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Abstract: This research evaluates advanced waste management technologies suitable for
long-duration space missions, particularly focusing on artificial intelligence (AI)-driven
sorting systems, biotechnological bioreactors, and thermal processing methods, such as
plasma gasification. It quantitatively assesses the waste generated per crew member.
It analyses energy efficiency, integration capabilities with existing life-support systems,
and practical implementation constraints based on experimental ground and ISS data.
Challenges are addressed, including energy demands, microbial risks, and integration
complexities. The research also discusses methodological approaches, explicitly outlining
selection criteria and comparative frameworks used. Key findings indicate that plasma
arc technologies significantly reduce waste volume, although high energy consumption re-
mains challenging. Enhanced recycling efficiencies of water and oxygen are also discussed.
Future research directions and actionable policy recommendations are outlined to foster
sustainable and autonomous waste management solutions for space exploration.

Keywords: space waste management; sustainable technology; artificial intelligence;
bioreactors; plasma gasification; resource recovery

1. Introduction
Space exploration has undergone monumental advancements since the mid-20th cen-

tury, marked by the pioneering launches of human-made objects into orbit [1–3]. Early
missions, such as those under NASA’s Apollo program and the initial space station en-
deavours, were characterised by their relatively short durations, modest crew sizes, and
minimal waste generation [4,5]. During these formative years, waste management in the
context of space exploration was considered a secondary concern [6,7]. Waste generated
during missions could be stored temporarily for disposal upon return to Earth or jettisoned
into space, where it would harmlessly disintegrate in the atmosphere [8–10].

The landscape of space exploration has evolved dramatically, with the ambition of
space agencies and burgeoning private sector interests in long-duration missions [11,12].
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For example, crewed expeditions to Mars or establishing lunar habitats have positioned
waste management as a pivotal issue [13–15]. The stakes are higher, and the logistical
complexities of managing waste in space have become more daunting. With the extension
of mission durations and the expansion of crew sizes, the volume of waste generated in
space environments has surged [16,17]. A typical contingent of four astronauts aboard
the International Space Station (ISS) now produces upwards of 2500 kg of waste annually,
encompassing a variety of refuse, including food packaging, human excrement, and spent
equipment [18,19]. This waste must be meticulously managed to safeguard crew safety,
mitigate contamination risks, and preserve critical resources such as air and water [20,21].
The urgency of developing effective waste management solutions is accentuated by the
prospects of future missions targeting more remote destinations, such as Mars or the Moon,
where resupply missions are less feasible, and the luxury of returning waste to Earth is
absent [22–24].

In stark contrast to Earth, where natural processes facilitate the decomposition of
organic waste, the space environment lacks gravity, atmospheric dynamics, and soil activity,
which are integral to terrestrial waste management practices [25,26]. In the microgravity
conditions of space, such as those aboard the ISS, specialised systems are imperative for
safe and efficient waste handling [27,28]. Techniques must be adapted to accommodate the
unique challenges of space; for example, human waste requires drying, compacting, and
secure storage processes, while wastewater is subject to rigorous filtration and purification
to produce potable water [29,30].

The consequences of inadequate waste management in space extend beyond the im-
mediate confines of crew health and comfort, posing substantial logistical and safety
challenges [31–33]. Unprocessed waste occupies precious space aboard spacecraft,
and if improperly handled, biological waste becomes a potential breeding ground for
pathogens [34,35]. Chemical wastes, unless effectively contained and neutralised, pose sig-
nificant toxic risks [36]. Moreover, imprudent waste disposal contributes to the escalating
problem of space debris—nonfunctional satellites and remnants from past missions that
clutter Earth’s orbit and pose collision risks to ongoing and future space endeavours [37–39].

