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Abstract: Printed Circuit Board (PCB) manufacturing demands accurate defect detection to
ensure quality. Traditional methods, such as manual inspection or basic automated object
inspection systems, are often time-consuming and inefficient. This work presents a deep
learning architecture using Faster R-CNN with a ResNet-50 backbone to automatically
detect and classify PCB defects, including Missing Holes (MHs), Open Circuits (OCs),
Mouse Bites (MBs), Shorts, Spurs, and Spurious Copper (SC). The designed architecture
involves data acquisition, annotation, and augmentation to enhance model robustness.
In this study, the CNN-Resnet 50 backbone achieved a precision–recall value of 87%,
denoting strong and well-balanced performance in PCB fault detection and classification.
The model effectively identified defective instances, reducing false negatives, which is
critical for ensuring quality assurance in PCB manufacturing. Performance evaluation
metrics indicated a mean average precision (mAP) of 88% and an Intersection over Union
(IoU) score of 72%, signifying high prediction accuracy across various defect classes. The
developed model enhances efficiency and accuracy in quality control processes, making it
a promising solution for automated PCB inspection.

Keywords: printed circuit boards (PCBs); deep learning (DL); region-based convolutional
neural networks (RCNN); defect detection; quality control; automated inspection

1. Introduction
In the modern electronics manufacturing industry, Printed Circuit Boards (PCBs) serve

as the foundation for virtually all electronic devices. PCBs provide a structural base for
component placement and ensure seamless electrical connectivity. With the evolution of
technology, PCBs have transitioned from single-layer designs to complex multi-layered
architectures, which enable higher circuit density and improved reliability. However,
maintaining high quality standards in PCB manufacturing remains a challenge, due to the
various defects that can arise during production. To address these challenges, automated,
scalable, and highly accurate solutions are essential. Many PCB manufacturing companies
face recurring issues with defect detection, which leads to increased production costs and
reduced efficiency. This work builds upon previous research and aims to develop a solution
to moderate these defects [1,2]. One of the most promising approaches is Region-based
Convolutional Neural Networks, which detects and identifies defects within images of
PCBs. Employing Deep Neural Networks [3], the Region-based Convolutional Neural
Networks (R-CNN) family of deep learning-based object detection models focuses on
finding and classifying objects within an image. It is a two-stage approach. First, regions of
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interest (ROIs) are proposed, and then they are classified. There are three major variants of
R-CNN:

1. R-CNN—This uses selective search to generate around 2000 candidate ROIs. It
extracts features from these ROIs using a pre-trained CNN. It then passes these
features through a Support Vector Machine (SVM) for classification, and a linear
regression model for bounding box refinement [4].

2. Fast R-CNN—Instead of processing each region proposal individually, the entire
image is passed through a CNN to generate feature maps. ROIs are extracted from
the feature maps and classified using a single network. This variant is faster and more
memory-efficient than R-CNN [4].

3. Faster R-CNN—This uses a Region Proposal Network (RPN) to replace the selec-
tive search method. The RPN shares convolutional layers with the classification
network, significantly speeding up the process. This variant delivers contemporary
performance with respect to several object detection benchmarks [5].

In recent years, several deep learning models have been explored for defect detection
in PCB manufacturing. According to Table 1, YOLO (You Only Look Once) and SSD
(Single Shot MultiBox Detector), used to transform models like DETR, have been used in
PCB defect detection. They both come with limitations: YOLO and SSD are both speed-
optimized, but are limited in their ability to detect small objects and pinpoint the location
of defects; DETR (Detection Transformers) is better at global feature extraction, but needs a
large amount of data and high computational power, and hence is not ideal for hardware
with a low level of resources. We chose Faster R-CNN with ResNet-50, since it offers a
suitable balance between accuracy and efficiency. ResNet-50 provides in-depth feature
extraction to facilitate effective defect detection, and the Region Proposal Network (RPN)
enhances the accuracy of localization, especially for small defects. A comparative analysis
of Faster R-CNN against alternative models, such as Inception and ConvNeXt (discussed
in the Results and Discussion Section), demonstrates that ResNet-50 outperforms these
models in defect detection accuracy and robustness. R-CNN achieves higher accuracy in
the detection of defects, which means that this model is more suited to tasks involving
object detection and classification compared to traditional methods and other deep learning
modules. This makes it ideal for automatic inspection systems.

Table 1. Comparison of Faster R-CNN and YOLO in terms of object detection performance.

Feature Faster R-CNN YOLO (One-Stage) References

Accuracy Higher accuracy due to region
proposal mechanism

Lower accuracy due to direct
classification and localization [6]

Detection of Small Objects More precise, especially for
small and occluded objects

Struggles with small objects
due to spatial constraints [7]

Robustness in
Complex Scenes

Performs well in complex
backgrounds and
cluttered scenes

Less robust in
challenging environments [8]

Computation Speed Slower due to
multi-stage processing

Faster due to
single-stage detection [9]

Generalization
Across Datasets

Better adaptability across
various datasets and domains

Performance varies
significantly based on

training data
[10]
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In this work, we have developed an automated defect detection system based on a
deep learning model, which is described as Faster R-CNN [11], with a ResNet-50 back-
bone [12]. It is pre-trained on a wide-ranging object detection dataset. Consequently, we
have developed and fine-tuned it to identify and classify the six main defects in PCBs.
Therefore, the proposed system provides significantly greater capabilities in real-time defect
localization and classification in comparison to traditional methods of PCB inspection. We
have designed an automated system that aims to detect the top six possible defects related
to the PCB manufacturing process, according to Figure 1.
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Figure 1. From manual inspection to AI-driven solutions: a comprehensive framework for PCB defect
detection using region-based CNNs.

This is thoroughly described in the following sections. The objective of the proposed
approach is to contribute, with an information retrieval approach, to automating the defect
detection process of Printed Circuit Boards. The contributions of this work are as follows:

(a) Contribution (i)—We implemented the Faster R-CNN model with a ResNet-50
backbone for defect detection. Then, we fine-tuned it according to the six main
defect classes.

(b) Contribution (ii)—We evaluated the system’s performance in terms of accuracy, preci-
sion, and recall, comparing the results with those of traditional techniques.

(c) Contribution (iii)—We conducted a comparative analysis with two different types of
backbones, ConvNext and Inception.

