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ARTICLE OPEN

Translational Therapeutics

Sequential ATR and PARP inhibition overcomes acquired DNA
damaging agent resistance in pancreatic ductal
adenocarcinoma
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BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains the most lethal cancer. While DNA damaging agents such as
platinum and PARP inhibitors have derived clinical benefits, acquired resistance invariably develops. Hence there is an urgent need
for novel therapeutic strategies to overcome acquired resistance.
METHODS: Clinically relevant resistance in PDAC patient-derived cell lines was achieved by extended exposure to chemotherapy
agents. Synergy scoring, clonogenicity, flow cytometry, immunofluorescence, and transcriptomic analysis were used to investigate
the efficacy of ATR (ceralasertib) and PARP (olaparib) inhibitors in overcoming acquired resistance.
RESULTS: Acquired resistance was associated with transcriptomic shifts in cell cycle checkpoint regulation, metabolic control, DNA
damage response (DDR), programmed cell death, and the replication stress response. Combination treatment with ceralasertib, and
olaparib was synergistic in all models of acquired resistance. Sequential use of ceralasertib prior to olaparib was highly effective at
low dose for DDR proficient models, whereas DDR deficient models responded better with olaparib treatment first.
CONCLUSIONS: We provide in vitro evidence of a novel therapeutic strategy to overcome acquired resistance to PARP inhibitor
and platinum in PDAC, using sequential exposure to ceralasertib and olaparib. A sequential regimen should be investigated
clinically to circumvent dose limiting toxicity seen in concurrent combinations.

British Journal of Cancer; https://doi.org/10.1038/s41416-025-03051-z

INTRODUCTION
Outcomes for pancreatic ductal adenocarcinomas (PDAC) have
not changed significantly over the last 50 years with an overall
5-year survival of ~8% [1], and is predicted to be the second
leading cause of cancer related death by 2030 [2]. Reasons for the
poor prognosis are multifactorial. Most of the patients present
with advanced disease as symptoms are generally non-specific,
and many of the patients have rapidly deteriorating performance
status, unable to receive any active treatments [3]. In addition,
overall response rate for standard chemotherapy is modest and
tumours eventually acquire resistance even after a period of
treatment response.
Tumour molecular profiling through next generation sequen-

cing has been the foundation of modern oncology to identify
targeted therapy that the patient is most likely going to respond
to [4, 5]. One of the most promising actionable segments are
those whose tumours with homologous recombination deficiency

(HRD) [6], which preferentially respond to DNA damaging agents
such as platinum and poly (ADP-ribose) polymerase (PARP)
inhibitors through synthetic lethality. This approach has signifi-
cantly improved the outcomes of breast (OlympiAD, OlympiA),
prostate (PROfound, PROpel), and ovarian (SOLO-1, PAOLA-1,
SOLO-2, and ARIEL3) cancer patients clinically [7–14].
In PDAC, platinum-based chemotherapy such as FOLFIRINOX has

demonstrated clinical efficacy in metastatic [15] and adjuvant [16]
settings. More recently, maintenance olaparib and rucaparib
demonstrated significant progression free survival benefit over
placebo in germline BRCA1/2 carriers and germline and somatic
BRCA1/2, PALB2 PDAC respectively after a period of platinum
stabilisation [17–19]. However prolonged exposure to platinum and
PARP inhibitors eventually leads to treatment failure over time due
to acquired resistance. When acquired resistance happens, unfortu-
nately the prognosis is extremely poor as reported by the
RUCAPANC authors [20], highlighting an urgent unmet clinical need.
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Aberrant coordination of events occurring during replication
causing replication stress (RS) is a common feature of cancer due to
the close relationship of cell cycle and DNAmaintenance machinery
[21]. An efficient response to and recovery from replication-induced
DNA damage is essential to the maintenance of genome wide
fidelity, with most cancers developing a degree of enhanced innate
tolerance to RS [22] which in turn is associated with chemotherapy

