ITA train MFP 0.7803 0.7780 0.6050
ITA test MFP 0.3813 1.3186 0.9993
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However, XGBoost trained on both descriptors suffers from
overfitting. Overfitting refers to the case when learning models
have high training accuracies, and when tested, their accuracy
drops significantly. This can be noticed in the testing results,
with the decrease of the R2 and the increase in RMSE and
MAE. Reducing the model complexity by decreasing the
number of decision trees that XGBoost combines did not
improve the testing accuracy and resulted in a lower training
accuracy.
Figures 3−5 show that the data distribution after SMOGN is

applied and the relationship between the actual toxicity value
and predicted toxicity value for both training and testing for all
three data sets.
Figures 3a and 3d show the data distribution when SMOGN

is applied to both AlvaDesc and MFP descriptors, respectively.
SMOGN performs undersampling for the toxicity values in the
range of 3−7 and oversampling on both ends of the toxicity
values (<3 and >7). Also, predictions for both training and
testing data for AlvaDesc (Figure 3b,c) are better aligned with
the actual value compared to that of MFP (shown in Figure
3e,f). This illustrates the higher value AlvaDesc had in terms of
R2 and the lower RMSE and MAE. However, overfitting is
apparent for both descriptors, as the XGBoost learner has a
wider distribution between the actual and predicted values in
testing compared to training.
Figure 4 shows the data distribution and XGBoost

performance for the organic molecules. The new distribution
found by SMOGN is shown in Figures 4a and 4d, for AlvaDesc

and MFP, respectively. In this data set, SMOGN has identified
a small increase in the toxicity distribution around value 8 and
has incorrectly oversampled this region and undersampled the
rest. As it was mentioned in Section 2.3.2, the distribution
resulting from applying SMOGN is not unique, and it can be
the case where incorrect regions in the data are either over or
under sampled. Also, oversampling around the toxicity value 8
using MFP is higher than that with AlvaDesc. Moreover,
similar to the previous data set, it can be noticed that AlvaDesc
performs better in terms of training and testing predictions and
overfitting is present.
Finally, Figure 5 shows the data distribution of the ITA data

set and XGBoost performance for both AlvaDesc and MFP
descriptors. The data distribution obtained from SMOGN
(Figure 5a,e) is more balanced and is better than the one
obtained for the “Clean” data set. By examining the training
and testing accuracies both in Figure 5 and Table 1, it can be
noticed that XGBoost trained on the AlvaDesc descriptor has
less overfitting compared to the previous two data sets.
However, the overfitting increased when MFP was used.
3.2. Results without SMOGN. To test the effect of using

sampling to balance the toxicity data, the same experiments are
repeated without applying SMOGN. Table 5 shows the
training and testing accuracies for both AlvaDesc and MFP for
all three data sets.
Comparing the results in Table 5 with the results when

SMOGN was applied (Table 4), no significant differences in
the testing and training accuracies were found in the case of

Figure 3. Illustration of the data distribution for the “All” data set (with 1853 samples) and the model performance using SMOGN sampling, where
panels (a)−(c) represent AlvaDesc descriptors as the input and panels (d)−(f) represent MFP descriptors as the input.
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using heterogeneous data, such as the “All” data set. However,
for homogeneous data sets such as the “Clean” and ITA,
SMOGN helped in reducing the gap between testing and
training accuracies thus, reducing overfitting. In addition, with
AlvaDesc descriptors, there is a small improvement in the test
accuracy for these two data sets. Furthermore, XGBoost
trained on AlvaDesc descriptors performed better than MFP
on all data sets.
Figures 6−8 examine the relationship between the actual

toxicity values and predicted toxicity values for both training
and testing for all three data sets. The performance of XGBoost
trained on AlvaDesc and MFP descriptors shown in Figure 6 is
similar to that obtained in Figure 3. This indicates that
applying SMOGN does not improve prediction in heteroge-
neous toxicity data, which contains organic, inorganic, ionic,
and mixed chemicals. For homogeneous data sets like the
“Clean” data set, both Figures 7a and 7c show a higher training
accuracy than when SMOGN was applied (Figures 4b and 4e).
However, the testing accuracies were lower by a small margin.
This indicates overfitting when no sampling algorithm is used
to balance homogeneous data. Similar to the “Clean” data set,
training the XGBoost without using sampling in the ITA data
set resulted in a better training accuracy and slightly lower
testing accuracy, which indicates overfitting.