The proposed Faster R-CNN model is intended to detect and label six specific PCB
defects, such as MHs, OCs, MBs, Short Circuits, Spurs, and Spurious Copper (SC). However,
true PCB defects include misalignment, warping, some soldering defects, and contamina-
tion, which typically involve other modalities, like infrared imaging or 3D scanning. One
drawback of the current model that it is not capable of generalizing to unknown defects,
because it relies on pre-existing class labels and may not be able to recognize anomalies
outside of its training set. Additionally, complex defects like misalignment and warping
require geometric analysis, which Faster R-CNN is not capable of, and some soldering de-
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fects are hard to detect due to size, reflectivity, and a lack of training data. To address these
issues, future work could include adding anomaly detection paradigms (e.g., autoencoders,
GANs) to recognize novel defects, few-shot learning to recognize new defects with few
labelled samples, and multimodal analysis involving RGB imaging with infrared or X-ray
scanning to conduct in-depth exploration. Such enhancements would make the model
more robust and flexible for practical PCB defect detection.

2. Related Work
This section provides a comprehensive review of existing research on PCB defect

detection and related industrial applications. It explores various AI-driven methodologies,
including Convolutional Neural Networks (CNNs) and image processing techniques, that
have been employed to identify manufacturing defects. Previous studies have focused on
enhancing detection accuracy, optimizing computational efficiency, and improving defect
localization techniques.

(a) Defect Identification Systems

Recent advancements in PCB defect detection leverage Convolutional Neural Net-
works (CNNs) to minimize false positives and enhance robustness through data aug-
mentation. Attention mechanisms have been integrated into deep learning models to
improve detection of minor defects in densely populated PCB areas by focusing on critical
regions [13,14].

(b) Deep Learning Techniques

Faster R-CNN and Mask R-CNN, combined with ResNet-50 backbones, have demon-
strated superior performance in detecting small defects via region proposal methods and
hierarchical feature extraction [5,15]. Transfer learning and data augmentation further
optimize model performance. The “Pixelator v2” method enhances defect detection by
combining LAB colour space analysis with Sobel edge detection [16,17].

(c) Image Processing with Neural Networks

Oriented R-CNN is described as a postponement of the generic Faster R-CNN, incorpo-
rating rotated bounding boxes. This is achieved by defining a Region Proposal Network for
rotation-invariant proposals and introducing a rotated ROI alignment module. It predicts
the angles of objects, as well as their positions. Therefore, achieving more precise detection
can enable the identification of randomly oriented objects. Researcher Xingxing proposed a
new framework called Oriented R-CNN to improve object detection performance by taking
into consideration the orientation variation of objects. The authors introduced a specific
loss function to rotate bounding box regression, which enhances its robustness against
rotation variations [11]. De Silva’s research [18] focused on automating defect detection in
Printed Circuit Boards (PCBs) using image processing techniques, addressing the ineffi-
ciencies and inaccuracies of manual inspections. The methodology involved preprocessing
PCB images to enhance quality, followed by detection using edge detection, thresholding,
and structural operations. By comparing reference images with test images, the system
effectively identified defects such as Open Circuits, Short Circuits, missing components,
and other manufacturing issues. Furthermore, defect categorization was automated using
feature extraction and classification methods, making the process more efficient and reliable.
This approach aligns with the objectives of advancing automated PCB defect detection, as
seen in recent deep learning-based systems, which enhance accuracy and scalability by
incorporating modern computational methods for analyzing high-resolution images. These
developments signify a significant step forward in ensuring the reliability and efficiency of
PCB manufacturing processes.



Electronics 2025, 14, 1542 5 of 26

(d) Automated Defect Detection Frameworks

An automated defect detection framework, using computed tomography, for industrial
applications was proposed by Abbar and his colleagues. Advanced imaging techniques
combined with machine learning algorithms were utilized to ensure high-precision defect
detection. While the study primarily focused on CT imaging, its methodologies and
principles are suggested to be applicable to the PCB inspection domain, where high-
resolution imaging and deep learning models are essential for identifying microscopic
defects [19]. Recent advances in the surface defect inspection of industrial products using
deep learning techniques, leveraging deep learning and machine vision, were proposed
by Xiaoqing Zheng, Song Zheng, Yaguang Kong, and Jie Chen in 2021. The integration
of a deep CNN with a novel defect localization algorithm was employed to achieve high
precision in defect detection. This study demonstrates the applicability of deep learning
frameworks to various industrial applications, including PCB inspection [20].

(e) Theoretical Foundations

Theoretical contributions, such as McCulloch and Pitts’ artificial neurons and
Allen-Zhu et al.’s convergence theory for over-parameterized networks, underpin modern
neural networks used in defect detection [21]. Ensemble learning techniques (e.g., bag-
ging, boosting) have also been adapted from photovoltaic fault detection to improve PCB
inspection accuracy [22,23].

(f) Defect Detection using Real-Time Environment

The paper “Real-time defect detection using Raspberry Pi with Open CV” presents
research on using a Raspberry Pi with OpenCV for real-time defect detection in small
industrial components. Though the Raspberry Pi has limited computational power, it
was very effective in identifying defects, therefore representing a cost-effective solution
for quality control in low-budget industrial setups. The system was optimized for speed
and accuracy, providing proof that the Raspberry Pi can handle real-time processing
demands [24]. Researchers Mehta and R. Jain proposed an automated defect detection
system using Raspberry Pi for use in the textile industry. This framework detected flaws in
fabric, maintaining high accuracy and bringing down quality control costs considerably.
The authors tried to highlight the practicality of such an approach by demonstrating
how the Raspberry Pi can be adapted to existing production lines to deliver a low-cost
solution without any performance compromise, but with scalability [25]. As described
in the paper “Deep Learning Models for Metal Surface Defect Detection on Raspberry
Pi”, researchers have proposed a system that involves using deep learning techniques in
metal surface defect detection. This may run as efficiently as is possible on a Raspberry
Pi. This device is known to be resource-constrained. The system achieved strong detection
performance, making it a viable solution for industries requiring real-time inspection and
cost-effectiveness. The study underscores the potential of deploying advanced AI-driven
applications on low-power hardware like the Raspberry Pi [26]. The current work addresses
these gaps by developing a real-time defect detection system that is optimized for speed and
accuracy in industrial settings. Advanced data augmentation techniques are implemented
to handle class imbalances and improve the detection of small defects. The Faster R-CNN
model with a ResNet-50 backbone is fine-tuned for six specific PCB defect classes, ensuring
high accuracy. The system is further optimized for resource-constrained devices like the
Raspberry Pi, enabling cost-effective deployment. Its performance was validated using
metrics like Intersection over Union (IoU), reducing false positives and enhancing defect
localization accuracy. This research addresses critical gaps by providing a scalable, efficient,
and real-time defect detection system for PCB manufacturing, bridging the divide between
theoretical advancements and practical deployment.