resistance. This may create a dependency on the ataxia telangiec-
tasia mutated and rad3 related kinase (ATR) /CHEK1/WEE1 signalling
axis, that coordinates the replication stress response (RSR), and
represents an exploitable vulnerability in treatment resistant
cancers [23, 24]. We previously reported a RS signature score based
on molecular processes involved in maintenance of genomic
integrity and demonstrated its correlation to cell cycle checkpoint
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inhibitor responsiveness such as ATR and CHK in preclinical models
of PDAC [25]. Clinically, ATR inhibitors have demonstrated efficacy
by differentially targeting tumours with high RS [26]. In addition,
early trial results of ATR inhibitor BAY1895344 have shown clinical
efficacy in a wide range of heavily pre-treated solid cancers
including those acquired resistance to PARP inhibitors [27]. The
authors also found evidence of increased DNA damage in on-
treatment biopsies, which is unsurprising as acquired PARP inhibitor
resistance may be mediated by ATR-induced protection of the
replication fork [28]. This further supports the combination of ATR
inhibitor to DNA damaging agents as a viable strategy to overcome
acquired resistance to DNA damaging agents, even though early
phase ATR inhibitor trials showed that intermittent on-off dose
scheduling is required to improve tolerability [29].
Here, we build on our previous work which investigated combina-

tion of ATR inhibitor and DNA damaging agents as novel therapeutic
strategy to overcome acquired resistance to DNA damaging agents in
PDAC, asking whether scheduling ATR inhibition could effectively
improve response and circumvent clinical adverse effects.

METHODS
Chemicals
Chemotherapy agents - cisplatin (Accord Healthcare, London, UK),
rucaparib camsylate (Clovis Oncology, Boulder, CO), olaparib/AZD2281
and ceralasertib/AZD6738 (AstraZeneca, Cambridge, UK). Replication stress
inducers – hydroxyurea (HU, Sigma-Aldrich), nocodazole (Cayman Chemi-
cal, Ann Arbor, MI). All compounds were prepared as stock solutions in
DMSO and stored at −80 °C until needed. Treatments were serially diluted
in PBS immediately before addition to culture media.

Cell culture
Patient derived cell lines were maintained in high (20%) or low (5%) oxygen
conditions at 37 °C and 5%CO2 as previously described [30–32]. BRCA2 revertant
Capan1 cell lines (described in [33]) was cultured in IMDM with 10% Foetal
Bovine Serum (Invitrogen). Cell lines were tested routinely for mycoplasma
contamination using MycoAlert PLUS Mycoplasma Detection Kit (Lonza).

Generation of treatment acquired resistant PDAC cell lines
A BRCA1 mutated (Ch17: 41,201,216 (c. A > G)) patient-derived cell line
[TKCC_10] was sub-cultured in media containing cisplatin, olaparib or
rucaparib over a period of 9 months. Concentration of treatment-
containing media was increased until resistant clones were able to survive
growth in media containing the 5X the IC50 (cisplatin) or 10X the IC50
(olaparib or rucaparib) compared to the parent cell line (Supplementary
Fig. S2a). Where possible, the parent cell line was passage-matched to each
resistant clone. Prior to experimental analysis, resistant clones were
cultured in fresh treatment-free media for 7–10 days to ensure that
results reflected stable change. The BRCA2 revertant Capan1 cell line
(Capan1BRCA2Revertant) has been previously described [33].

RNASeq expression analysis
RNA extractions were performed using QIAGEN RNeasy Mini kit
(Cat#74104) according to manufacturer’s specifications. RNAseq libraries

were generated by the Beatson Molecular Technology Unit and
sequenced by the Glasgow Precision Oncology Laboratory as described
previously [25]. Sequencing quality was assessed with FastQC (v 0.11.9)
[34] and files were processed with fastp (v 0.21.0) [35] using default
settings. Quantification was performed against GRCh38 using Salmon (v
1.4.0) [36]. Salmon quantification results were imported into a
DESeqDataSet using DESeq2 (v 1.38.3) [37]. Transcripts were mapped
to genes using EnsDb.Hsapiens.v86 (v 2.99.0) [38]. Read count data were
filtered to retain only those with normalised counts >= 5 in at least
3 samples (17,403 and 17,080 genes remained in Capan1 samples and
TKCC10 samples respectively) and transformed using the DESeq2 ‘vst’
function. All downstream analysis was performed independently for
Capan1 cells and TKCC10 cells. Differential expression analysis was
performed for the following comparisons: (i) Capan1 parental vs.
Capan1BRCA2Revertant, (ii) TKCC10 parental vs. TKCC10 cisplatin, (iii)
TKCC10 parental vs. TKCC10 olaparib, (iv) TKCC10 parental vs. TKCC10
rucaparib. Volcano plots showing significantly differentially expressed
(DE) genes (adjusted p-value < 0.05 & absolute(log2FC) > 1) were
produced for each comparison with EnhancedVolcano (v 1.16.0) [39].
Heatmaps of DE genes were produced with ComplexHeatmap (v 2.14.0)
[40] and circlize (v 0.4.15) [41].