Smart waste management solutions leveraging human-centric AI and advanced
biotechnology are being explored to address these multifaceted challenges [40,41]. AI
and robotics are employed for their potential to classify autonomously and sort waste, en-
hancing resource recovery efficiency and converting waste into valuable by-products [42,43].
Advances in biotechnology, mainly through microbial bioreactors, offer promising methods
for the bioconversion of organic waste into reusable resources [44,45]. Additionally, high-
temperature thermal processing technologies such as plasma gasification and innovative
strategies like in situ resource utilisation (ISRU) combined with 3D printing present new
avenues for reducing waste volume and repurposing materials within the closed-loop
ecosystems envisioned for future space habitats [45,46].

Thus, as we propel further into the cosmos, integrating human AI-driven technologies
and sustainable practices in waste management is critical to ensuring the viability and
success of prolonged space missions [47,48]. These advancements promise to enhance the
sustainability of space exploration and forge a path toward more autonomous and resilient
space missions [48,49].

This research addresses the escalating challenges of waste management in space,
particularly as human missions extend in duration and distance from Earth. As traditional
waste disposal methods become impractical for long-duration explorations and habitation
on celestial bodies such as the Moon and Mars, there is a pressing need for innovative
waste management technologies that are sustainable and efficient. This study aims to
explore and integrate advanced solutions involving human-centric artificial intelligence
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(AI), biotechnology, and thermal processing techniques to enhance waste management
systems. These technologies are expected to maximise resource recovery, minimise waste
accumulation, and ensure the integration of waste management systems with existing life
support systems to boost overall mission sustainability. By leveraging these sophisticated
technologies, this research seeks to develop smart waste management solutions that can
operate autonomously, reduce logistical burdens, and mitigate the environmental impacts
of space missions, ultimately supporting the long-term viability and safety of human
space exploration.

2. Methodology
A structured research approach was employed. Databases including Scopus, Web

of Science, IEEE Xplore, NASA Technical Reports, and ESA publications were searched
using keywords such as “space waste management”, “AI waste sorting”, “bioreactors in
space”, and “plasma gasification”. Inclusion criteria encompassed peer-reviewed articles,
conference papers, and technical reports published between 2018 and 2024, relevant to
waste management technologies for space applications. The literature was selected based
on technological relevance, practical implementation evidence, and integration capabilities
with life support systems. A comparative thematic analysis focused on energy efficiency,
implementation practicality, and sustainability impacts. Figure 1 was explicitly designed to
support comparative analysis and clarity of technological implications.
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Figure 1. Impact of waste management on crew health and mission sustainability.

Space missions produce various types of waste—solid, liquid, and gas—that increase
in volume with longer missions, larger crews, and more activities. Human waste, including
urine and faeces, poses a significant challenge. At the International Space Station (ISS), urine
is recycled into drinking water, while faecal matter is compacted and disposed of during
reentry into Earth’s atmosphere. Although effective for short missions, these methods are
insufficient for long-term exploration, such as potential Mars missions or lunar habitats
requiring advanced biological waste processing. Solid waste includes used packaging,
food scraps, and broken equipment, and the limited space in spacecraft complicates waste
storage, necessitating compacting methods. As missions extend, efficient recycling systems
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become vital to lessen reliance on resupply from Earth. Chemical waste from experiments
and operations, including hazardous materials, presents another challenge. It is stored
until it can be safely managed on Earth, but this approach is impractical for deep-space
missions [50–52]. Advanced neutralisation and recycling systems are essential to manage
these wastes in space, converting toxins into valuable resources like fuel or oxygen, thus
supporting sustainable long-term missions. Overall, waste management in space is complex
and demands innovative solutions and technologies to ensure the safety and efficiency of
future long-duration missions (Table 1).

Table 1. Energy requirements for waste processing systems.