Electronics 2025, 14, 1542 6 of 26

3. Methodology
This section is dedicated to describing the experimental setup, taking into consider-

ation how aerial images and videos of the test conditions were acquired, and provides a
description of the various kinds of PCB defects. The present study is focused on how to
diagnose and identify all the defects of a Printed Circuit Board. If it is diagnosed as having
a defective condition, then the proposed technique aims to detect the type of PCB fault,
according to the process described in Figure 2.
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The PCB dataset from Kaggle [27] contains 1386 images of PCBs with several types
of defects, such as MHs (115 Images), MBs (115 Images), OCs (116 Images), Shorts
(116 Images), Spurs (115 Images), and SCs (116 Images), as shown in Figure 3. These
images form the basis of training and validation for the Faster R-CNN model with a back-
bone of ResNet-50 in defect detection [28]. The main purpose of the PCB defect detection
system is to conduct complete and accurate defect detection in Printed Circuit Boards by us-
ing an advanced deep learning methodology. In this proposed system, a detection network
called Faster R-CNN is trained to identify six different classes of defects. This involves se-
lecting the right model with the right layer configuration for the proposed project, building
an algorithm for detection, training the model, and optimizing performance parameters in
defect detection, either in real time or near-to-real time.

3.1. Experimental Setup

1. Data Acquisition—The dataset is structured in such a way that every image can be
linked to an XML file. These XML files include labels and bounding box coordi-
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nates, which specify the location and type of each defect, such as “Missing_hole” or
“Mouse_bite”. This information is key in training a model to be able to detect both the
position and class of each defect [29]. Each image I in the dataset is associated with a
set of defects [30], each represented by a bounding box Bi (1), where

Bi = (xmin, ymin, xmax, ymax, C) (1)

xmin, ymin are the coordinates of the top-left corner of the bounding box. xmax, ymax are the
coordinates of the bottom-right corner. C represents the class label of the defect.
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Given the XML annotation files, the image dimensions W and H are extracted,
such that

W = width of the image, H = height of the image (2)

For each detected defect, the normalized bounding box [31] coordinates can be com-
puted as shown in Equation (3):

x~
min = xmin/W, y~

min = ymin/H, x~
min = xmax/w, y~

max = ymax/H (3)

where x~, y~ represent the normalized coordinates, ensuring that all bounding boxes are
within the range [0, 1]. Normalization is essential for ensuring scale invariance and stable
convergence during model training. Without normalization, bounding box coordinates
vary significantly based on image resolution, causing the model to learn absolute pixel
values, rather than relative positions. This can lead to unstable optimization due to larger
gradient updates. By scaling bounding box values between 0 and 1, normalization ensures
compatibility across different input resolutions, which is crucial for models like Faster
R-CNN with a ResNet-50 backbone. Without normalization, the model may struggle to
generalize, as bounding box values become resolution-dependent. With normalization, the
model learns spatial relationships independently of input size, improving robustness and
performance across PCB images of varying resolutions.
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The width and height of each bounding box can be derived as shown in Equation (4):

wi = xmax − xmin, hi = ymax − ymin (4)

The dataset D can then be expressed as a collection of labelled bounding boxes (5):

D = {(Ik, Bk1, Bk2, . . ., Bkn)/k = 1, 2, . . ., N} (5)

where N is the total number of images, and each image Ik contains a set of n defects.

2. Parsing Annotations—Each of the XML files is parsed to extract the type of defec-
tive label, along with the bounding box coordinates. For instance, there are XML
structure fields, xmin, ymin, xmax, and ymax, that define the corners of each bounding
box. These are compatible with machine learning frameworks [32]. Parsing anno-
tation involves reading annotation files and extracting required information, such
as the file path, coordinates, and class labels. Then, transformations are used to
convert the raw annotation data into the required format for Faster R-CNN imple-
mentation in PyTorch 1.12.1. For example, bounding boxes are converted to tensors.
Class labels are mapped to integer symbols. In the handling of edge cases, robust-
ness is ensured by addressing incomplete or inaccurate annotations, such as missing
bounding boxes or out-of-bound coordinates. For reading annotation files, each an-
notation file Ak corresponds to an image Ik and contains structured data, including
bounding box coordinates and class labels [33]. The annotation file provides the
following information:

Ak = {(Ci, xmin, i, ymin, i, xmax, i, ymax, i)/i = 1, 2, . . ., nk} (6)

where Ci is the class label of I, the defect in image Ik; (xmin, I, ymin, I) and (xmax, i, ymax, i) are
the bounding box coordinates; and nk represents the number of defects in image Ik. The
bounding box coordinates are converted into tensor format, as follows:

Bi = [xmin, I ymin, I xmax, I ymax, i] (7)

where Bi is the bounding box tensor. The class labels are mapped to integer representa-
tions [34].

This format facilitates easy analysis, transformations, and splitting into training and
testing datasets for effective model evaluation. The dataset is split in an 80-20 ratio, with
80% of the images allocated to the training set and 20% to the test set. This split ensures
that the model is trained on a significant portion of the data, while being evaluated based
on unseen data to assess its performance.

3.2. Data Augmentation and Transformation

The mathematical representation of data augmentation is as follows. Let I be an input
image with dimensions (W, H), (8) where W is the width and H is the height [35]. A set of
augmentation functions T is applied to I, generating a transformed image I:

I′ = T(I)I (8)

where T is a combination of one or more transformations from the set {T1, T2, . . ., Tn}. Data
augmentation artificially inflates the size of a dataset by applying random transformations
to the images. This helps to avoid overfitting of the network [36].

• Geometric Transformations
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Rotation—Rotating the image by an angle θ\(in degrees) transforms the pixel coordi-
nates (x, y) to new coordinates [37].