Transcriptome analysis
Expression-based clustering analysis and heatmaps were generated
using Heatmapper (http://www.heatmapper.ca/expression/) [42].
Replication stress scores were calculated for each sample using a
previously defined signature of replication stress [25]. Scores were
calculated for each gene-set within the replication stress signature with
GSVA [43] and individual scores were summed to obtain an overall
replication stress score (RS). Gene Set Enrichment Analysis (GSEA) was
performed using Hallmark Gene Ontology (GO) genesets from the
Molecular Signatures Database (MSigDB) [44] with GSEA software version
4.3.2 [45].

In vitro viability assays
Cells were seeded in 96 well plates and treated after an overnight settle.
For sequential treatment experiments, the initial treatment was removed
after 24 h, cells were washed once with PBS, and media containing the
second treatment was added to the appropriate wells. Viability was
measured 72 h or 8 days later (depending on the compound) using the
CellTiter 96 Aqueous non-radioactive cell proliferation assay (Promega,
Madison, WI) with a Tecan Infinite200 Pro plate reader (Tecan Trading AG,
Männedorf, Germany). Actinomycin D (Sigma-Aldrich, St Louis, MO), drug
vehicle (dimethyl sulfoxide [DMSO]), and media-only controls were
performed on each individual plate.

Colony formation assays
Cells were plated as single cell suspensions (500–10,000 cells/well) and
left to recover overnight. Treatments were added from concentrated
stock solutions directly to seeding media within each well to avoid
disturbing the newly attached cells. For sequential treatment, the initial
treatment was removed after 24 h, wells gently washed with PBS, and
the final treatment added to the appropriate well. In the case of
experiments using cisplatin, cells were exposed for 24 h, after which
treatment containing media was removed and replaced with fresh
media. Colonies were grown for 14–21 days, stained with crystal violet

Fig. 1 RS and DDR vulnerabilities are prognostic in pancreatic ductal adenocarcinoma. a Gene expression and survival data in primary
pancreatic ductal adenocarcinomas (PDAC) from ICGC data sets were interrogated to uncover prognostic relationships between replication
stress response (RSR) gene expression and DNA damage response (DDR) proficiency. Manhattan clustering of transcriptomic data was used to
classify tumours as having high or low RSR potential. b Log-Rank testing of survival data was performed to calculate overall and disease-free
survival hazard ratios for RSR genes. Survival ratio (± 95% CI) for higher relative expression is shown; genes with lower risk are indicated by
blue symbols, and those having significantly increased risk are in red. c Clonogenicity assays were performed on cisplatin treated PDCLs, and
surviving fraction plotted relative to the plating efficiency of the untreated sample. Curves from DNA damage proficient and DNA resistant
cell lines are indicated. Ceralasertib and cisplatin treatment combinations were tested on cisplatin sensitive d and cisplatin resistant e TKCC10
patient derived cell lines using colony formation assays. Nonlinear regression analysis was performed to determine the effect of overnight
treatment for each condition, and individual datasets analysed by 2-way ANOVA with Tukey’s test for multiple comparisons (*, p < 0.05; ***,
p < 0.001). f, g DDR deficient (TKCC10) and DDR proficient (TKCC26) were exposed to 1 μM concentrations of olaparib, cisplatin, or ceralasertib
for 24 hr, probed for γH2AX and imaged by confocal microscopy. Fraction of pan-nuclear γH2AX stained nuclei were analysed by 2-way
ANOVA with Tukey’s test for multiple comparisons (****, p < 0.0001). Graph is representative of 2 independent experiments, with quantification
performed on 4 confocal images containing approximately 20 nuclei per region of interest.
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and counted using an automated GelCount plate scanner (Oxford
Optronix, Banbury, UK). The plating efficiency (PE) [PE = Average Colony
Number/Cells plated] and the surviving fraction (SF) was calculated
using [SF = PETreated /PEUntreated]. The significant difference between
nonlinear modelled curves was calculated by two-way ANOVA, with
survival as the dependent variable and treatment conditions as the
independent variables.