Waste Processing Technology Energy Requirements (kWh per ton)

Plasma Arc 500–1000

Pyrolysis 200–500

Bioreactors 50–150

Mechanical Compaction 10–50

Incineration 300–600

Waste Type and Corresponding Management Techniques

Waste Type Management Techniques

Organic Waste Bioreactors, Composting

Inorganic Waste Mechanical Compaction, Pyrolysis

Packaging Waste Mechanical Compaction, Plasma Arc

Human Waste Bioreactors, Advanced Filtration Systems

Chemical Waste Incineration, Chemical Neutralization

Electronic Waste Recycling, Plasma Arc

Complete Sterilisation of Biological Waste Measures

Advanced microbial bioreactors using genetically engineered microorganisms are vital
for efficiently breaking down organic waste in space missions. These systems incorporate
sterilisation methods, including high temperatures and chemical agents, to eliminate
pathogens from by-products like methane and water. Incineration and pyrolysis effectively
sterilise biological waste, ensuring safety. UV-C light sterilises air and surfaces, preventing
pathogen replication. Waste processing units are isolated to mitigate contamination risks
and are equipped with safety measures like double-sealed containers and automated
sensors. Continuous health monitoring and air ventilation systems with HEPA filters ensure
crew safety. Gaseous waste from life support and propulsion systems poses additional
challenges, necessitating efficient air purification technologies. Current systems, like the
ISS’s Carbon Dioxide Removal Assembly, filter and recycle air, while water electrolysis
generates oxygen. Future missions will require advanced systems to manage increased
waste and support extended operations.

3. Traditional Waste Management Practices in Space
Traditional waste management in space missions, particularly on the ISS, adapts

Earth-based techniques for microgravity. Waste is collected, compacted, and stored, with
future missions considering jettisoning logistics modules or gasification. In situ resource
utilisation (ISRU) aims to use local materials, exemplified by NASA’s Mars 2020 Perse-
verance rover producing oxygen from Martian CO2. RASSOR, a robotic miner, extracts
resources from lunar and Martian regolith (NASA Kennedy Space Center, Merritt Island,
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FL, USA). Proposed missions target water ice extraction from lunar craters for life support.
Experiments like EPICS enhance water conversion to oxygen and hydrogen, which is
crucial for long-term habitation. The Archinaut project explores on-orbit manufacturing
using materials from celestial bodies, showcasing 3D printing potential in space [52–54].

3.1. Ground-Based Simulations and Testing

Before deploying a waste management system in space, it undergoes rigorous ground
testing to simulate microgravity using parabolic flights, drop towers, or neutral buoyancy
labs. These tests ensure that the system operates effectively without Earth’s gravity and
identify necessary modifications. Prototypes are then evaluated aboard the International
Space Station (ISS) to assess their performance in a microgravity environment. They
involve real-time testing and iteration to integrate with existing life support systems
and evaluate operational efficacy over time. Advanced computer simulations also play
a vital role in predicting system functions under various space conditions, helping to
identify potential failures early in development. This approach saves time and resources
by refining designs before physical deployment. Once operational, sensors and monitoring
devices collect data on energy consumption, waste processing efficiency, and containment
integrity, providing essential evidence for ongoing optimisation [55,56]. Feedback from all
testing phases drives continuous improvements, enhancing reliability, efficiency, and safety.
The development process engages a diverse community of researchers and engineers to
incorporate the latest scientific and technological advances. Extended mission simulations
on Earth, in habitats mimicking space station conditions, test the systems’ durability for
deep-space missions and future lunar or Martian bases. This comprehensive validation
ensures that waste management systems are theoretically sound and practically viable
in harsh space conditions, contributing to mission sustainability and crew safety [57–59].
Figure 2 illustrates the daily waste by each astronaut, highlighting the cumulative impact
over time.
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3.2. Limited Storage Hampers Resource Recovery

Conventional waste management techniques in space missions are limited by the
finite storage capacity of spacecraft, affecting the choice of recyclable materials and the
effectiveness of space trash systems. Space is scarce on missions, and spacecraft or space
stations cannot store waste for long periods [60–62]. On the ISS, waste accumulates for
months and relies on periodic resupply missions for removal, highlighting inefficiencies in
current water recovery systems. This traditional approach works for low Earth orbit (LEO)
missions, where waste can be returned to Earth regularly. However, innovative waste
management solutions are essential for more extended missions to the Moon, Mars, or
beyond, where resupply is less feasible [63–65]. These solutions must reduce or repurpose
waste to minimise storage needs, especially as mission durations increase. Innovations like
closed bio-regenerative life support systems, microbial bioreactors, and in situ resource
utilisation are vital for extending mission capabilities by efficiently repurposing a wider
range of waste materials.

