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Abstract: The widespread use of medical imaging techniques such as X-rays and computed
tomography (CT) has raised significant concerns regarding ionizing radiation exposure,
particularly among vulnerable populations requiring frequent imaging. Achieving a bal-
ance between high-quality diagnostic imaging and minimizing radiation exposure remains
a fundamental challenge in radiology. Artificial intelligence (Al) has emerged as a transfor-
mative solution, enabling low-dose imaging protocols that enhance image quality while
significantly reducing radiation doses. This review explores the role of Al-assisted low-dose
imaging, particularly in CT, X-ray, and magnetic resonance imaging (MRI), highlighting
advancements in deep learning models, convolutional neural networks (CNNs), and other
Al-based approaches. These technologies have demonstrated substantial improvements
in noise reduction, artifact removal, and real-time optimization of imaging parameters,
thereby enhancing diagnostic accuracy while mitigating radiation risks. Additionally, Al
has contributed to improved radiology workflow efficiency and cost reduction by minimiz-
ing the need for repeat scans. The review also discusses emerging directions in Al-driven
medical imaging, including hybrid Al systems that integrate post-processing with real-time
data acquisition, personalized imaging protocols tailored to patient characteristics, and
the expansion of Al applications to fluoroscopy and positron emission tomography (PET).
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However, challenges such as model generalizability, regulatory constraints, ethical consid-
erations, and computational requirements must be addressed to facilitate broader clinical
adoption. Al-driven low-dose imaging has the potential to revolutionize radiology by
enhancing patient safety, optimizing imaging quality, and improving healthcare efficiency,
paving the way for a more advanced and sustainable future in medical imaging.

Keywords: radiology; artificial intelligence; low-dose imaging; radiation safety; CT scans;
deep learning

1. Introduction

Medical imaging has revolutionized modern healthcare by providing non-invasive
methods for diagnosing various diseases and abnormalities [1]. Techniques such as X-rays,
computed tomography (CT), and nuclear medicine scans allow clinicians to visualize in-
ternal structures with a level of detail that was previously unattainable, leading to earlier
and more accurate diagnoses [2]. These imaging modalities are essential for detecting
and monitoring conditions such as cancer, cardiovascular disease, trauma, and neurolog-
ical disorders [3]. By guiding treatment decisions and evaluating therapeutic responses,
medical imaging has become indispensable in clinical practice [4]. Additionally, recent
advancements in radiomics have enhanced the integration of imaging data with other
biomolecular insights, uncovering relationships between image-derived features and clini-
cal outcomes [5].

Despite these advancements, medical imaging techniques that rely on ionizing radia-
tion, such as X-rays and CT scans, pose a significant challenge due to the risks associated
with radiation exposure [6]. Ionizing radiation has sufficient energy to damage DNA
within cells, potentially leading to mutations and an increased risk of malignancies [7].
This risk is particularly concerning for populations that require frequent imaging, such as
cancer patients, individuals with chronic illnesses, and pediatric patients [8]. Studies have
reported that CT scans alone contribute nearly 50% of the total medical radiation exposure
in the general population, despite accounting for only 17% of imaging procedures [9].
Furthermore, excessive and cumulative radiation exposure has been linked to an increased
risk of cancers, including leukemia, breast cancer, and thyroid cancer [10].

To mitigate these risks, efforts have been made to reduce radiation exposure in medical
imaging. The “As Low As Reasonably Achievable” (ALARA) principle serves as the
guiding standard in radiology, emphasizing the need to minimize radiation doses while
still obtaining clinically useful images [11]. However, implementing low-dose protocols
remains challenging, particularly in CT imaging, where high-resolution images are essential
for accurate diagnoses [12]. For instance, a typical abdominal CT scan may expose a patient
to a radiation dose of approximately 10 millisieverts (mSv), which is equivalent to about
500 chest X-rays [13-15]. This underscores the need for effective protocols that can reduce
radiation exposure, especially for patients who require repeated imaging over their lifetime.

Several low-dose imaging techniques have been developed to reduce radiation ex-
posure by adjusting scanning parameters such as tube current, tube voltage, and pitch
settings in CT imaging [16]. However, these modifications often introduce trade-offs [17].
Studies have shown that lowering radiation doses typically results in increased image
noise, producing grainy or blurry images that obscure critical anatomical details [18]. Such
image degradation can compromise diagnostic accuracy, leading to potential misdiagnoses
and increasing the likelihood of repeat imaging, which paradoxically raises cumulative
radiation exposure [19]. The challenge remains in striking a balance between reducing
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radiation doses and preserving the high quality of images necessary for accurate clinical
decision-making.

Artificial intelligence (AI) has emerged as a transformative solution to this challenge
by addressing the inherent trade-off between dose reduction and image quality [20]. Deep
learning (DL) algorithms, trained on large imaging datasets, can reconstruct high-quality
images from low-dose scans, effectively reducing noise and correcting artifacts [21]. Al-
enhanced imaging techniques improve resolution and contrast, allowing clinicians to
maintain diagnostic accuracy even at significantly lower radiation doses [22]. Studies have
demonstrated that Al-driven image reconstruction methods can generate low-dose CT
(LDCT) images that are nearly indistinguishable from those obtained using standard-dose
protocols, thereby enabling safer and more effective imaging practices [23,24]. Figure 1
illustrates the effectiveness of Al-assisted LDCT imaging in reducing radiation exposure,
enhancing image quality, and maintaining diagnostic accuracy.

Al-enhanced low-dose CT
scan 1mSv

Lowdose CT
scan 6mSv

Standard dose Low-dose CT image Al-enhanced low-
without Al 4 dose CT image

Standard CT
scan 10mSv

a) Radiation Exposure Comparison (pie chart) b) Three side-by-side CT scan images of the same

anatomical region

Low-dose CT image Al-enhanced

Image Acquisition output Image

Al model processing

c) Al Processing Workflow

100

80 >

60

40

Diagnostic Accuracy (%)

20

Standard dose Low dose Al assited low
Imaging imaging with Al dose imaging

d) Diagnostic Accuracy Comparison

Figure 1. Comparison of radiation exposure, image quality, Al processing workflow, and diagnostic
accuracy in standard vs. Al-assisted low-dose CT (LDCT) scanning.
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While previous studies have explored low-dose imaging protocols, many have noted
that reduced radiation doses often lead to poorer image quality, which can affect clinical
decision-making and patient outcomes [25-27]. Thus, balancing the need for radiation
safety with the necessity of high-quality diagnostic imaging remains a critical issue. Al
presents a promising avenue for overcoming these challenges by optimizing image quality
while allowing for significant reductions in radiation exposure [28]. This review aims
to investigate the effectiveness of Al-assisted low-dose imaging protocols in minimizing
radiation exposure without compromising diagnostic accuracy, with a particular focus on
their application in CT and X-ray imaging.