4. DISCUSSION
4.1. Effect of Data Balancing on the Accuracy of the

Prediction. The use of the SMOGN sampling technique to
balance the toxicity target distribution has impacted the
prediction accuracy and how well the model fits the data.
In homogeneous data, such as the “Clean” and ITA data

sets, this effect was apparent in terms of the R2, RMSE, and
MAE, especially when AlvaDesc descriptors were used. On the
other hand, in heterogeneous data sets such as the” All” data
set, SMOGN had a little effect. This could indicate that the use
of sampling techniques (such as SMOGN) to balance the
target distribution can have a negligible effect in data fusion
scenarios, where more than one type of chemical compounds is
presented. While for homogeneous data, the use of SMOGN
can improve the accuracy and reduce the gap between the
training and testing error, thus reducing overfitting.
However, the new target distribution found by SMOGN is

not unique. This is due to the Gaussian noise that SMOGN
adds when the data points (chemical compounds) are far from
each other in the feature/descriptor space. When the data
points are in close proximity, SMOGN applies K-nearest
neighbors to generate new examples for the undersampled
target values. However, when data points are far away from
each other, Gaussian noise with a predefined perturbation is
added instead. As a result, the newly found target distribution
can change each time SMOGN is applied.

Figure 4. Illustration of the data distribution for the “Clean” data set (with 909 samples) and the model performance using SMOGN sampling,
where panels (a)−(c) represent AlvaDesc descriptors as the input and panels (d)−(f) represent MFP descriptors as the input.
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In addition, for both MFP and AlvaDesc, balancing the data
did not improve the result in the case of the heterogeneous
data set, but it slightly helped in reducing the overfitting
between training and testing accuracies of the two descriptors.
4.2. Effect of the Descriptor Generator (AlvaDesc

versus MFP) on Model Accuracy. The effect between
molecular descriptor generators (AlvaDesc and MFP) is clearly
seen from Figures 3−8 as well as Tables 4 and 5. In all cases,
AlvaDesc resulted in better accuracy compared to MFP.
AlvaDesc generates a variety of molecular information, such as,
constitutional (related to counting atoms and bonds),

topological (related to graph invariants of atom bonds), and
pharmacophore (related to the statistical significance of the
molecular structure−activity correlation). AlvaDesc also
provides the calculations of several model-based physicochem-
ical properties such as molecular properties, drug-like and lead-
like indices. Twenty-two sets of molecular descriptors
generated by AlvaDesc for the data analyzed in this paper
are listed in Table 1. This provides AlvaDesc with an advantage
with respect to MFP, which relies only on the chosen number
of bits in single molecules, discarding any other molecular
property. In other words, MFP only requires atomic
connectivity information and allows one to compare molecules
to evaluate similarity. It is thus to be expected that a predictive
model for toxicity may not perform well if only constitutional
molecular information is considered by the descriptors in the
model.34

In addition, the MFP algorithm involves an atom identifier,
concatenation and hashing, and fingerprint generation. The
concatenated identifiers capture the structural features or
substructure of the circular neighborhood around each atom,
while hashing generates a unique identifier for the substructure
and then maps the concatenated identifier to a fixed-size string
of bits. At the end, the fingerprint is represented as a fixed-
length binary vector (bit vector), where each bit in the vector
corresponds to a specific hashed circular substructure. If the
substructure is present in the molecule, the corresponding bit
is set to 1; otherwise, it is set to 0. The drawbacks of hashing
are collisions and information loss. Collision occurs because

Figure 5. Illustration of the data distribution for the ITA data set (with 546 samples) and the model performance using SMOGN sampling, where
panels (a)−(c) represent AlvaDesc descriptors as the input and panels (d)−(f) represent MFP descriptors as the input.