Traditional waste management in space also poses environmental risks, particularly
with space debris. Discarding waste in space threatens satellite networks and the Inter-
national Space Station, whether it burns up in Earth’s atmosphere or remains in orbit.
Uncontrolled disposal increases the risk of space debris, which can collide with operational
satellites and spacecraft at high velocities. Over 23,000 pieces of debris larger than 10 cm
are tracked in Earth’s orbit, along with millions of smaller, untracked fragments that pose
significant risks [66,67].

As space agencies and private companies pursue deeper missions to the Moon, Mars,
and beyond, the inadequacies of traditional waste management methods become more
evident. Limited storage, poor resource recovery, and environmental hazards associated
with waste disposal highlight the need for innovative solutions to ensure the sustainability
of long-duration and deep-space missions [68,69]. By leveraging advanced technologies,
space missions can minimise their environmental impact and enhance waste management
capabilities in exploration.

4. Smart Waste Management Technologies for Space
The challenges of space waste management have driven the development of advanced

technologies to enhance sustainability in missions beyond low-Earth orbit. Innovative
systems utilising AI, robotics, and biotechnology are being created to maximise resource
recovery, minimise waste volume, and optimise efficiency in the isolated environments of
space missions. These systems strive to establish sustainable, closed-loop processes that
significantly lessen reliance on Earth-based resources. Key innovations include AI-driven
sorting and recycling mechanisms that improve waste processing efficiency and biotechno-
logical reactors that convert organic waste into biogas and other valuable products. In situ
resource utilisation (ISRU) employs local materials, such as lunar or Martian soil, for con-
struction, reducing the need for Earth resupply missions [70,71]. Advanced water recycling
and CO2 reduction systems, like the Sabatier process, are essential for regenerating vital
resources. Technologies such as plasma arc pyrolysis are being explored to convert mixed
waste into inert gases and energy. Automating waste handling and enhancing efficiency are
crucial for enabling long-duration space missions and paving the way for self-sustaining
waste management systems in future space exploration (Table 2).
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Table 2. Overview of waste generation rates by mission type in a cost–benefit analysis.

Mission Type Average Waste/Day (kg) Total Waste per Mission (kg) Mission Duration (Days)

International Space
Station (ISS) 1.5 per crew member Variable (based on crew size

and duration) Variable

Lunar Missions 2.0 per crew member Calculated based on mission
duration and crew size 10–30

Mars Missions 1.8 per crew member Calculated based on mission
duration and crew size 180–500

Waste Management
System Initial Setup Cost Operating Cost/Year Savings from Reduced

Resupply (USD/year)

Plasma Arc USD 500,000 USD 50,000 USD 200,000

Pyrolysis USD 300,000 USD 40,000 USD 150,000

Bioreactors USD 250,000 USD 30,000 USD 180,000

Mechanical Compaction USD 100,000 USD 10,000 USD 50,000

Incineration USD 400,000 USD 45,000 USD 120,000

4.1. Strategies for Waste Management

Integrating waste management with life support systems in spacecraft is essential for
enhancing efficiency, minimising resource usage, and ensuring crew safety. Systems need
to be designed that complement life support cycles, recycling waste by-products like water
and carbon dioxide. Purified water from waste can be used for drinking, while carbon
dioxide can be converted back into oxygen. Scalable modular units should be utilized to
adapt to mission needs and crew size, allowing flexibility and easier upgrades without
overhauling the entire system [72,73]. This modularity supports the incorporation of new
technologies and simplifies maintenance. Energy management should be integrated to
boost overall efficiency, using syngas from pyrolysis as an energy source for heating and
lighting. Automated systems need to be implemented to monitor operations, maintaining
optimal conditions by dynamically adjusting variables like temperature and gas levels.
Systems need to be developed to convert waste into reusable resources, such as compost
from organic waste or drinkable water from urine. Robust safety measures must be
ensured to prevent contamination and foster collaboration among engineers, biologists,
and chemists to create comprehensive solutions for sustaining human life in space (Table 3).