Immunoblotting
Cell lysates were prepared in RIPA lysis buffer (Thermo Scientific) with
protease inhibitors (Roche) and phosphatase inhibitors (Sigma) and
protein concentration was determined using the BCA assay (Thermo
Scientific). Proteins were separated by SDS-PAGE and transferred to PVDF
membranes, which were probed by overnight incubation at 4 °C in primary
antibody solution. Targets were detected via HRP-conjugated secondary
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antibodies exposed to chemiluminescence reagent (Millipore) and imaged
using a Licor Odyssey XF Imager (Li-Cor, Lincoln, Nebraska). Antibodies
used were anti-SLFN11 (ab121731, Abcam); anti-ATR (ab10312, Abcam);
anti-Rad51C (NB100-177, Novus Biologicals); anti-Cyclin E (sc-247, Santa
Cruz); anti-Rad51 (ab133534, Abcam); anti-pRPA(S4/S8) (ab243866,
Abcam); anti-Actin (CST#3700, Cell Signalling Technology); HRP linked
anti-rabbit and anti-mouse IgG (CST#7074 & 7076, Cell Signalling
Technology). Images were processed with Image Studio Analysis software
v 4.0 (Li-Cor, Lincoln, Nebraska).

Replication fork stall recovery
Cells were treated with hydroxyurea overnight to induce fork stalling.
Treatment media was removed, cells were washed twice in prewarmed
PBS and released into media containing 100 ng/mL nocodazole to prevent
re-entry into G1. Samples were obtained every 2 h for 10 h following
release and processed immediately for cytometric analysis. For each HU-
treated sample, a non-HU-treated control sample was prepared identically
to standardise for potential interference by nocodazole.

Cell cycle analysis
Samples were labelled by incubating cells with BrdU (Sigma) at 20 μM in
growth medium for 30min and fixed in ice-old 70% ethanol at 4 °C. S
phase immunostaining was performed after pepsin/acid digestion using
anti-BrdU (1:100, Beckton Dickson) primary antibody, and AlexaFluor488
conjugated secondary antibody (1:500, Molecular Probes). Following
incubation, stained cells were pelleted and incubated in a solution
containing propidium iodide (Sigma Aldrich) stain (20 μg/mL) and RNase A
(200 μg/mL) for 30min. Samples were scanned using an Attune NxT
cytometer (Invitrogen) at a flow rate of 150–300 events/s.

Foci counting
Cells were grown on coverslips at sub confluent densities and treatments
initiated during logarithmic growth phases. At the relevant time points,
nonchromatin bound nuclear protein was removed by preincubation of
coverslips with CSK extraction buffer (100mM NaCl, 300mM Sucrose,
3 mM MgCl2, 10 mM PIPES (pH 7.0), 1 mM EGTA, 0.5% Triton X100) for
10min on ice, after which samples were fixed with 4% paraformaldehyde
for 15min. Coverslips were blocked with 2% goat serum before overnight
incubation with primary antibody at 4 °C [anti-Rad51 (1:500, Santa Cruz),
anti-53BP1 (1:1000, Cell Signalling Technology), anti-phospho-RPA2(Ser4/8)
(1:5000, Abcam), and anti-phospho-Histone H2A.X (Ser139) (1:2000,
Millipore)], followed by the corresponding fluorescent secondary anti-
bodies [AlexaFluor555 (1:1,000, Molecular Probes) or AlexaFluor488
(1:1,000, Molecular Probes)] for 1 h at room temperature. Nuclei were
counterstained with 0.5 μg/ml 4′,6-diamidino-2-phenylindole (DAPI; Sigma-
Aldrich), and coverslips were mounted using Vectashield (Vector
Laboratories). Z stack images were randomly acquired under identical
parameters with a Zeiss LSM780 confocal microscope (Zeiss) using a ×63
oil immersion objective. Data are represented as mean ± SEM of two
independent experiments evaluating at least 200 nuclei in each
experiment.