Figure 1 presents a comprehensive comparison of radiation dose reduction, image
quality enhancements, Al processing workflow, and diagnostic accuracy in Al-assisted
LDCT imaging, including (a) a pie chart illustrating the relative radiation exposure for
standard CT, LDCT without Al, and Al-assisted LDCT; (b) three CT images of the same
anatomical region displayed side by side: a standard dose image, a low-dose image without
Al (showing increased noise and reduced clarity), and an Al-enhanced low-dose image
(demonstrating improved quality); (c) a simplified Al processing workflow that includes
low-dose image acquisition, AI model processing, and enhanced image output; (d) a dot
plot comparing diagnostic accuracy rates for standard dose imaging, low-dose imaging
without Al, and Al-assisted low-dose imaging, illustrating that Al-enhanced scans maintain
diagnostic accuracy while reducing radiation exposure.

2. Methods

This study follows the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines to ensure that a structured and transparent approach to the
literature review is followed. The review focuses on Al-assisted low-dose imaging proto-
cols, highlighting their role in reducing radiation exposure while maintaining diagnostic
accuracy in medical imaging.

2.1. Search Strategy

A systematic search was conducted in the following electronic databases: PubMed,
IEEE Xplore, Scopus, and Web of Science. The search covered articles published between
January 2010 and December 2023 to ensure an up-to-date analysis of Al applications
in radiology. The search terms used included the following: “Al in medical imaging”,
“low-dose imaging and Al”, “artificial intelligence in radiology”, “CT dose reduction Al”,
“low-dose X-ray image enhancement”, “machine learning in MRI imaging”, “deep learning
for noise reduction in imaging”. Boolean operators such as AND/OR were used to refine

the search queries and ensure relevant studies were captured.

2.2. Inclusion and Exclusion Criteria

Studies were selected based on the following criteria:

2.2.1. Inclusion Criteria

e  Peer-reviewed journal articles and conference proceedings discussing Al-assisted
low-dose imaging;

e  Studies evaluating Al algorithms for radiation dose reduction, image enhancement, or
diagnostic accuracy;

e  Papers presenting clinical trials, retrospective analyses, or systematic reviews on Al in
low-dose imaging;

e  Research on Al applications in CT, X-ray, MRI, fluoroscopy, and PET imaging.
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2.2.2. Exclusion Criteria

e Studies focusing only on AI in medical imaging without addressing radiation
dose reduction;

e  Non-English publications;

e  Preprints, editorials, or opinion articles without experimental validation;

e  Studies lacking quantitative results on Al’s impact on image quality or radiation dose.

2.3. Study Selection and Screening

The initial search retrieved 1540 articles across the databases. After removing dupli-
cates (320 articles), the titles and abstracts of 1220 studies were screened for relevance. Of
these, 520 full-text articles were reviewed based on the inclusion and exclusion criteria,
leading to a final selection of 85 studies for detailed analysis. A PRISMA flow diagram
illustrating the systematic search and selection process is included to provide a transparent
overview of the methodology (see Figure 2).

Articles identified through database searching:
PubMed (n=148)
IEEE Xplore (n=92)
Scopus (n=164)
Web of Science (n=116)

Articles screened Articles excluded based on

(n=520)

predefined criteria
(n=279)

Articles excluded following full
| text review

(n=156)

Articles selected for full text review
(n=241)

Articles included in the review
(n=85)

Figure 2. PRISMA flow diagram of the article selection process.
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2.4. Data Extraction and Synthesis

Data were extracted independently by two reviewers and cross-verified to ensure
accuracy. Extracted information included the following:

e Al techniques used (e.g., CNNs, GANs, reinforcement learning);
e  Medical imaging modality and radiation dose reduction methods;
e Key findings on image quality, diagnostic accuracy, and workflow efficiency.

Figure 3 illustrates the distribution of the 85 selected studies across different themes
in Al-assisted low-dose imaging. The majority of studies [29] focus on Al applications
in CT dose reduction, reflecting the high priority of radiation minimization in computed
tomography. Low-dose X-ray imaging follows with 20 studies, emphasizing Al’s role in im-
proving image quality while maintaining low radiation exposure. MRI image enhancement
accounts for 15 studies, highlighting Al’s impact in reducing scan times and enhancing
resolution. Al applications in fluoroscopy optimization and PET /nuclear medicine each
contribute 10 studies, demonstrating emerging research in these modalities.

30

25|

20

15

Number of Selected Papers

5 -
0 : : - - :
y et 066*9\’0“ o e " LR ( e
C( 0066 .\(\\/O\N’ age%(\\(\ c)('OQ : \ OC\ea
N'\Q N Q\\\«\ " 00(0 \.\(\?
P*\.\(\ P‘\‘\(\ "

Themes in Al-Assisted Low-Dose Imaging

Figure 3. Distribution of selected papers across various themes.

3. Radiation Exposure in Medical Imaging: Risks and Challenges

Medical imaging has become a cornerstone of modern diagnostic medicine, enabling
physicians to visualize internal structures and detect disease with remarkable precision [30].
However, imaging modalities that utilize ionizing radiation, such as X-rays and CT, present
a growing concern due to the associated radiation exposure risks [29]. In other words,
the use of ionizing radiation in diagnostics is invaluable, but it is not without health
implications, particularly in cases of repeated or high-dose imaging [31]. As medical
imaging technology advances, so too does the frequency of its use, raising questions
about the long-term consequences of radiation exposure. While the benefits of imaging,
particularly in early disease detection and treatment planning, are substantial, the medical
community faces significant challenges in mitigating radiation risks without compromising
the diagnostic value of these techniques.
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3.1. Risks of lonizing Radiation

According to Akram and Chowdhury, the primary concern with medical imaging
procedures that involve ionizing radiation is the biological damage they can cause at the
cellular level [32]. Ionizing radiation has enough energy to remove tightly bound electrons
from atoms, creating ions [33]. Ionizing radiation can damage the DNA in cells, potentially
leading to mutations that, over time, may result in cancer [34]. While a single exposure
to ionizing radiation during a medical procedure is generally considered safe for most
individuals, a study highlighted that cumulative exposure from repeated imaging studies
significantly increases the risk of adverse biological effects [35]. High-dose procedures, such
as CT scans, are particularly concerning due to the larger amounts of radiation involved
compared to those in standard X-rays [36].

For instance, a full-body CT scan can expose a patient to a radiation dose equivalent
to that from several hundred chest X-rays, approximately 10 to 20 millisieverts (mSv) [37].
In contrast, a single chest X-ray exposes the patient to a much lower dose, typically around
0.1 mSv [38]. According to Walsh et al. [39], the cumulative effect of multiple imaging
procedures, especially in patients requiring frequent scans, such as those with cancer or
chronic illnesses, can lead to significant radiation exposure over time. A systematic review
and meta-analysis of early-life ionizing radiation exposure and cancer risks revealed that
repeated exposure to ionizing radiation, particularly in younger patients, can increase the
risk of radiation-induced cancers [40]. A study demonstrated a measurable increase in
the risk of leukemia and brain tumors in children who underwent multiple CT scans [41].
Another study estimated that 1 in every 10,000 children could develop radiation-induced
cancer due to repeated imaging [42].

Moreover, findings from a study revealed that pediatric patients are particularly
vulnerable to the effects of ionizing radiation due to their developing tissues and longer
life expectancy, which provides a larger window for radiation-induced malignancies to
manifest [43]. Similarly, another study claimed that certain patient populations, such as
those with genetic predispositions to cancer or individuals who require frequent imaging
for disease monitoring, are at a heightened risk [44]. These factors reinforce the importance
of minimizing radiation exposure whenever possible while still ensuring that medical
imaging continues to provide essential diagnostic information.