Table 3. Comparative analysis of terrestrial with space waste management systems.

Feature Terrestrial Systems Space Systems

Gravity Dependence High Negligible (Microgravity)

Microbial Risks Naturally manageable High, requires sterilisation

Resource Recycling Variable, optional Essential

Storage and Logistics Extensive space available Highly limited storage space

System Integration Separate systems
acceptable

Fully integrated with
life-support

4.2. Waste Conversion

During extended missions to the Moon or Mars, AI-driven robotic systems could
autonomously sort and classify astronaut waste, facilitating recycling and reducing stor-
age needs. In lunar habitats, these systems could continuously process waste, recycling
materials like plastics and metals for 3D printing, minimising reliance on Earth resources.
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Bioreactors using microorganisms could convert organic waste into valuable by-products
such as water, oxygen, and biogas, essential for long-duration missions where resupply is
impractical [73,74]. For Mars bases, bioreactors could transform human waste and food
scraps into methane for energy and water for reuse, supporting a closed ecological system.
In situ resource utilisation (ISRU) could turn mission-generated waste and local regolith
into building materials, enabling habitat construction or repairs on-site. High-temperature
waste treatment methods like plasma arc and pyrolysis would efficiently reduce waste
mass and volume, converting it into simpler compounds or inert gases. These modular
systems would operate autonomously, ensuring sustainable water supply and enhancing
crew health and habitat stability during deep-space missions [75,76] (Figure 3).
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4.3. Smart Waste Management and Enhances Mission Sustainability

Plasma arc and pyrolysis are promising advanced waste management technologies
for space missions, significantly reducing waste volume and converting it into valuable
by-products. Plasma arc technology uses electrically generated plasma at temperatures up
to 5000 ◦C, decomposing organic waste into hydrogen and carbon monoxide gases and in-
organic material into stable slag. While highly effective in sterilisation and waste reduction,
plasma arcs’ substantial energy requirements pose challenges in energy-constrained space
environments, potentially necessitating larger solar arrays or nuclear power systems, thus
increasing mission costs and complexity.

Pyrolysis, operating at lower temperatures (400 ◦C to 700 ◦C) without oxygen, de-
composes organic waste into bio-oil and syngas, products valuable for soil enrichment,
refinement, and power generation. Although less energy-intensive than plasma arc, py-
rolysis still demands consistent heating and additional processing systems, complicating
its deployment in spacecraft. To mitigate energy constraints, integrating renewable en-
ergy sources or efficient nuclear systems, capturing waste heat for reuse, enhancing unit
insulation, and designing modular systems can optimise overall energy efficiency.

Automated waste management systems leveraging AI and robotics significantly en-
hance efficiency in microgravity by reducing manual handling. Automation minimises
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human intervention, allowing crew members to focus on critical mission tasks, which is
crucial for distant missions with limited resupply options. These systems convert organic
waste into vital resources such as water and oxygen, reducing storage needs and resup-
ply frequency. AI-driven classification and sorting utilise convolutional neural networks
(CNNS) for visual identification and support vector machines (SVMS) with sensors for
accurate sorting. Deep reinforcement learning (DRL) further optimises robotic handling
strategies. Integrating these advanced technologies into waste management significantly
reduces logistical costs and enhances mission sustainability and success (Figure 4) (Table 4).
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Table 4. Efficiency metrics of current enhanced recycling systems.