(x′, y′): x′ = xcosθ − ysinθ, y′ = xsinθ + ycosθx (9)

Scaling—According to Equation (10), resizing the image by a scaling factor s modifies
the pixel coordinates (x,y) transferred to (x′,y′) [38], such that

x′ = s · x, y′ = s · y (10)

Translation: The image is shifted by (∆x, ∆y) [39]:

x′ = x + ∆x, y′ = y + ∆y (11)

Flipping—Horizontal or vertical flipping of an image negates its respective
coordinate [40]:

x′ = W − x(horizontal flip), y′ = H − y(vertical flip) (12)

These are rotations, flips, and scaling, examples of transformations that are applied to
images. The changes simulate real-world scenarios, such as cases where a PCB is likely to
be viewed at different angles or under various light conditions. Through the model, we
learned to enable the recognition of defects from different points of view by diversifying
the dataset perspectives.

Tensor Conversion—The images and bounding box coordinates are converted into
tensors, a format required by PyTorch for the model input. Tensors are optimized to
run matrix operations on the GPU, which is suitable for training deep learning models
efficiently. Image-to-Tensor Conversion: Each image I is originally a matrix of pixel values
with dimensions (H, W, C), where H is height, W is width, and C represents colour channels.
It is converted into a PyTorch tensor, as follows [41]:

Itensor = To Tensor (I) (13)

where the pixel values are normalized between 0 and 1 for stability in training.

3.3. Model Definition (Faster R-CNN)

There are two main variants of Faster R-CNN. A Region Proposal Network is shown
in Figure 4, which suggests areas in the image where objects might exist. It is used to
locate regions and a classifier to label those regions. Understanding Faster R-CNN—Faster
R-CNN is a two-stage object detector. The first stage uses a Region Proposal Network (RPN)
to propose regions in the image that are likely to contain objects. The second stage processes
these proposals, classifying each region and refining the bounding box coordinates for
accurate localization. The RPN is trained using Anchor classification.

Lcls = −1/Ncls∑Ncls
i=0 ∑c

c=1 yiclog(pic) (14)

For each anchor ai, the model calculates the probability of each class c (including the
background class), where Pc

i is the predicted probability of anchor ai being in class c, and
Yc

i is the ground truth label for anchor ai for class c (either 0 or 1) [42].
Pre-trained Model Initialization—A Faster R-CNN model pre-trained on the dataset is

used for time efficiency and improved performance. The pre-trained model is shown in
Figure 5. It is a strong base, since it has already learned essential image features like edges,
textures, and shapes, which are common across different tasks.
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The following Algorithm 1 augmentation pipeline enhances the robustness of the
model by applying various transformations to images and adjusting their bounding box
coordinates accordingly.

Algorithm 1: Data Augmentation

step 1
Random Rotation. Rotate the image by an angle θ. Adjust bounding box
coordinates using rotation transformation.

step 2
Flipping. Perform a horizontal or vertical flip. Modify bounding box
coordinates accordingly.

step 3
Resizing. Resize Scaling & the image by a scaling factor. Adjust bounding box
positions proportionally.

step 4 Visualization Augmentation.

step 5
Label Encoding.—The defect class labels are converted to numerical
representations using a LabelEncoder: L = label_encoder. transform (C),
where C is the categorical label set.
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The following training pipeline in Algorithm 2 outlines the key steps for training a
deep learning model efficiently.

Algorithm 2: A Robust Training Framework for High-Accuracy PCB Defect Detection
Using Faster R-CNN and ResNet-50

Input:
Training dataset Dtrain (80% of PCB images)
Validation dataset Dval (20% of PCB images)
Pretrained Faster R-CNN (ResNet-50 backbone)
Hyperparameters: lr = 0.0001, batch_size = 8, epochs = N

Output:
Trained model M∗ with optimized weights
Training/validation metrics (loss, mAP, IoU)

1: Initialize M←FasterRCNN_ResNet50()
2: Configure Adam optimizer (weight decay = 0.0005)
3: Set StepLR scheduler SS (step size = 3, γ = 0.1)
4: Allocate device: GPU (Tesla T4) if available, else CPU
5: for epoch ∈{1,. . .,N}do
6: M.train()M.train() ->Switch to training mode
7: for batch (Xb,yb)∈DataLoader(Dtrain) do
8: Xb,yb←Xb.to(device),yb.to(device)
9: L←M(Xb,yb) ->Forward pass
10: O.zero_grad()
11: L.backward() ->Backpropagate
12: O.step() ->Update weights
13: end for
14: M.eval() ->Switch to evaluation mode
15: for batch (Xb,yb)∈DataLoader(Dval) do
16: IoU←box_iou(M(Xb),yb) -> Localization accuracy
17: mAP←compute_mAP(M(Xb),yb)
18: end for
19: S.step() -> Adjust learning rate
20: Save M∗ if val_loss improves
21: end for
22: return M∗, metrics

This structured training procedure ensures that the model converges effectively while
maintaining robustness in defect detection. The combination of data augmentation and
optimized training strategies improves the overall accuracy and reliability of the model in
real-world PCB manufacturing conditions.

3.4. RCNN Resnet Model Training Architecture

Optimized Training Configuration for Efficient Model Convergence.
Key components are thoroughly configured to ensure efficient and stable training,

including the following:
Device Allocation—With deep learning being a computationally intensive task, train-

ing is offered on a PyTorch, using an NVIDIA GPU (Tesla T4) for computational power.
Optimizer Configuration—The Adam optimizer (lr = 0.0001, weight_decay = 0.0005) is
used for adaptive parameter updates. The optimizer can converge efficiently by utilizing
its adaptive learning rate mechanism [43]. Learning Rate Scheduler—This defines the



Electronics 2025, 14, 1542 12 of 26

point at which the rate (step_size = 3, gamma = 0.1) of learning changes. Additionally,
the rate of learning decreases as the training becomes more intensive. The learning rate
scheduler helps to tune the model. This structured training procedure ensures that the
model converges effectively, while maintaining robustness in defect detection. Through
the incorporation of data augmentation into the model, this method is very helpful for
avoiding overfitting [44]. The forward pass in Faster R-CNN predicts bounding boxes and
class labels for each proposed region, with the total loss being the sum of classification and
regression losses. The model leverages a ResNet-50 backbone for PCB defect detection,
extracting hierarchical feature maps that emphasize critical regions. ResNet-50’s 50-layer
architecture captures multi-level features, from low-level edges and textures to high-level
object shapes and patterns. As images pass through convolutional layers, these refined
feature maps enhance defect localization and classification, ensuring precise and robust
PCB defect detection. The lower layers capture basic features (edges, textures, simple
shapes). Higher layers detected more complex patterns, helping to identify defect-related
features such as cracks, missing components, or Short Circuits.