3.2. Efforts to Reduce Exposure

In response to the risks associated with radiation exposure, the medical commu-
nity has developed several strategies aimed at reducing the amount of radiation used in
imaging procedures without compromising the quality of diagnostic images. One of the
foundational principles guiding radiation safety is the ALARA principle. The ALARA
concept emphasizes that every effort should be made to keep radiation doses as low as
possible while still obtaining the necessary diagnostic information [45]. The ALARA con-
cept advocates for the judicious use of imaging procedures, ensuring that the benefits of
the procedure outweigh the potential risks of radiation exposure [46]. Radiologists are
encouraged to tailor imaging protocols based on individual patient needs, considering
factors such as age, size, and the clinical question at hand [47].

To achieve lower radiation doses, healthcare professionals have developed a variety
of low-dose imaging protocols, particularly in high-dose modalities like CT [48]. These
low-dose imaging protocols often involve adjusting the technical parameters of the imaging
equipment to minimize radiation exposure [49]. Additionally, one common approach
is to reduce the tube current or voltage during CT scans [50]. By lowering the amount
of radiation emitted by the scanner, patients are exposed to lower doses [51]. However,
this reduction in tube current or voltage during CT scans typically results in increased
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noise within the images, which can obscure important details and make it more difficult
to accurately interpret the scan [52]. Hence, the trade-off between reduced radiation and
image quality is a central challenge in medical imaging, as clinicians must ensure that the
diagnostic integrity of the image is not compromised by lower doses.

Consequently, another approach to reducing radiation exposure is increasing the scan
pitch in helical CT, which allows for faster scanning with reduced radiation [53]. However,
Ahmad et al. [54] argued that this method can introduce artifacts or distortions in the
images, which may affect their diagnostic value. To address the limitations of these dose-
reduction techniques, there is a development in advanced image reconstruction methods,
such as iterative reconstruction [55]. Unlike traditional reconstruction techniques, which
rely on filtered back projection, iterative reconstruction algorithms work by processing
the image data through multiple refinement cycles [56]. These iterative reconstruction
algorithms can reduce noise and improve image quality, allowing radiologists to obtain
diagnostically useful images from lower radiation doses [57].

Hence, while these dose-reduction techniques have proven effective, they often come
with compromises in image quality, leading to the need for alternative solutions that
preserve diagnostic accuracy. This is where Al and machine learning (ML) technologies
have shown significant promise. Al-based algorithms, particularly those utilizing DL
models, can enhance the quality of low-dose images by reducing noise, correcting artifacts,
and improving resolution [58]. By training on large datasets of high- and low-dose images,
these models learn to reconstruct high-quality images from low-dose data, making it
possible to significantly reduce radiation exposure without sacrificing diagnostic detail [59].
Al’s ability to enhance image quality at lower radiation doses represents a breakthrough in
the ongoing effort to make medical imaging safer for patients while maintaining the critical
diagnostic value of these technologies.

4. Artificial Intelligence in Medical Imaging

Al has emerged as a transformative technology in the medical field, particularly in
radiology, where it has the potential to revolutionize image analysis, interpretation, and
diagnostic workflows [60]. A study revealed how Al has garnered considerable attention
for its ability to automate complex tasks that typically require expert human judgment,
while simultaneously augmenting the capabilities of radiologists in the field of medical
imaging [61]. Interestingly, the integration of Al into medical imaging not only promises
to improve diagnostic accuracy and efficiency but also opens up new possibilities for ad-
dressing long-standing challenges such as radiation dose reduction without compromising
image quality [62]. AI technologies, including ML and DL models, are increasingly being
applied to enhance the quality of low-dose imaging protocols, offering a potential solution
to the critical need to minimize radiation exposure while maintaining the diagnostic utility
of medical images [21].

4.1. Overview of Al in Radiology

Al’s role in radiology has grown substantially in recent years, with the development of
sophisticated algorithms that can perform tasks traditionally handled by radiologists [63].
These tasks include image classification, segmentation, detection of abnormalities, and
image reconstruction, all of which are crucial for accurate and efficient diagnosis. Among
the most impactful Al techniques in radiology are ML and DL, particularly the use of
convolutional neural networks (CNNs). A review on efficient neural network techniques
reported that CNNs have demonstrated remarkable accuracy in processing large volumes
of medical images, learning from the data to identify patterns, detecting abnormalities, and
enhancing image quality [64].
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One of the major strengths of Al in radiology is its ability to process and analyze vast
amounts of image data much more quickly and consistently than human radiologists can,
leading to improvements in workflow efficiency [65]. For instance, Al algorithms can be
trained to detect lung nodules, brain tumors, or fractures in radiographic images with high
sensitivity and specificity, often outperforming human interpretation in terms of speed and
accuracy. This capability has sparked considerable interest in applying Al technologies
to low-dose imaging, where the challenge lies in the inherent trade-off between reducing
radiation exposure and maintaining sufficient image quality for diagnostic purposes [66].
Figure 4 provides a visual that illustrates Al’s contribution to radiology from image input

to enhanced diagnosis.

/N Y

Medical Image Input

Al-assisted Diagnosis

N

Detection of
Abnormalities

Figure 4. Simplified Al workflow in radiology: from medical image input to Al-assisted diagnosis.
The figure illustrates the key stages where Al contributes to radiology, starting from image input,
followed by Al processing through classification, segmentation, and image enhancement, leading to
Al-assisted diagnosis with improved detection of abnormalities.

Al’s ability to enhance image reconstruction from noisy or incomplete data makes
it an ideal candidate for addressing the limitations of low-dose imaging protocols [67].
Additionally, DL models, such as CNNs, have been developed to learn how to reconstruct
high-quality images from low-dose data by compensating for the reduced signal-to-noise
ratio that typically results from lower radiation doses. By using large datasets of both
full-dose and low-dose images, these models can effectively learn the intricate details
of anatomical structures and noise patterns, enabling them to produce images that are
diagnostically comparable to those generated by full-dose scans [68]. This application of Al
is particularly valuable in modalities like CT and X-ray, where radiation dose reduction is a
key priority due to the risks associated with cumulative exposure to ionizing radiation [69].

4.2. Al-Assisted Low-Dose Protocols

Al-assisted low-dose imaging protocols leverage advanced algorithms to enhance the
quality of images acquired with lower radiation doses, addressing the primary challenge
of maintaining diagnostic accuracy while minimizing patient exposure [47]. Al-based
solutions have been broadly categorized for low-dose imaging into two main approaches:
image post-processing and data acquisition optimization [13-15]. The first approach, image
post-processing, involves the use of Al models to improve the quality of medical images
after they have been acquired [70]. This method focuses on denoising and enhancing
low-dose images to compensate for the reduced signal-to-noise ratio that results from
lower radiation exposure [71]. Al models, particularly DL-based methods, have shown
significant success in this area by reducing the noise and artifacts that typically accompany
low-dose scans.
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For example, CNNs can be trained to identify and remove noise patterns in CT or
X-ray images while preserving important anatomical details [72]. This process allows for
significant dose reductions while maintaining image quality at levels comparable to those
achieved with standard-dose imaging. In clinical practice, Al-powered post-processing
tools have already demonstrated their ability to enhance the diagnostic utility of low-dose
scans, reducing the need for repeat imaging and lowering the overall radiation burden
on patients [73]. Al is effective in post-processing on LDCT for lung cancer screening,
where Al models have been able to denoise images and improve visualization of lung
nodules without increasing radiation doses [74]. Similarly, minimizing radiation exposure
is particularly critical, and Al-based post-processing algorithms have allowed for the safe
use of low-dose protocols while preserving the accuracy required for clinical decision-
making [75].