Table 5. XGBoost Training and Testing Accuracies
Measured by R2, RMSE, and MAE, without SMOGN

data set training/testing descriptors R2 RMSE MAE

All train AlvaDesc 0.9479 0.3976 0.2525
All test AlvaDesc 0.6499 0.9956 0.7272
All train MFP 0.8009 0.7633 0.5644
All test MFP 0.4968 1.2561 0.9709
Clean train AlvaDesc 0.9851 0.2216 0.1482
Clean test AlvaDesc 0.6104 1.0571 0.7876
Clean train MFP 0.8706 0.6347 0.4691
Clean test MFP 0.5574 1.2231 0.9599
ITA train AlvaDesc 0.9874 0.1850 0.1319
ITA test AlvaDesc 0.6268 1.0421 0.7362
ITA train MFP 0.8851 0.5650 0.4299
ITA test MFP 0.5431 1.1128 0.8561
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the hash function maps many possible substructures to a fixed
number of bit positions, meaning that different substructures
might map to the same position. In addition, hashing simplifies
substructures into fixed-size codes, which may omit some
detailed information. These limitations in MFP generation may
result in inferior performance compared to AlvaDesc in cases
like the one studied in this paper, where many molecules might

have similar fingerprint molecular descriptors but very different
toxicity.
4.3. Comparing Results to Other Toxicity Studies. To

evaluate the accuracy, performance, and validity of our model
for an imbalance regression problem, we have applied our
methodology to a data set published in ref 16. This data set
(ITA data set) was thoroughly cured and contains only organic

Figure 6. Illustration of the model performance for the “All” data set (with 1853 samples) without SMOGN sampling, where panels (a) and (b)
represent AlvaDesc descriptors as the input and panels (c) and (d) represent MFP descriptors as the input.

Figure 7. Illustration of the model performance for the “Clean” data set (with 909 samples) without SMOGN sampling, where panels (a) and (b)
represent AlvaDesc descriptors as the input and panels (c) and (d) represent MFP descriptors as the input.
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chemical compounds that were used to predict continuous
toxicity values. The model introduced in ref 16 uses K-nearest
neighbors with a similarity distance metric (based on
Mahalanobis distance) to include or exclude different
chemicals from the data set, such that, those chemicals with

a distance greater than a given threshold are excluded from the
prediction. The value of this threshold is optimized using a
genetic algorithm. The coefficient of determination R2 reported
for this model was 0.78, which is higher than the R2 obtained
in our proposed ensemble model (0.6769). However, this

Figure 8. Illustration of the model performance for the ITA data set (with 546 samples) without SMOGN sampling, where panels (a) and (b)
represent AlvaDesc descriptors as the input and panels (c) and (d) represent MFP descriptors as the input.

Figure 9. Comparing model performance with AlvaDesc descriptors for the All data set (with 1853 samples) with and without SMOGN sampling,
where panels (a) and (b) represent the case when SMOGN used and panels (c) and (d) represent the case without SMOGN. The colors represent
the class of the toxicity value (yellow is highly toxic, light green is moderately toxic, dark green is slightly toxic, light blue is practically nontoxic, and
dark blue is nontoxic).
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increase in the R2 value was due to omitting the examples that
are hard to get in the prediction, using the threshold function.
Furthermore, the authors reported only the testing accuracy,
which does not provide insight into the amount of overfitting
observed. Therefore, despite having lower R2, our model can
predict a wider variety of chemicals, being better at
generalizing undersampled and sparse regions in the data sets.
4.4. Usefulness of This Approach for Lubricant

Generation. This work has shown how challenging it can
be to deal with imbalance regression problems. For the set of
chemical substances studied in this work, such an effect is
especially relevant for undersampled data. In Figure 9, we have
plotted the predicted versus the actual values of different
toxicity levels for our largest heterogeneous data set (“All” data
set) and have compared the models with and without the
sampling technique SMOGN. Interestingly, comparing the
results in Figure 9 with the number of samples on each toxicity
level according to the VGP2013 requirements (Table 6), it is

seen that the model has a better prediction on the highly toxic
substances (yellow points in Figure 9), where the data contains
624 examples. Meanwhile, it has a slightly worse prediction for
nontoxic chemicals (dark blue points in Figure 9), where the
data contain only 104 examples.
The data alignment of different toxicity levels (from highly

toxic, yellow, to nontoxic, dark blue) is best for the training
data than for the testing data, both with and without SMOGN.
Generally, applying SMOGN resulted in a better alignment for
toxicity prediction for the substances that lie in between the
highly toxic and nontoxic, and larger errors are associated with
the two extremes of the toxicity values. This can be a result of
the model being trained on artificial chemical substances
generated by SMOGN in these regions, leading the model to
learn new dependencies between the toxicity value and
artificially generated descriptors, which might be imprecise.
However, introducing these new generated substances helped
the model in encountering noise and outliers, thus reducing
overfitting. It should be noted that artificially generated
substances using SMOGN improved the model predicting
ability of different toxicity levels when homogeneous data were
considered.
Nevertheless, the prediction errors obtained are not that big