The formula for the output feature map is as follows:

F = f (I, θ) (15)

The input PCB image I is processed through the ResNet-50 model, where θ represents
the learned weights of the network. The convolutional operations, denoted by f, extract
hierarchical features from the image, enabling robust representation of defect patterns.
These features are then utilized by the Region Proposal Network (RPN) to identify regions
of interest (ROIs) that are likely to contain defects, forming the foundation for accurate
detection and classification. ROI Alignment and Classification—The ROIs are resized and
classified into defect categories. Each ROI’s bounding box is further refined using bounding
box regression.

Loss Calculation in Faster R-CNN Model:
Objectless Loss—This determines whether an ROI contains a defect (binary

classification) [5].

L objectness = −1/Npos +
.

∑
i
(yilog(ŷi) + (1− yi)log(1− ŷi)) (16)

yi is the ground truth label (1 for foreground, 0 for background). ŷi is the predicted
probability of an object being a foreground object. Npos is the number of positive
(foreground) samples.

Bounding Box Regression Loss—This measures the error between predicted and
ground truth bounding box coordinates using Smooth L1 loss. ti is the predicted bounding
box coordinates, t*

i is the ground truth bounding box coordinates, and Nreg is the number
of bounding box regression samples [45].

Lreg

(
t, t*

)
=

1
Nreg

∑i smoothL1

(
ti − t*

i

)
(17)

ROI Head Loss Components (Classification Loss)—Cross-entropy loss assigns defect
classes to each ROI [46].

Lclass = −
1
N∑i ∑c yi,clog(P(ci)) (18)
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The ROI Head Classification Loss quantifies what is effective for the model, and
assigns defect classes to detect regions, resulting in the system’s reliability in PCB quality
control. Its optimization is essential for the high performance achieved in our model results.

The total loss combines all components, according to Equation (19):

Ltotal = Lobjectness + LRPN-reg + LROI-class + LROI-reg (19)

This unified loss enables training to be brought to an end, while handling class
imbalance through normalization by positive sample counts (Npos). The implementation
leverages PyTorch’s built-in loss functions with default reduction strategies, ensuring
numerical stability during optimization [15]. The Following Table 2 summarizes the core
computational stages of the Faster R-CNN pipeline adapted for PCB defect detection.

Table 2. Main formulas and processes used in Faster R-CNN approach for defect detection.

Step Description Key Formula(s)

1. Region Proposal
Network (RPN)

Generates regional proposals,
predicting object probability and
refining bounding boxes. Includes
Anchor Classification Loss,
Bounding Box Regression Loss,
and total RPN loss.

(a) Lcls(pi, pi ∗ ) =
−Ncls1 ∑[pi ∗ log(pi) + (1− pi ∗ )log(1− pi)]

(b) Lreg (ti,ti∗) = Nreg 1∑[pi∗ ·smoothL1 (ti − ti∗)]

(c) smoothL1 (x) = {0.5x2|x|−0.5 if |x| <1otherwise

2. ROI Pooling
Extracts fixed-size feature maps
from proposed regions using max
pooling [46].

ROI Feature Map(i,j)=(x,y)∈bin(i,j)max f(x,y)

3. Object
Classification and
Bounding
Box Refinement

Classifies proposals into
categories and refines bounding
box coordinates using
classification and regression
loss functions.

(a) Lcls = −N1 i∑ c∑ yi,c log(pi,c)
(b) Lreg = N1 i∑ smoothL1 (ti − ti∗)
(c) smoothL1 (x)={0.5x2|x| − 0.5 if |x| <1otherwise

4. Pre-trained
ModelInitialization

Initializes model weights
pre-trained on ImageNet for
improved feature learning.

Winit = argWmax ∑logP(y|x,W)

5. Customization for
PCB Defects

Customizes the model’s output
layer to detect six defect
categories in PCB images.

P(ck | x) = ∑ j exp(zj )exp(zk)

Validation and Evaluation: Validation measures the model’s performance on the test
set, providing insight into how well the model will perform on new data. Model Evaluation:
In validation mode, the model’s weights are not updated. Instead, it generates predictions
based on the test images (20%) to see how well it has been learned to detect defects.

Intersection over Union (IoU) Calculation—IoU is a metric that measures the predicted
bounding box that matches the true bounding box, as shown in Figure 6. IoU indicates full
overlaps between two boxes, while lower values indicate a better predicted box. The IoU is
calculated per defect, and at the end, intermediate accuracy is presented as an averaged
value over the whole test dataset [47].

The performance of the model was checked on the validation set to find out how
comprehensive the model would be. For the quantitative metric, IoU was used for the
overlap of predicted and ground truth bounding boxes [48]. IOU assesses the localization
accuracy of PCB defect detection, with the Faster R-CNN model using it to classify region
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proposals [49]. While effective, IoU has limitations in handling nested/partial boxes, which
may explain some low scores in our validation [50]. It is defined as follows:

IoU = Apred∩Agt/Apred∪Agt (20)

• Apred is the predicted bounding box. Agt is the ground truth bounding box. ∩
Represents the intersection area between the predicted and ground truth bounding
boxes. ∪ represents the union area of both bounding boxes.
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IoU Computation from Model Training

From the validation phase of the Faster R-CNN model, IoU values are computed at
each epoch. The mean IoU across all epochs is 0.722, which indicates that, on average, the
predicted bounding boxes overlap 72.2% with the ground truth bounding boxes. A higher
IoU value (closer to 1) suggests better localization accuracy, whereas lower values indicate
discrepancies in bounding box predictions.

3.5. Inference and Deployment/Software Setup

Image Loading and Preprocessing

For real-time or batch processing, the application needs to handle incoming PCB im-
ages consistently. Each image is loaded and prepared by applying the same preprocessing
steps used during the model training phase, to ensure a consistent input format. Prepro-
cessing includes the following steps. Resizing: Scaling images to the same dimensions used
during training, so the model can accurately interpret them. Normalization: Adjusting
pixel values to the same range as in the training data, to avoid inconsistencies that could
lead to inaccurate predictions. Format Conversion: Ensuring images are in the appropriate
colour format (e.g., RGB), so they are compatible with the model. The application, built
in PyQt5 mode, includes an image and video upload feature that allows users to select or
drag and drop an image into the interface. Once an image is loaded, it undergoes these
preprocessing steps before being supplied to the model for prediction.