The second approach, data acquisition optimization, integrates Al into the imaging
process itself by optimizing scanning parameters in real time to achieve the lowest possible
radiation dose while ensuring sufficient image quality. Al-driven systems can analyze
patient-specific factors, such as body habitus or anatomical complexity, and adjust the
imaging parameters accordingly. This dynamic optimization reduces unnecessary radiation
exposure while maintaining high image quality, ensuring that the scan is tailored to the
individual needs of the patient [76].

Real-time Al-based optimization has been applied effectively in modalities such as CT,
where radiation dose can vary significantly depending on factors such as patient size, tissue
density, and clinical indication for the scan. For example, Al can be used to automatically
adjust the tube current and voltage during the scanning process, ensuring that the radiation
dose is minimized without sacrificing diagnostic clarity [77]. This approach not only
reduces the overall radiation burden but also enhances workflow efficiency by reducing
the need for manual adjustments and repeat scans. Moreover, Al systems can incorporate
feedback from previous scans and continuously improve their performance through ML,
further optimizing dose reduction strategies over time [78].

Both image post-processing and data acquisition optimization have shown great
promise in clinical applications. There are numerous studies demonstrating the ability of
Al algorithms to improve image quality while reducing radiation doses [79]. For instance,
a recent study showed that Al-based reconstruction techniques like DL reconstruction
algorithms can rapidly reconstruct images to produce desired high-quality CT images at
a 30-71% radiation dose reduction [80]. This method, when compared to filtered back
projection and hybrid iterative reconstruction, provides better image quality and sug-
gests that Al has the potential to transform low-dose imaging protocols, making them
safer and more effective for patients while reducing the risks associated with cumulative
radiation exposure.

5. Al-Based Image Processing Techniques

Al-assisted low-dose imaging employs various image processing techniques to en-
hance the quality of medical images while maintaining diagnostic accuracy [81]. These
techniques aim to overcome the inherent challenges of reduced radiation doses, such as
increased noise, reduced contrast, and image artifacts [82]. By leveraging deep learning-
based methods, including convolutional neural networks (CNNs), generative adversarial
networks (GANSs), and hybrid Al architectures, Al-driven imaging solutions have signifi-
cantly improved the clarity, resolution, and contrast of low-dose medical images [83]. To
validate the effectiveness of these Al-enhanced techniques, standardized evaluation metrics
are used to assess image quality, structural similarity, and diagnostic reliability.
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5.1. Denoising Techniques

Denoising plays a fundamental role in low-dose imaging, as reducing radiation doses
often results in a lower signal-to-noise ratio (SNR) [84]. Al-driven denoising techniques aim
to suppress noise while preserving anatomical structures to ensure clinical usability [81].
One of the most widely used approaches in denoising is convolutional neural networks
(CNNSs), which learn noise patterns from large-scale datasets and reconstruct clearer images.
CNN-based models have demonstrated an ability to reduce noise by up to 50%, thereby
improving image clarity while maintaining diagnostic accuracy.

Generative adversarial networks (GANs) have also been effectively applied in denois-
ing tasks, particularly for low-dose computed tomography (LDCT) images. GAN-based
denoising methods, such as Denoising GANs (DnGANs) and Deep Image Prior (DIP),
generate high-quality images by learning from full-dose reference scans [85]. These mod-
els have achieved structural similarity index (SSIM) scores of over 0.90, indicating near
full-dose image quality.

5.2. Artifact Reduction Techniques

Artifacts in low-dose imaging often degrade image quality and obscure important
clinical information [86]. Traditional iterative reconstruction (IR) techniques have been
employed to reduce these artifacts, but they are computationally intensive and can intro-
duce blurring. Al-based approaches, particularly deep learning-enhanced IR methods,
have shown significant improvements by optimizing noise suppression and preserving fine
anatomical details. Studies have demonstrated that Al-assisted IR improves the contrast-to-
noise ratio (CNR) by approximately 30% compared to conventional IR methods.

Autoencoders and U-Net architecture have also been widely used for artifact correction.
These deep learning models efficiently detect and remove artifacts in X-ray and CT images,
leading to a reduction in mean squared error (MSE) of up to 40% compared to that of
traditional reconstruction techniques.

5.3. Super-Resolution and Image Enhancement

Super-resolution techniques are employed in Al-driven low-dose imaging to enhance
image resolution, making low-dose images comparable to full-dose images [87]. Super-
resolution GANs (SRGANs) have shown great potential in generating high-resolution
images from low-resolution inputs. These models improve image sharpness and detail,
achieving up to fourfold enhancement in resolution for MRI and CT images. Recent
advancements in hybrid AI models have combined SRGANs with transformer-based
architecture, further improving spatial resolution and texture realism [88]. Such models
have been reported to increase the peak signal-to-noise ratio (PSNR) by 4-6 dB over that of
conventional upscaling methods, resulting in improved image clarity without introducing
excessive noise or artifacts.

5.4. Contrast Enhancement Techniques

Contrast enhancement is critical in medical imaging, as it allows for the better differen-
tiation of tissues and the detection of abnormalities [89]. Low-dose imaging often results in
reduced contrast, which can compromise the visibility of lesions or subtle pathologies [90].
Al-based contrast enhancement techniques, such as histogram equalization and adaptive
contrast enhancement, have been successfully implemented to improve the contrast-to-
noise ratio (CNR) [91]. Deep learning approaches using reinforcement learning algorithms
have been applied to optimize contrast levels dynamically [92]. These techniques have
been shown to improve lesion detectability in positron emission tomography (PET) scans
by 15-20% compared to standard contrast adjustment methods. Al-driven contrast opti-
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mization also helps in refining brightness levels, ensuring uniform contrast across various
tissue densities.

6. Evaluation Metrics for AI-Based Low-Dose Imaging Techniques

To quantitatively assess the effectiveness of Al-driven low-dose imaging techniques,
various evaluation metrics are used to compare Al-enhanced images with their full-dose
counterparts. These metrics evaluate image quality, structural similarity, contrast enhance-
ment, and diagnostic performance. Table 1 presents the most commonly used metrics and

their significance in evaluating Al-based low-dose imaging methods.

Table 1. Evaluation metrics for Al-based low-dose imaging techniques.

Metric

Description

Typical Use Case

Performance Range in
Al Models

Structural Similarity
Index (SSIM)

Measures structural similarity
between Al-enhanced and
full-dose images. SSIM values
range from 0 to 1, with higher
values indicating a closer
resemblance to reference
images [93].

Used in evaluating Al-based
denoising and artifact

reduction in CT and MRI [94].

Al-based low-dose imaging
models often achieve SSIM scores
of >0.90, indicating near-full-dose

image quality [95].