Efficiency Metrics of Current vs. Enhanced Recycling Systems

System Current Recycling Efficiency (%) Enhanced Recycling Efficiency (%)

Water Recycling 90 98

Air Recycling 75 85

Solid Waste Recycling 30 50

International Standards for Space Waste Management

Standard/Organisation Key Guidelines Focus Area

Space Systems—Debris Mitigation Limit debris released during normal
operations Debris Management

COSPAR Planetary Protection Policy Avoid biological contamination of
celestial bodies Environmental Protection

NASA Procedural Requirements
8715.6B

Waste disposal for spacecraft and
associated hardware Waste Disposal and Processing



Sustainability 2025, 17, 4088 10 of 19

Table 4. Cont.

Efficiency Metrics of Current vs. Enhanced Recycling Systems

System Current Recycling Efficiency (%) Enhanced Recycling Efficiency (%)

UN Office for Outer Space Affairs Long-term sustainability of outer space
activities Sustainable Space Exploration

Inventory of Waste Management Equipment on the ISS

Equipment Manufacturer Capacity

Closed-Loop System Boeing (Washington, DC, USA) Processes 6 kg/day

O2 Generation System Airbus (Blagnac, France) 2 kg O2/day

Urine Processor Assembly Lockheed Martin (Bethesda, MD, USA) 1.5 L/day

Solid Waste Compactor Thales Alenia Space (Cannes, France) 50 kg of waste

Water Recovery System Hamilton Sundstrand (Windsor Locks,
CT, USA) 6 L/day

5. Challenges and Considerations
5.1. Practical Constraints and Implementation Realities

Practical limitations identified from ground-based and ISS experimental data include
significant energy requirements for plasma arc gasification, necessitating enhanced solar ar-
rays or nuclear energy, the latter carrying inherent safety risks demanding rigorous contain-
ment measures. AI-driven waste sorting, while promising, faces computational limitations
in space environments due to restricted onboard computational resources, as evidenced by
ISS-based testing and ground simulations. Although highly efficient in laboratory condi-
tions, bioreactor systems encountered microbial containment challenges and fluctuating
processing efficiencies under microgravity conditions aboard the ISS, highlighting the need
for optimised sterilisation and containment solutions [77,78]. Future technological designs
must address these operational limitations through modular and energy-efficient designs
to ensure practical implementation in deep-space missions. (Table 5) (Figure 5).
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Table 5. Comparative analysis of waste management technologies.

Technology Processing Energy
(kWh/ton) Suitability for Space Use By-Product

Utilization

Plasma Arc High volume reduction 500–1000 High (requires significant
power) Syngas for energy

Pyrolysis
Moderate volume

reduction produces
biochar, oil, and syngas

200–500 Moderate (less energy than
plasma but still significant)

Biochar for soil
enhancement, syngas

for energy

Bioreactors Organic waste to biogas
and compost 50–150 High (low energy, valuable

by-products)
Compost for growing
food, biogas for energy

Mechanical
Compaction

Compacts solid waste to
reduce volume 10–50 Very High (low energy,

simple technology)
None (reduces storage

space only)

Incineration High volume reduction,
sterilisation of waste 300–600

Moderate (efficient but
requires energy for high

heat)

Heat can be used for
energy

Projected Waste Volumes for Future Deep-Space Missions

Mission Type days Crew Size Daily Waste/Crew Total Waste

Mars 900 6 1.8 kg 9720 kg

Asteroid Mining 180 4 1.5 kg 1080 kg

Lunar Habitat 365 5 1.5 kg 2738 kg

5.2. Economic Implications and Environmental Impacts

Evaluating innovative waste management technologies in space indicates that long-
term savings from resource recovery and reduced resupply needs can outweigh initial
high investment costs. While these systems require substantial upfront investments in
development, deployment, and crew training, their return on investment improves as they
lessen dependency on Earth for resources, providing a break-even point for space agencies
and private companies. International partnerships are vital for funding and advancing
these technologies, with successful collaborations reducing individual cost burdens and
enhancing capabilities. The commercial potential for private companies in the space sector
is significant in space waste management and in developing spin-off technologies for Earth.
Effective waste management contributes to environmental sustainability by minimising
space debris and conserving raw materials. Technologies like plasma arc gasification sup-
port closed-loop systems for long-duration missions. Integrating waste management with
existing life support systems, such as air filtration and water recovery, is crucial for crew
health and mission success. Systems must efficiently recycle waste while ensuring safety
and thoroughly sterilising biological waste to prevent contamination [78,79]. The Con-
trolled Ecological Life Support System (CELSS) exemplifies this integration, regenerating
essential life-support materials for crew sustainability (Figure 6).