Bounding Box Prediction

After preprocessing, the image is passed through the trained Faster R-CNN model,
which identifies areas that are likely to contain defects. The following methods are the
model outputs.

Bounding Boxes: These rectangles surround each detected defect, specifying its lo-
cation within the image. Confidence Scores: Each bounding box is assigned a confidence
score that represents the model’s confidence in the defect classification. Higher confidence
scores indicate more reliable predictions. The model also provides a predicted class for
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each bounding box shown in Figure 7, indicating the specific type of defect (e.g., Missing
Hole, Mouse Bite). PyQt5’s integration with the model allows this entire prediction process
to happen effortlessly in the background, with the output prepared for visualization in real
time. (The implemented code has been uploaded to GitHub).
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Defect Visualization

The visualization of defects in the image is a crucial part of the deployment process,
as it allows users to interpret the model’s predictions directly. The bounding boxes are
colour-coded based on defect type, with each defect assigned a unique colour to make it
easy to distinguish between different issues. For example, Missing Holes might appear
in red, while Open Circuits are highlighted in blue, and so forth. Using PyQt5, we have
designed a canvas, shown in Figure 8, which can display the original image with these
overlays, providing clear and interactive feedback for the user. This approach involves the
following processes.
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Drawing Bounding Boxes: Bounding boxes are drawn over each detected defect.
PyQt5’s QPainter class allows the user to render these boxes with different colours and
thicknesses, ensuring that each defect type is easily identifiable. Displaying Confidence
Scores: Text labels can be added alongside each bounding box to display the confidence
score. This helps users to assess the reliability of each prediction. Interactive Controls: The
PyQt5 interface includes controls to zoom in on specific defects, toggle bounding boxes on
or off, and adjust visualization settings. These features allow users to explore the model’s
predictions in greater detail and take screenshots for record-keeping or further analysis.

Building the Application with Python and PyQt5

By leveraging Python 3.11 and PyQt5, we have built an efficient GUI application that
provides a complete workflow for PCB defect detection. Here, we take a closer look at how
PyQt5 supports each part of the application, as illustrated in Figure 9.
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File Upload and Image Loading—PyQt5’s Q File Dialog allows users to easily up-
load PCB images. When a user selects an image, the interface loads it and performs
preprocessing, before passing it on to the model.

Table 3 provides a comprehensive breakdown of the PCB defect detection system’s
technical components, detailing current implementations, key technical specifications, and
planned developments.

Table 3. PCB defect detection system architecture: current implementation and future roadmap.

Component Implementation Technical Details Future Enhancements

Detection Model Faster R-CNN via Roboflow
Inference SDK

Model ID:
pcb-defect-detection-9ewqw/1

Integration of geometric
validation (circularity/aspect
ratio checks)Input size: Dynamic resizing to

640 × 360

Preprocessing On-the-fly frame processing

- Frame-skipping
(60-frame interval)

Add CLAHE
contrast enhancement

- RGB conversion Non-local means denoising
- Dynamic normalization

Hardware Interface
PyQt5 GUI with dual
capture modes

- Live camera feed (OpenCV) Multi-camera synchronization

- Video file support GPIO triggers for
conveyor systems

Snapshot capability

Data Management CSV-based logging system
Timestamped defect records SQLite integration
Automatic image archiving in
images folder Cloud synchronization

Visualization Matplotlib/PyQt5
dashboard

Temporal defect trends Real-time defect heatmaps

Interactive date filtering Statistical process
control charts

Defect frequency histograms

Performance Optimization Frame-skipping algorithm
Processes every 60th
frame (adjustable)

Hardware
acceleration (CUDA)

Maintains 30 ms refresh rate TensorRT optimization

Industrial Adaptations Confidence-based filtering
Thresholding in display output Automated alert system

Defect clustering prevention OEE (Overall Equipment
Effectiveness) integration

Real-Time Inference and Display—Once the image is preprocessed, it is sent to the
Faster R-CNN model, which performs inference and returns bounding box predictions,
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as shown in Figure 10. The application’s main window displays the original image with
colour-coded bounding boxes for easy interpretation. Zoom and Pan Controls—With
PyQt5’s widgets, users can zoom in on specific parts of the image to closely examine
detected defects. Exporting Results—PyQt5’s Q Image class can be used to save the image
with bounding box overlays, providing users with a visual record of detected defects for
quality control. Also, when this proposed model is deployed into a Raspberry Pi device,
the model can be set up with an online server. The reason for this is that the processing
capacity of the Raspberry Pi device makes it difficult to operate the model. After it is placed
on the server, it manages to respond quickly. Starting with data collection and preparation,
data transformations are applied, a deep learning model is initialized and customized, and
then one can proceed through training, validation, and deployment. Each step contributes
to building a robust model that can detect and classify PCB defects accurately. The final
deployment phase allows the model to be used in a real-world environment, where it
can provide visual insights and classifications of PCB defects to support quality control
in manufacturing.

Electronics 2025, 14, x FOR PEER REVIEW 16 of 26 
 

 

- Video file support 
GPIO triggers for con-
veyor systems 

Snapshot capability  

Data Management 
CSV-based logging 
system 

Timestamped defect 
records SQLite integration 

Automatic image ar-
chiving in images 
folder 

Cloud synchronization 

Visualization Matplotlib/PyQt5 
dashboard 

Temporal defect trends Real-time defect 
heatmaps 

Interactive date filter-
ing 

Statistical process con-
trol charts 

Defect frequency histo-
grams 

 

Performance Opti-
mization 

Frame-skipping algo-
rithm 

Processes every 60th 
frame (adjustable) 

Hardware acceleration 
(CUDA) 