Peak Signal-to-Noise
Ratio (PSNR)

Evaluates the ratio between signal
power and noise level in decibels
(dB). Higher PSNR values
indicate lower noise and better
image clarity [96].

Applied in noise suppression
and super-resolution image
enhancement [97].

Al-driven reconstruction
techniques typically improve
PSNR by 4-6 dB over
conventional low-dose
methods [98].

Contrast-to-Noise

Measures how well contrast is
preserved while suppressing
noise, which is critical for

Used in Al-assisted
contrast enhancement

Al-based methods enhance CNR
by 20-30%, improving lesion

Ratio (CNR) detecting lesions and fine techniques [100]. detectability [101].
anatomical details [99].
Quantifies pixel-level differences . .
. . . . Al-enhanced image processing
between Al-enhanced images and  Used in evaluating Al-driven . o
Mean Squared : . . techniques have shown 40%
reference full-dose images. Lower  super-resolution and artifact
Error (MSE) . lower MSE compared to
MSE values indicate better removal methods [102]. .
. conventional approaches [103].
reconstruction accuracy [93].
A.Varlatlor} of MSE that gIves s . RMSE values are significantly
higher weight to larger pixel Applied in evaluating . o - ;
Root Mean Squared .. .. . ) reduced in Al-optimized imaging,
deviations, providing a more Al-based image restoration . .
Error (RMSE) . leading to more reliable
comprehensive assessment of methods [105]. .
: reconstructions [106].
image accuracy [104].
Area Under the Assesses the ability of Al models Al-driven detection models report

Receiver Operating
Characteristic Curve

to distinguish between normal
and abnormal cases, often used
in Al-based diagnostic

Used in Al-assisted lesion
detection in low-dose CT and
MRI [108].

AUC-ROC values of >0.95,
demonstrating high diagnostic

(AUC-ROC) classification [107]. reliability [109].
Measures segmentation accuracy
by comparing Al-identified Lo : Al-based segmentation models
Dice Similarity regions to expert-annotated e mlti};l ’tie(;in?ajsfsti)iségf and achieve DSC values > 0.85,
Coefficient (DSC) reference regions. Values & MRI [111] ensuring precise anatomical

closer to 1 indicate better
segmentation [110].

delineation [112].

7. Key Applications of Al in Low-Dose Imaging Protocols

The integration of Al into medical imaging has revolutionized several imaging modal-

ities, with a particular focus on reducing radiation exposure while maintaining image
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quality. Al’s ability to analyze and reconstruct images with minimal noise and artifacts

makes it particularly suitable for low-dose imaging protocols. Table 2 provides a concise

summary of how different Al techniques are applied across various imaging modalities,

their functions, benefits, and an example or study supporting each application.

Table 2. Key applications of Al in low-dose imaging protocols.

Imaging . . .
Modality Al Technique Function Benefits Example/Study
Improve LDCT image quality A study found that Al models
Denoising, artifact by reducing noise, enhancing  effectively denoised LDCT images and
CNNs reduction, image resolution, and maintaining  improved visualization of lung nodules
reconstruction diagnostic accuracy evenat  without increasing radiation
lower radiation doses exposure [74].
The use of GANs increased the
G te high-qualit detection rate of metastatic liver lesions
_enerate mgh-qua ity in abdominal CT scans from 65% to
CT images by learning from 95% [113].
fftfﬂl-.dose' Co%lfl?terfilrts’ The use of GANs increased the anomaly
. OHering signiticant dose score on malignant images from 91.6%
Image synthesis reductions without o
GANs e . . t0 95.32% [114].
and enhancement sacrificing diagnostic utility. A study found that the use of GANS for
G?Nrsn}e:il]i}?eef;ierzi lm“jeiato data augmentation improved the
forugis tinction ca abi%ties of detection accuracy of sub-centimetric
. ap pulmonary adenocarcinoma by about
disease detection models. 8%, increasing from 53.2% to
60.5% [115].
A study demonstrated that the
. Quadratic SVM model achieved a
Allows for !owe? radla.tlor} detection accuracy of 97.58% for
Denoisin trast doses, especially in pediatric, ia in th diatri
g, contras pneumonia in the pediatric age
emergency and dental
ML Models enhancement, settings. by reducing noise group [116].
feature extraction and 11%1 ’ro};in ana t%) mical An Al algorithm from TorchXRayVision
p : lizg tion achieved an accuracy of 76.54% when
X-ray Imaging visuatizatio applied to a publicly available pediatric
chest X-ray dataset [117].
. A study using a fuzzy enhanced deep
suEbfclllelii‘IaCcetL};Zsdierfh?;i?)is learning-based framework to
DL-based Segmentation, or infections w,i th 1§w— dose ’ differentiate between chest X-rays of
feature detection . . COVID-19 pneumonia and interstitial
models X-rays, improving speed and

for abnormalities

accuracy in diagnostic
workflows

pneumonias not caused by COVID-19
achieved a classification accuracy of up
to 81% [118].
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Table 2. Cont.

Imaging
Modality

Al Technique Function Benefits Example/Study

Al-driven re-
construction
algorithms

MRI

The integration of advanced image
processing algorithms and deep
learning models reduced scan time
by an average of 20-30%, resulting in
quicker and more efficient
experience [119].
Al-enhanced imaging techniques
Motion artifact Reduce scan times and improved image quality at lower
correction, noise patient discomfort, improve  radiation doses, reducing the need for
reduction, image resolution, reduce the  repeat scans and leading to a 25%
acceleration of need for contrast agentsin ~ reduction in repeat scan rates, directly
image acquisition certain cases enhancing patient experiences [120].
A study collected quantitative data from
surveys and found that over 80% of
patients reported a positive overall
experience with the improved imaging
procedures, which led to a 25%
reduction in repeat scan rates, directly
enhancing patient experiences [121].

Reinforcement

Adapts scan settings in
real-time based on A novel algorithm for breast lesion
patient-specific factors, detection from DCE-MRI achieved
leading to more efficient optimal detection accuracy with
scans and reduced need for  reduced run time complexity [122].
operator intervention

Optimization of
scan parameters
during acquisition

Abbreviations—ALl: artificial intelligence; CT: computed tomography (CT); CNNs: convolutional neural net-
works; LDCT: low-dose computed tomography; GANs: generative adversarial networks; ML: machine learning;
SVM: support vector machines; DL: deep learning; COVID-19: coronavirus disease 2019; MRI: magnetic resonance
imaging; DCE: dynamic contrast-enhanced.

71. Alin CT

CT is one of the most widely used imaging modalities due to its ability to provide
detailed cross-sectional images of the body. However, CT imaging is associated with rela-
tively high radiation doses, especially when compared to other imaging techniques like
X-rays [123]. As a result, CT imaging has been at the forefront of Al-driven dose reduction
strategies, with a focus on minimizing radiation exposure while maintaining the diagnostic
integrity of the images. Al algorithms, particularly DL models, have demonstrated remark-
able potential in improving the quality of LDCT images. Techniques such as deep CNNs
and generative adversarial networks (GANSs) are being utilized to enhance the quality of
images obtained with reduced radiation doses. These models excel at performing image
denoising, artifact reduction, and image reconstruction, enabling the acquisition of diag-
nostically useful images with much lower radiation doses than traditional protocols [47].