when thinking about lubricant generation. Indeed, for a
lubricant to be considered environmentally acceptable, the
Vessel General Permit (VGP2013) in Appendix A in ref 6
requires the lubricant to be “minimally toxic”. In the frame of

the VGP2013, minimally toxic means a substance that must
pass either OECD 201, 202, and 203 for acute toxicity testing,
or OECD 210 and 211 for chronic toxicity testing.6 More
specifically, the LC50 of formulated lubricants must be at least
100 mg/L, and at least 1000 mg/L for greases, two-stroke oils,
and all other total loss lubricants. However, when looking at
each individual chemical in a lubricant formulation, those
chemicals with a concentration below 20 wt % in the
formulation can have an LC50 between 10 and 100 mg/L,
chemicals with a concentration below 5 wt % in the lubricant
can have an LC50 between 1 and 10 mg/L, and chemicals with
a concentration below 1 wt % in the lubricant can have an
LC50 below 1 mg/L. Interestingly, individual chemicals in
additive packages are typically added in the formulation in a
concentration well below 20 wt % and only the base oil/
lubricant is present in a concentration above 20 wt %.
Therefore, having a model that better predicts the most toxic
substances is an advantage since this can help in deciding on
the maximum concentrations and choices for base lubricants
based on the VGP2013 reregulation.

5. CONCLUSIONS
Handling data imbalance in regression problems is a
challenging task. The aim of building a regression model is
to perform well in practice and generalize it to previously
unseen data. This means that the model should be able to filter
out outliers and noise examples in the data. However, when the
target value has undersampled regions, these can be viewed as
noise by standard regression models and consequently
overlooked.
The results of this work indicate that using sampling

techniques, such as SMOGN, can improve the performance of
the ensemble leaner, like XGBoost, with a small margin for
homogeneous data sets (for example only organic molecules).
Furthermore, it can reduce overfitting and the model
sensitivity to outliers as measured by RMSE. However,
sampling techniques can have a limited impact on how well
the model predicts different regions within the toxicity
distribution. The choice of chemical descriptors can affect
how well machine learning models can learn the data,
especially when molecular descriptors do not provide enough
information about molecules. In this study, XGBoost trained
on AlvaDesc descriptors had a higher accuracy compared to
when it was trained on MFP because MFP is typically limited
to atomic connectivity and similarities.
In the literature, the problem of imbalance regression has

been investigated in terms of using sampling techniques, such
as the SMOGN sampling technique used in this study, or by
considering a modified evaluation metric, or by introducing a
weighting scheme that assigns higher weights for samples in
undersampled regions. An alternative promising approach is to
train local models on data regions to generate local experts.
This can help in modeling and assigning higher importance to
undersampled regions in the data without altering the original
data distribution and/or adding artificially generated samples.
Previous studies have suggested that locality in learning can
improve both the accuracy and robustness of ensemble
models.35,36

Despite the prediction errors found in this work, the results
are useful for lubricant generation since according to the
VGP2013, slightly, moderately, highly, or even very highly
toxic chemical substances can still be used in lubricant
formulations when they are present in less than 20 wt %.

Table 6. Number of Samples in the “All” Dataset Split in the
Different Toxicity Levels According to VGP20136

concentrationa toxicity level # of samples in “All” data set
≥1000 mg/L nontoxic 104
≥100 mg/L practically nontoxic 363
10−100 mg/L slightly toxic 413
1−10 mg/L moderately toxic 465
≤1 mg/L highly or very highly toxic 624
aDespite the VGP2013 stating the concentrations of the chemicals in
mg/L, in this work, all toxicity values have been calculated and
converted to molarity concentrations, which is then transformed into
the negative logarithmic scale (−Log mol/L). This is to ensure a
positive uniform distribution of the toxicity, as the range of toxicity
value measured as mg/L can be wide. Also, this transformation was in
line with the curation carried out in ref 16.
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Those levels of toxicity are the ones that are more accurately
predicted in this work, and it can therefore help lubricant
formulators to use the right concentration for new substances
according to their predicted level of toxicity without the need
for performing actual testing.
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