Maintains 30 ms re-
fresh rate 

TensorRT optimization 

Industrial Adapta-
tions 

Confidence-based fil-
tering 

Thresholding in dis-
play output 

Automated alert sys-
tem 

Defect clustering pre-
vention 

OEE (Overall Equip-
ment Effectiveness) in-
tegration 

Real-Time Inference and Display—Once the image is preprocessed, it is sent to the 
Faster R-CNN model, which performs inference and returns bounding box predictions, 
as shown in Figure 10. The application’s main window displays the original image with 
colour-coded bounding boxes for easy interpretation. Zoom and Pan Controls—With 
PyQt5’s widgets, users can zoom in on specific parts of the image to closely examine de-
tected defects. Exporting Results—PyQt5’s Q Image class can be used to save the image 
with bounding box overlays, providing users with a visual record of detected defects for 
quality control. Also, when this proposed model is deployed into a Raspberry Pi device, 
the model can be set up with an online server. The reason for this is that the processing 
capacity of the Raspberry Pi device makes it difficult to operate the model. After it is 
placed on the server, it manages to respond quickly. Starting with data collection and 
preparation, data transformations are applied, a deep learning model is initialized and 
customized, and then one can proceed through training, validation, and deployment. 
Each step contributes to building a robust model that can detect and classify PCB defects 
accurately. The final deployment phase allows the model to be used in a real-world envi-
ronment, where it can provide visual insights and classifications of PCB defects to support 
quality control in manufacturing. 

 
Figure 10. The implemented Python interface for the system.

3.6. Hardware Setup Overview

The automated defect identification system for Printed Circuit Boards (PCBs) engaged
a compact yet powerful hardware setup (Table 4) consisting of a Raspberry Pi 400, a Full
HD 1080P camera module, and a HDTV video capture device. Experiments were conducted
on two hardware setups to evaluate the trade-offs between computational efficiency and
model accuracy. The high-performance cloud GPU setup (Google Collab), equipped with
an NVIDIA (16 GB VRAM) and a batch size of 8, achieved the best accuracy, due to its
ability to handle larger batch sizes and higher parallelization efficiency. In contrast, the
local hardware setup (Raspberry Pi 400 + Remote Server), featuring an ARM Cortex-A72
CPU (Quad-Core 1.8 GHz) and 4 GB LPDDR4 RAM, faced significant limitations, including
a reduced batch size of 2 and longer inference times per image. Due to the Raspberry Pi’s
limited memory and computational power, full on-device training was not feasible. Instead,
the model was deployed on a remote server, with inference performed on the Raspberry
Pi. This approach strikes a balance between deployment feasibility and real-time defect
detection speed, making it suitable for industrial applications. The following Figure 11
illustrates the currently implemented module of the automated defect identification system
in Printed Circuit Boards using Convolutional Neural Networks.
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Table 4. Hardware setup overview.

Hardware Setup GPU/CPU RAM Batch Size Training Time Key Observations

Cloud GPU (Google
Collab Pro) NVIDIA Tesla T4 (16 GB VRAM) 8 6 h

The best accuracy was
achieved, due to larger

batch sizes and
high parallelization.

Local (Raspberry Pi
400 + Remote Server)

ARM Cortex-A72
(Quad-Core

1.8 GHz)
4 GB LPDDR4 2

Not feasible
(offloaded
to server)

Limited memory
prevented full on-device
training; inference was
performed on a remote

server for efficiency.
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The Full HD 1080P camera module captures high-resolution video at 1920 × 1080,
while the HDTV video capture device ensures high-quality video digitization and transfer.
Together, these components create a portable and high-performance environment for
automated defect identification in PCBs, and provide the necessary hardware foundation
for real-time defect detection and analysis in PCBs.

The resolution of input images and the camera’s optical zoom capability have strong
impacts on the detection of faults in PCBs, particularly for faults at the micro level, such as
small cracks or faults in soldering. As shown in Table 5, higher resolutions such as 4K im-
prove the detection of faults that are very small, at the expense of increased computational
load and processing time. Optical zoom has the potential to overcome the limitations of the
resolution of 1080P by zooming into very small areas of the PCB, but it reduces the field
of view, and may require several images to capture the entire board. To overcome these
limitations, we propose the use of higher-resolution cameras, post-processing techniques,
and training time data augmentation.
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Table 5. Impact of image resolution and optical zoom on PCB defect detection.

Aspect Description Impact on Defect Detection Mitigation Strategies

1920 × 1080
(HD) Resolution

Standard resolution is
used in many

industrial applications.

It may not capture very small
defects (e.g., <0.1 mm), unless
combined with optical zoom.

Use optical zoom,
higher-resolution cameras,

or position the camera closer
to the PCB [51].

Higher Resolutions
(e.g., 4K)

Provides four times the
pixel density of HD

(3840 × 2160).

Improves detection of small
defects, but increases

computational load and
processing time.

Use powerful hardware
(e.g., GPUs) and optimize

the model for
faster inference.

Focus Capabilities
Ensures clear images of
defects, even on uneven

PCB surfaces.

Poor focus can lead to blurred
images, reducing defect

detection accuracy.

Use autofocus cameras or
manual focus adjustments

during image capture.

4. Results and Discussion
We have developed and evaluated a Faster R-CNN model to identify and classify

defects in Printed Circuit Boards (PCBs). Using an annotated dataset with six trained and
tested model defect classes, we achieved an overall accuracy of 87% across a test set of
50 samples. The defect classes included common PCB issues, such as Missing Holes, Mouse
Bites, Open Circuits, Shorts, Spurs, and Spurious Copper. The model’s performance metrics,
including the precision, recall, and F1-score for each class, provide valuable insights into the
model’s efficacy in detecting and differentiating between various defect types. Additionally,
loss and accuracy charts from training and validation phases were analyzed to understand
model convergence and generalization [52].

(a) Precision

Precisioni =
TPi

FPi + TPi
(21)

The proportion of correctly identified instances of a class out of all the predicted
instances of that class.

(b) Recall

Recalli =
TPi

FNi + TPi
(22)

The proportion of correctly identified instances of a class out of all the actual instances
of that class.

(c) F1-Score

F1-Scorei = 2 · Precisioni · Recalli
Precisioni + Recalli

(23)

The F1-score is the harmonic mean of precision and recall. It provides a single score
that balances both precision and recall.

4.1. Detailed Breakdown of Performance Metrics

The confusion matrix shown in Table 6 indicates how the model performed with regard
to the six classes, where each row represents an actual class and the columns represent
predicted classes. The model had completely fine prediction in most instances, especially
for class 3, with which it attained full accuracy. The model had difficulties associated with
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class 4, which was misclassified as class 0, class 1, and class 2 in prediction. Similarly, class 5
was wrongly predicted once as class 3, but the model did well in correctly predicting class 5
in eight out of nine instances. The confusion matrix indicates the model’s effectiveness, but
highlights misclassifications in classes 2 and 5, suggesting the need for refinement, better
feature selection, or dataset expansion for improved differentiation and optimization.