For instance, deep CNNs are trained on large datasets of both full-dose and LDCT
images, learning the complex patterns in anatomical structures as well as the noise and
artifacts introduced by reduced radiation exposure. This enables the model to reconstruct
high-quality images from low-dose inputs. GANS, on the other hand, can generate synthetic
high-quality images by learning to map low-dose images to their full-dose counterparts,
thus preserving the diagnostic information in a fraction of the radiation dose. This approach
has been shown to significantly reduce the noise and improve image resolution [27,115].

Numerous studies have demonstrated the clinical utility of Al in LDCT. Researchhas
shown that Al-enhanced LDCT images can achieve comparable diagnostic accuracy to
those obtained with full-dose scans [124]. For example, in lung cancer screening, where
LDCT is frequently used to minimize radiation exposure, Al-based reconstruction methods
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have successfully maintained the ability to detect small lung nodules, which are critical for
early diagnosis. The integration of Al into LDCT has not only reduced radiation risks but
has also improved the overall efficiency of the imaging process by decreasing the need for
repeat scans due to poor image quality [74].

7.2. Al in X-Ray Imaging

X-ray imaging is another modality where Al-assisted protocols have been applied
to reduce radiation exposure while maintaining image clarity. Although X-rays expose
patients to lower radiation doses than CT scans, the frequent use of this modality in clinical
practice, particularly in pediatric and emergency settings, necessitates dose reduction strate-
gies [125]. Al techniques, particularly those involving ML and DL, have been instrumental
in improving the quality of low-dose X-ray images by reducing noise, enhancing contrast,
and preserving anatomical details that are crucial for diagnosis.

Some of the primary challenges in low-dose X-ray imaging are the increased noise
and reduced contrast that result from lowering the radiation dose. Al-based denoising
algorithms have been developed to address these issues by learning from large datasets
of X-ray images. ML models, trained on both low-dose and full-dose X-ray images, can
identify and filter out noise while preserving important anatomical features such as bone
structures, soft tissues, and lesions [126].

These models not only enhance image clarity but also maintain the diagnostic value
of the images, ensuring that clinicians can make accurate assessments even with reduced
radiation exposure. In clinical applications, Al-enhanced low-dose X-rays have been partic-
ularly beneficial in pediatric imaging, where minimizing radiation exposure is critical [116].
Al-driven denoising and contrast enhancement have made it possible to safely use lower
radiation doses while still achieving the diagnostic detail necessary for conditions such as
fractures, infections, or congenital abnormalities. Moreover, in emergency settings where
X-rays are often performed rapidly, Al-assisted low-dose protocols have helped improve
the speed and accuracy of image interpretation, reducing the need for repeat scans and
improving patient throughput [117].

7.3. Magnetic Resonance Imaging (MRI) and Al

Although MRI does not involve ionizing radiation, Al-assisted protocols have been
explored in MRI to optimize other safety-related factors, such as reducing scan times and
minimizing the use of contrast agents. MRI scans are known for their long acquisition
times, which can lead to patient discomfort and motion artifacts that degrade image
quality [127]. Additionally, some MRI procedures require the use of contrast agents, such
as gadolinium, which can pose risks in certain patient populations, particularly those with
kidney dysfunction. Al-driven denoising and image reconstruction algorithms have been
developed to address these challenges, allowing for faster MRI scans and improved image
quality. These AI models, much like those used in CT and X-ray imaging, learn from large
datasets of MRI images and can enhance images by reducing noise and correcting for
motion artifacts [119]. This not only shortens scan times but also reduces the likelihood
of repeat imaging, making the process more efficient for both patients and clinicians.
Quantitative data from different surveys showed out that over 80% of patients expressed a
positive overall experience with the improved imaging procedures [121].

Al-based algorithms are also being used to improve the resolution of images acquired
with reduced scan times. Traditionally, reducing scan time in MRI leads to a loss of im-
age resolution, but Al algorithms can interpolate and reconstruct high-resolution images
from shorter scans [128]. This capability has been particularly valuable in applications
such as brain imaging, where high-resolution detail is critical for diagnosing neurological
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conditions. Additionally, Al-assisted MRI protocols have contributed to safer imaging
practices by reducing the need for contrast agents. In some cases, Al-driven reconstruc-
tion techniques can enhance the visualization of tissues and structures to the point where
contrast agents are no longer necessary, particularly in patients at higher risk for adverse
reactions. For example, a study explored the use of Al-based methods to enhance the
visibility of tumors or blood vessels in non-contrast MRI scans, providing an alternative
to gadolinium-based agents [129]. Figure 5 demonstrates how Al can augment medical
imaging across different modalities, potentially improving diagnostic accuracy and effi-
ciency. This diagram illustrates the basic process of applying artificial intelligence to MRI,
X-ray, and CT scan images. The workflow consists of three main stages: (1) acquisition of
raw images from various imaging modalities, (2) Al-driven analysis incorporating image
processing, pattern recognition, and data extraction techniques, and (3) enhanced output
providing highlighted anomalies, automated measurements, and diagnostic suggestions.

P9
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Raw Images obtained from MRI, Xray and CT scan

g

Image Processing Pattern Recognition Data extraction

J

/N

'

Al Analysis
Highlighted L Automated Diagnostic l
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Figure 5. Simplified workflow of Al applications in medical imaging.
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8. Benefits of Al-Assisted Low-Dose Imaging

Al-assisted low-dose imaging has introduced transformative benefits in the field
of medical imaging, providing solutions to long-standing challenges such as radiation
safety, image quality, and healthcare efficiency. These benefits extend across a wide range
of clinical applications and patient populations, making Al a critical tool in improving
diagnostic accuracy while reducing the risks associated with imaging procedures.

8.1. Reduced Patient Risk

One of the most significant advantages of Al-assisted low-dose imaging protocols is
the reduction in radiation exposure, which in turn lowers the risk of radiation-induced
harm [130]. This is particularly important for vulnerable populations, such as pediatric
patients, cancer patients, and individuals requiring frequent imaging for chronic condi-
tions. These groups are at an elevated risk of radiation-related complications due to their
increased exposure over time. For example, pediatric patients are more susceptible to the
effects of ionizing radiation due to their developing tissues and longer life expectancy,
which increases the likelihood that radiation-induced malignancy could develop later in life.
A study conducted on the late effect of radiation therapy in pediatric patients and survivor-
ship found out that although advances in multimodality therapy have led to childhood
cancer cure rates of over 80% [131]. However, surgery, chemotherapy, and radiotherapy
may lead to debilitating or even fatal long-term effects among childhood survivors beyond
those inflicted by the primary disease process [131]. Similarly, cancer patients undergoing
routine surveillance imaging often accumulate higher radiation doses, compounding their
risk of secondary radiation-induced cancers.

Al-assisted low-dose imaging directly addresses this issue by allowing clinicians to
obtain high-quality diagnostic images using significantly reduced radiation doses. Accord-
ing to reports from a systemic review on Al for radiation dose optimization in pediatric
radiology, a majority of studies demonstrated that Al could reduce radiation doses by
36-70% without causing a loss of diagnostic information, with three studies included in the
systematic review demonstrating that the use of Al could even achieve further radiation
dose reductions of up to 95% [132]. By minimizing radiation exposure, Al reduces the cumu-
lative radiation burden on patients, significantly lowering their long-term health risks while
still providing the imaging data necessary for effective diagnosis and treatment planning.