5.3. Summarise the Challenge

Managing waste in space presents unique challenges, underscored by the significance
that illustrates waste management’s complexity for space missions. Each International
Space Station (ISS) crew member generates about 1.5 kg of waste daily, leading to a total of
4.5 to 9 kg daily for crew sizes of 3 to 6, or 1642 to 3285 kg annually. High-energy waste
treatment technologies, like plasma arc systems, face integration challenges due to limited
power on spacecraft, consuming 500 to 1000 kilowatt-hours per ton processed. The cost
of launching payloads into space is approximately USD 10,000 per pound, making waste
reduction or reprocessing into functional materials crucial for potential savings of hundreds
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of thousands of dollars annually. Currently, the ISS recycles about 90% of water and 42%
of oxygen from waste, with food packaging (20%), human metabolic waste (30%), and
inedible food parts (25%) comprising the waste types. For a Mars mission with a six-person
crew lasting several years, total waste could exceed 25,000 kg. Efficient waste management
is vital for astronaut health, safety, and mission sustainability, necessitating innovative
systems that minimise energy use and maximise recycling (Figure 7).
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6. International Collaboration and Policy
International collaboration involving multiple space agencies and private entities

like NASA, ESA, Roscosmos, SpaceX, and Blue Origin is essential for advancing smart
waste management in space. As space exploration becomes increasingly global, estab-
lishing standardised waste management protocols is vital. These collaborations create a
practical framework under international environmental and space law, promoting long-
term sustainability through the waste hierarchy concept. Such cooperative efforts are
crucial for ensuring efficiency, safety, and sustainability in the international domain of
space operations.

With the commercialisation of space exploration and the growing involvement of
various countries and private entities, standardised waste management protocols are more
important than ever. This standardisation ensures that government-led and privately
operated missions adopt a unified waste handling, processing, and disposal approach. The
lack of coordination poses significant risks, including the accumulation of space debris
that threatens satellites, spacecraft, and human habitats [80,81]. Coordinated efforts are
necessary to mitigate these risks and enhance the safety of space operations.

International standards emphasising waste treatment and resource recycling are piv-
otal for minimising the environmental impact of space activities. Agencies like NASA, ESA,
and Roscosmos, with their experience in collaborative projects such as the International
Space Station (ISS), play a key role in advancing waste management systems. These collab-
orations have led to developing technologies for air filtration, water recovery, and waste
storage, which are crucial for long-duration missions like NASA’s Artemis program and
ESA’s ExoMars mission.

Collaboration allows countries and organisations to share knowledge and technologies,
leading to more efficient waste management systems [82,83]. By working together, space
agencies can establish common standards for international missions, ensuring adherence
to shared environmental and safety protocols. As missions extend to lunar bases or Mars
colonies, regulations must evolve to manage waste and ecological impacts effectively,
focusing on sustainability and integrating advanced waste processing technologies.

6.1. Actionable Stakeholder Roadmap

The Stakeholder Roadmap for Policy Implementation suggests the following: Years
1–2: Establish an international collaborative task force involving NASA, ESA, SpaceX, and
Blue Origin to pilot advanced waste management technologies aboard the ISS, focusing
on AI and bioreactor modules. Years 3–4: Evaluate performance outcomes, standardise
technology practices, and begin integration plans for lunar and Mars missions, leveraging
insights from ISS tests. Year 5 and Beyond: Formalise global standards through treaties
mediated by the United Nations Office for Outer Space Affairs, ensuring widespread
international compliance and cohesive policy adherence to sustainable waste management
practices (Figure 8).