Table 6. Confusion matrix (visually represents the performance of a classification model by showing
how predictions align with true labels).

True\Predicted 0 1 2 3 4 5

Missing Holes 9 0 0 0 1 0

Open Circuits 0 9 0 0 2 0

Mouse Bite 0 0 7 0 2 0

Short 0 0 0 10 0 1

Spur 0 0 1 0 9 0

Spurious Copper 1 0 0 0 0 8

4.2. Overall Model Performance

The accuracy of 87% on the test set highlights the model’s ability to precisely classify
most defects, with success in classes such as Mouse Bites, Open Circuits, Spurs, and
Spurious Copper. Nevertheless, the model failed to identify any samples from the Missing
Hole class, which suggests that more work is needed to ensure consistent performance
across all defect types. The macros of average precision, recall, and F1-score were 0.88, 0.87,
and 0.87, respectively.

This indicates moderate performance, with higher scores in classes where the model
performs well, and lower scores in underperforming classes, such as Missing Holes. The
weighted average metrics of precision of 0.89, recall of 0.87, and F1-score of 0.87 further em-
phasize the model’s satisfactory, though not exceptional, performance. Figure 12 presents
the Receiver Operating Characteristic (ROC) and precision–recall (PR) curves for a multi-
class classification model, evaluating its performance across different classes. The ROC
curve (a) illustrates the trade-off between the true positive rate and the false positive
rate, with the Area Under the Curve (AUC) values indicating strong overall performance,
ranging from 0.88 to 0.95 across classes. The PR curve (b) assesses precision versus recall,
providing insights into class-wise prediction reliability. While most classes exhibit high
AUC scores, class 2 and class 4 show relatively low performance, suggesting potential areas
for model improvement through enhanced feature selection or dataset augmentation. The
model’s effectiveness in classes with larger sample sizes also reveal limitations in classes
with insufficient samples or higher variability.

4.3. Comparative Analysis

ResNet-50 is the best-performing model, with high precision, recall, and F1-score,
making it the most suitable choice for PCB defect detection. Inception and ConvNeXt
show weak detection capabilities, struggling to classify defects accurately. This analysis
confirms that ResNet-50 is the optimal model for this task, offering robust and accurate
defect identification. With respect to defect detection, the current work is different from
previous ones. Most earlier systems used traditional image processing methods, such as
grayscale conversion, edge detection, thresholding, and contrast enhancement, for the
detection of PCB defects. Although these approaches could be acceptable [53], in this
section, we evaluate the performance of three models, namely Inception, ConvNeXt, and
ResNet-50 (the main model), for defect detection in PCBs, as illustrated in Table 7. The
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classification metrics, including precision, recall, F1-score, and accuracy, are analyzed and
compared. These models are very powerful, with their best utilization concerning different
fields. ResNet-50 is known for its residual connections that facilitate very deep networks,
and hence have no vanishing gradient problem during training.
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Table 7. A comparison table combining the classification reports for the Inception, ResNet-50, and
ConvNeXt models.

Model Overall
Accuracy

Macro
Avg Precision

Macro
Avg Recall

Macro Avg
F1-Score

Weighted
Avg Precision

Weighted
Avg Recall

Weighted
Avg F1-Score

Inception 0.17 0.06 0.17 0.08 0.06 0.17 0.08

ResNet-50 0.87 0.88 0.87 0.87 0.89 0.87 0.87

ConvNeXt 0.17 0.03 0.17 0.05 0.03 0.17 0.05

Thus, ResNet-50 is very effective in image classification and transfer learning tasks.
Inception is efficient in multi-scale feature extraction with parallel convolutions, while
ConvNeXt is an efficient hybrid of CNNs and transformers that yields the best performance
on large datasets and high-resolution input, but involves increased complexity in training.
Among the models, ResNet-50 mainly stands out for its robustness and depth, featuring as
the top performer in many vision tasks.

The ResNet-50 backbone outperforms both the Inception and ConvNeXt models by
a significant margin. Its superior accuracy and F1-score make it the ideal choice for au-
tomated defect detection in PCBs. The results demonstrate that ResNet-50 can reliably
identify and classify various defect types, contributing significantly to automating PCB
manufacturing quality control processes. For the ConvNeXt and Inception models, the per-
formance is poor and unacceptable for classification. According to Figures 13 and 14, these
models needs better hyperparameter tuning, architectural adjustments, or more training in
further analysis.
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4.4. Outcome

Accordingly, the following Figure 15 shows outputs related to each defect that we
obtained with real-time defect detection. The following test sample shows the confidence
level and the type of defects. It evaluates the classification accuracy for defects such as
Missing Holes, Mouse Bites, Open Circuits, Shorts, Spurs, and Spurious Copper. Finally, a
GUI application was designed for the implemented model. Users can upload any kind of
photo (such as rotation or portrait, shown in Figure 16) or video for input to the application,
and the captured defects will be displayed in real time. The output can be saved as an
image. Also, the detected defects can be saved for future study.
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The application continuously analyzes video frames, detects defects, and displays
results in real time. According to Figure 17, users can identify the frequency of different
defect types. These data can be used to identify the most common defect types and
prioritize corrective actions to improve product quality.
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5. Conclusions
This Faster R-CNN model demonstrated effective detection capabilities for the several

defect types on which it was trained. This proposed system achieved an overall accuracy
of 87%, with perfect classification for the classes of Mouse Bites, Open Circuits, Spurs, and
Spurious Copper. The proposed model shows promise for use in PCB defect detection
applications. However, the performance with regard to Missing Holes suggests areas that
must be improved. The lower performance in Missing Hole detection reveals limitations in
handling class-imbalanced datasets. Future research directions will focus on investigating
attention mechanisms to improve small-defect detection, exploring few-shot learning
approaches for rare defect categories, integrating multimodal data (thermal/X-ray) to
expand defect coverage, and optimizing inference speed for high-throughput production
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lines. These findings contribute to developing automated, reliable PCB inspection systems
that can streamline quality assurance processes in industrial manufacturing.
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