8.2. Enhanced Image Quality

One of the primary challenges of traditional low-dose imaging protocols has been the
degradation of image quality, which can lead to decreased diagnostic accuracy [133]. Low-
ering the radiation dose typically results in increased noise and reduced contrast, making it
difficult for radiologists to identify subtle abnormalities. However, Al-assisted imaging
protocols offer a solution to this problem by using advanced algorithms to enhance image
quality, even when the radiation dose is reduced. A comparative study on coronavirus
disease (COVID-19) CT images and its findings were supportive of Al’s ability to enhance
image quality through denoising, artifact removal, and image reconstruction, which is par-
ticularly valuable in imaging modalities, where maintaining clear, high-resolution images
is essential for accurate diagnosis [134].

Al models, particularly DL algorithms like CNNS5s, can process low-dose images and
remove noise without losing critical anatomical details [135]. This allows radiologists to
detect small lesions, fractures, or other abnormalities that might otherwise be obscured in
low-dose images. For example, Al-enhanced LDCT scans have been shown to produce
images that are diagnostically equivalent to full-dose scans, enabling the detection of lung
nodules or the obtention of other critical findings without the need for higher radiation
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exposure [115]. In addition to noise reduction, Al algorithms can correct for motion artifacts
or distortions that occur during imaging, further improving the clarity and accuracy of
the images [136]. This ensures that even with lower radiation doses, Al-assisted imaging
provides the high-quality images necessary for effective clinical decision-making.

8.3. Cost Efficiency

Al-assisted low-dose imaging protocols also contribute to cost efficiency in healthcare
by reducing the need for repeat scans and improving overall workflow efficiency [73]. Poor-
quality images that result from traditional low-dose imaging protocols often necessitate
additional scans to obtain clearer diagnostic information, increasing both the radiation
dose to the patient and the overall cost of care. Repeat imaging not only adds to patient
exposure but also places additional strain on healthcare resources, leading to increased
costs for hospitals, imaging centers, and patients alike. By enhancing image quality at lower
radiation doses, Al can significantly reduce the frequency of repeat scans, thus lowering
the overall cost of healthcare [137]. Al algorithms optimize imaging protocols in real-time,
ensuring that the first scan produces diagnostically useful images, which minimizes the
need for additional imaging. This improved efficiency not only enhances patient safety
but also reduces operational costs associated with extended imaging sessions, equipment
wear, and personnel time. Furthermore, Al-driven imaging solutions can streamline the
diagnostic workflow by automating certain aspects of image interpretation. Al algorithms
can pre-process and enhance images, allowing radiologists to focus on interpretation rather
than manual image correction. This leads to faster diagnostic turnaround times, improves
throughput in busy radiology departments, and ultimately enhances patient care. By
integrating Al into imaging protocols, healthcare providers can achieve more efficient use
of resources, improving both clinical and economic outcomes [138].

9. Future Directions

As Al continues to make significant strides in the field of medical imaging, the potential
for further advancements in low-dose imaging protocols is vast. The authors of [47]
suggested that the next generation of Al-driven imaging systems is expected to push the
boundaries of radiation dose reduction while maintaining or even enhancing diagnostic
quality. In a study, it was concluded that by focusing on hybrid Al systems, personalized
imaging protocols, and the expansion of Al applications to other imaging modalities, the
future of Al-assisted medical imaging holds the promise of even safer and more efficient
diagnostic techniques [139].

9.1. Hybrid Al Systems

One of the most exciting areas of future research in Al-assisted low-dose imaging
involves the development of hybrid Al systems that combine both image post-processing
and real-time data acquisition optimization [140]. While current AI models typically focus
on either post-processing (enhancing images after acquisition) or optimizing scanning
parameters during the imaging process [141], future hybrid systems could seamlessly
integrate both approaches to maximize the benefits of each. These hybrid systems, as
accessed, would enable real-time feedback during the imaging procedure, allowing for
the continuous adjustment of scanning parameters based on Al-driven analysis of the
patient’s anatomy and the specific imaging requirements [142]. After image acquisition, the
system would then apply advanced post-processing algorithms to further enhance image
quality, removing noise and artifacts that may have resulted from low-dose scanning [143].
However, this dual approach has the potential to provide even greater reductions in radia-
tion dose while ensuring the highest level of diagnostic accuracy [144]. Moreover, hybrid
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systems could learn from each imaging session, continually improving their performance
over time, leading to increasingly personalized and optimized imaging protocols for each
patient [145].

9.2. Personalized Imaging Protocols

In 2015, a study reported extensively on another promising direction for future Al
research, which is the development of highly personalized imaging protocols. They ex-
plored the possibility of this in the field of cancer radiation therapy [146]. Just as practiced
in clinical radiology, current imaging protocols are generally standardized, meaning that
all patients undergoing a particular imaging study receive roughly the same radiation
dose, regardless of their individual characteristics [147,148]. However, another modeling
study concluded that Al offers the opportunity to tailor imaging protocols based on patient-
specific factors, such as body mass index (BMI), age, medical history, and the specific
clinical question being addressed [149].

Personalized imaging protocols driven by Al would allow for more precise adjust-
ments to radiation doses, ensuring that each patient receives the minimum necessary
exposure while still achieving diagnostically sufficient images [150]. For instance, it was
concluded that incorporating patient-specific body metrics into CT dosimetry could en-
hance personalized care and radiation safety [150]. Patients with higher BMI may require
different imaging parameters than those with lower BMI due to differences in tissue den-
sity, and Al could adjust the dose accordingly. Similarly, Al could factor in the patient’s
medical history, such as the frequency of previous imaging exams or known radiation
sensitivity, to further refine dose settings [22]. By incorporating these individualized factors,
Al-driven personalized protocols could not only reduce unnecessary radiation exposure
but also improve the overall quality and relevance of the images obtained, leading to more
accurate diagnoses. This approach aligns with the broader trend toward personalized
medicine, where treatments and diagnostics are increasingly being tailored to the unique
characteristics of each patient.

9.3. Expansion to Other Modalities

While Al-assisted low-dose protocols have seen the most significant developments in
CT and X-ray imaging, there is substantial potential for expanding these technologies to
other imaging modalities; fluoroscopy, positron emission tomography (PET), and nuclear
medicine, which they also involve the use of ionizing radiation, could greatly benefit from
Al-driven dose reduction strategies. Fluoroscopy, which is commonly used for real-time
imaging during interventional procedures, often exposes patients to relatively high doses of
radiation, especially in complex or lengthy procedures. By integrating Al into fluoroscopic
imaging, it would be possible to optimize radiation doses in real-time based on the proce-
dure’s requirements and the patient’s specific characteristics [151]. Al could also enhance
the quality of fluoroscopic images by reducing noise and improving contrast, ensuring that
clinicians can visualize critical structures while minimizing radiation exposure.