6.2. Private Companies, International Policy, and Global Cooperation Need

The increasing involvement of private companies like SpaceX and Blue Origin in space
exploration introduces new dynamics and technological innovations. These companies are
pioneering commercial space travel, offering fresh perspectives in operations management,
including manufacturing, supply chain, and waste management. For instance, SpaceX’s
Starship is being developed for Mars missions and requires sophisticated waste manage-
ment systems for long-duration space habitation. Figure 9 shows a line graph showing the
cumulative waste generated over the expected duration of a Mars mission based on crew
size and mission length.
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As space exploration expands to include more nations and commercial entities, the
need for an international regulatory framework for waste management becomes increas-
ingly urgent. Based on treaties like the Outer Space Treaty of 1967, current space law
provides a basic structure but lacks detailed waste management and debris mitigation
regulations. Efforts are underway to develop comprehensive guidelines, such as the United
Nations Committee on the Peaceful Uses of Outer Space’s Space Debris Mitigation Guide-
lines, which suggest the best practices to limit debris but do not address waste management
beyond low-Earth orbit. Significant international collaboration is essential to create policies
encompassing waste reduction, recycling, and handling hazardous materials. The space
community can ensure sustainable waste management by enhancing cooperation among
space agencies, private companies, and regulatory bodies. As the number of missions in-
creases, the coordinated management of space resources is vital to minimise environmental
impacts and establish a sustainable human presence in space for future generations.

6.3. Future Research and Recommendations

This document highlights critical areas for advancing smart waste management tech-
nologies in space exploration, particularly for long-duration missions to Mars and lunar
bases. It emphasises the need for methods to process more materials with higher recovery
rates. Research should prioritise converting waste into usable resources like water, oxygen,
and building materials through advanced chemical and biological processes. Energy ef-
ficiency is vital, necessitating the exploration of low-energy processing technologies and
energy recovery systems that transform waste into energy. Automating waste sorting and
processing is essential to reduce human involvement, allowing crew members to focus on
other critical tasks. Developing AI-driven robotics for autonomous waste identification,
sorting, and processing is a priority. Given space and weight constraints in spacecraft,
research into innovative materials and designs that minimise the size and weight of waste
management systems without sacrificing efficiency is necessary. Enhancing the durability
and reliability of these technologies is crucial for long-term operations in harsh space
conditions. Integrating waste management into habitat design is also essential, ensuring
that these systems work seamlessly with life support functions like food production and
air purification. Establishing international standards for waste management in space is
essential for global practice standardisation and technology sharing.

7. Conclusions
This research provides a novel, comprehensive evaluation of cutting-edge waste man-

agement technologies tailored explicitly for long-duration space missions. This study
uniquely addresses the multifaceted challenges of sustainable waste management beyond
low-Earth orbit by integrating artificial intelligence-driven sorting systems, microbial biore-
actors, and thermal processing techniques. Among the key findings, plasma arc gasification
demonstrates the highest waste volume reduction efficiency (up to 90%), but its high en-
ergy demand of 500–1000 kWh per ton poses significant operational constraints. Pyrolysis
offers a balanced solution, reducing waste volume moderately at a lower energy range
(200–500 kWh per ton), but it necessitates additional handling systems. Notably, efficient
bioreactors consume the least energy (50–150 kWh per ton) and effectively convert organic
waste into vital resources, such as oxygen and water, essential for prolonged missions.
The analysis quantified current ISS recycling efficiencies, revealing a 90% water recycling
rate with potential improvements of up to 98% using advanced methods. However, im-
plementation faces challenges like microbial containment under microgravity conditions,
computational limitations for onboard AI systems, and significant initial investment costs.
This study underscores the critical balance between energy consumption, recycling effi-
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ciency, and operational practicality, proposing clear directions for developing sustainable,
integrated solutions essential for future space exploration.
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