Similarly, a study agreed that PET and nuclear medicine, which involve the injection of
radiotracers, could benefit from Al-assisted protocols [152]. Al could potentially optimize
the amount of radiotracer administered, as well as enhance image reconstruction to reduce
the need for higher doses [153]. By applying Al to these modalities, clinicians could achieve
clearer, more accurate images with less radiotracer or radiation exposure, leading to safer
imaging practices. The expansion of Al-assisted low-dose protocols to these modalities
would mark a significant advancement in the field of medical imaging, ensuring that
Al’s benefits in reducing radiation exposure and enhancing image quality extend across a
broader range of diagnostic tools. This expansion could also improve the safety of imaging
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in vulnerable populations, such as children and individuals undergoing frequent follow-up
studies, by reducing their cumulative radiation dose from multiple imaging modalities
over time [154].

10. Challenges and Limitations of Al in Low-Dose Imaging

While Al-assisted low-dose imaging presents significant advancements in reducing
radiation exposure and enhancing diagnostic quality, several challenges and limitations
must be addressed for widespread clinical adoption. These challenges include issues
related to model generalizability, ethical considerations, computational demands, and
practical implementation in resource-constrained healthcare settings [47]. Understanding
and overcoming these barriers is crucial to ensuring the broad applicability and equitable
use of Al-driven low-dose imaging technologies.

10.1. Generalizability of AI Models

One of the key limitations in implementing Al in medical imaging is the challenge
of generalizability across diverse patient demographics, imaging devices, and clinical
settings. Al models are often trained on specific datasets collected from particular popu-
lations and imaging systems, which may not fully represent the variability in real-world
clinical practice. Differences in patient anatomy, imaging protocols, manufacturer-specific
scanner settings, and institutional workflow variations can impact Al performance when
applied outside its training domain. Studies have shown that AI models trained on data
from high-income countries may exhibit reduced performance when tested on datasets
from underrepresented regions with different population characteristics [155,156]. Ad-
ditionally, Al systems may struggle with rare diseases or uncommon imaging artifacts
not well-represented in the training data, leading to potential misdiagnoses (Sanida). To
improve generalizability, efforts should focus on multi-institutional collaborations, dataset
diversification, and model validation across multiple geographic and clinical contexts.

10.2. Ethical and Regulatory Considerations

Ethical challenges surrounding Al in medical imaging remain a significant concern,
particularly regarding algorithmic bias, data privacy, and equitable access to Al-driven
technologies [157]. Algorithmic bias arises when Al models inherit disparities present in the
training data, potentially leading to inaccurate predictions for certain demographic groups.
For instance, studies have indicated that Al-based diagnostic models may demonstrate
variations in sensitivity and specificity when applied to different racial, ethnic, or gender
groups, exacerbating healthcare disparities. Addressing this requires transparent model
auditing, bias mitigation strategies, and diverse dataset representation to ensure fairness in
Al decision-making.

Data privacy is another critical issue, as Al models require large volumes of medical
imaging data for training. Ensuring compliance with privacy regulations such as the
General Data Protection Regulation (GDPR) and the Health Insurance Portability and
Accountability Act (HIPAA) is essential for maintaining patient confidentiality. The use
of federated learning, where Al models are trained across multiple institutions without
directly sharing patient data, has been proposed as a solution to mitigate privacy risks.

Additionally, disparities in access to Al-driven imaging technologies create inequities
between well-resourced and low-resource healthcare settings. Al models are often devel-
oped in high-income regions with access to state-of-the-art imaging infrastructure, while
resource-limited hospitals may lack the necessary computational power or expertise to
implement Al-driven imaging solutions effectively. Strategies to increase accessibility,
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provide regulatory guidelines for Al deployment, and develop Al models optimized for
low-resource settings are essential for equitable healthcare integration.

10.3. Computational Demands and Practical Implementation

Al models, particularly deep learning architectures such as convolutional neural
networks (CNNs) and generative adversarial networks (GANSs), require substantial com-
putational resources for both training and inference. The high-performance graphics
processing units (GPUs) and cloud-based computing infrastructure necessary for Al-based
medical imaging can be costly and inaccessible in many healthcare environments, especially
in developing regions. Even in well-resourced settings, the integration of Al into clinical
workflows requires significant software and hardware investments, as well as continuous
model updates to maintain accuracy and relevance.

To address these challenges, efficient Al models with lower computational complexity
should be developed for deployment in resource-limited settings. Techniques such as
knowledge distillation, where a large Al model trains a smaller, more efficient model, and
edge computing, which enables Al-driven image enhancement directly on imaging devices,
could make Al-assisted low-dose imaging more feasible in diverse healthcare environments.
Additionally, AI developers should prioritize hardware-agnostic algorithms that can run
on standard hospital infrastructure rather than requiring expensive proprietary systems.

10.4. Open Challenges and Future Considerations

Despite its promise, Al-assisted low-dose imaging still faces several open challenges
that require further investigation and development. Many Al models function as “black
boxes”, making it difficult for radiologists to understand and validate Al-driven image
enhancements. Developing explainable AI (XAI) frameworks that provide insights into
how Al algorithms generate results is critical for clinical trust. Also, with regards to real-
time AI Integration, while Al excels in post-processing, achieving real-time Al-driven
optimization of radiation dose during imaging acquisition remains an area for further
innovation. Furthermore, the lack of standardized guidelines for Al in medical imaging
will delay its clinical adoption and regulatory approvals. Developing benchmarking
standards and ensuring compliance with regulatory frameworks will be essential.

11. Conclusions

Al-assisted low-dose imaging represents a major advancement in medical imaging,
addressing the critical challenge of reducing radiation exposure while maintaining high
diagnostic accuracy. By leveraging advanced Al techniques such as noise reduction, ar-
tifact correction, and real-time optimization of imaging parameters, Al-driven solutions
significantly enhance image quality at lower radiation doses. This is particularly beneficial
for vulnerable populations, including pediatric patients, cancer patients, and individuals
requiring frequent imaging. Al’s ability to improve diagnostic outcomes while minimizing
radiation exposure marks a crucial step toward safer and more effective imaging practices,
reducing the long-term risks associated with ionizing radiation.

Despite its transformative potential, the widespread adoption of Al-assisted low-dose
imaging faces several challenges. Ensuring model generalizability across diverse patient
populations, imaging devices, and clinical settings remains a key hurdle, as Al models must
perform consistently across varying imaging environments. Additionally, regulatory frame-
works must evolve to ensure Al's safety, transparency, and fairness in clinical applications,
addressing concerns related to algorithmic bias and ethical considerations. The computa-
tional demands of Al-based imaging solutions also pose challenges, particularly for smaller
healthcare institutions with limited technological infrastructure. Overcoming these barri-
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ers will require interdisciplinary collaboration between Al researchers, radiologists, and
policymakers to ensure responsible and effective Al integration into clinical workflows.
As Al technologies continue to evolve, they are poised to become an essential compo-
nent of modern radiology, enhancing patient safety, workflow efficiency, and diagnostic
precision. The future of radiology will likely see Al-driven imaging solutions becoming
standard practice, enabling a more personalized, efficient, and safer approach to patient
care. The integration of Al into medical imaging not only represents a technological evolu-
tion but a fundamental shift towards precision-driven and patient-centered healthcare.
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