Statistical analysis
Zero-interaction potency (ZIP) synergy scoring was calculated using
SynergyFinder 3.0 [46]. For 53BP1, pRPA2, γH2AX and RAD51 foci
evaluation, images were analysed using FIJI (v2.9.0) [47]. Statistical analysis
and graphs were produced using GraphPad Prism v9.4.1 (GraphPad

Software, San Diego CA). Foci counting experiments were performed twice,
with >4 randomly assigned fields captured by confocal microscopy per
condition. For colony formation assays, data are representative of three
independent experiments from triplicate wells. Data were analysed by two-
way ANOVA, with Bonferroni, Tukey’s, or Sidak’s post-tests used for
multiple comparisons. Spearman’s rank correlation tests were used to
assess homoscedasticity, and checks were performed for Gaussian
distribution during analysis. Differences were considered significant at a
P value of <0.05, and unless stated, all results are presented as mean ± SD
or mean ± SEM as indicated.

RESULTS
Higher expression of RS response genes is associated with
poor survival in PDAC
We and others have previously shown that high RS correlated to
poorer prognosis in PDAC patients [25] (Supplementary Fig. S1a). To
further investigate the prognostic effects of RSR genes, we used
expression of genes from the MSigDB Reactome Pathways R-HSA-
176187, R-HSA-5656169, and R-HSA-73894 (activation of ATR
activation in response to replication stress, termination of transla-
tion synthesis, DNA repair), on the ICGC PACA-AU cohort (Fig. 1a;
Supplementary Fig. S1b). Tumours with higher expression of
SLFN11, RAD51C, CDK2, LIG3 and POLA1 were associated with better
prognosis (Fig. 1b; Supplementary Fig. S1c), whereas tumours with
increased expression of RSR genes such as Cyclin E1/2, CHEK1/2,
RAD51, ATR, DCLRE1/ARTEMIS and RPA3 alone or in combination had
worse prognosis, making them ideal novel therapeutic targets.

Inhibition of replication stress response enhances sensitivity
to cisplatin in PDAC
We previously showed that RS score correlates to ATR inhibitor
responsiveness [25] (Supplementary Fig. S1d) and concluded that
both RS and ATR signalling capacity determines tumour viability.
To further explore therapeutic strategies, we treated a panel of
patient-derived cell lines (PDCLs) that have been previously
comprehensively characterised at the genomic and transcriptomic
level (Supplementary Table 1) [25], using cisplatin in combination
with an ATR inhibitor, ceralasertib. We demonstrated preferential
cisplatin response in DDR deficient models (Fig. 1c). The addition
of overnight treatment with ceralasertib further increases
sensitivity to cisplatin in clonogenicity assays regardless of DDR
status (Figs. 1d, e), and was associated with a significant increase
in pan-γH2AX staining, consistent with replication catastrophe due
to combination treatment (Figs. 1f, g). Based on these results, we
further explored if manipulation of RSR with ATR inhibition can
overcome acquired treatment resistance in PDAC.

Generation and characterisation of acquired resistance
preclinical models of PDAC
Development of acquired resistance to platinum and PARP
inhibitor treatment is common [48] and is associated with poor
prognosis. We modelled acquired cisplatin and PARP inhibitor
resistance in PDCLs using prolonged exposure to treatment, or

Fig. 2 Modelling acquired resistance in PDAC cell lines. a Dose-response assay results for cisplatin resistant (Red); b Olaparib resistant (Blue);
c Rucaparib resistant (Green); and I: BRCA2 Revertant (Black). Cell viability was determined using MTS assay and calculated relative to vehicle
control. Curves from parent cell lines are indicated by dashed lines (Uncoloured dots). Panels show representative results from 3 independent
experiments. Relative activity for cisplatin assay was recorded after 72 h, and after 8 days’ exposure for olaparib and rucaparib. RNASeq was
performed on TKCC10 Parental and Treatment Resistant cell lines; and Capan1 Parental and BRCA2 Revertant cell lines (n= 3). Volcano plots
are of differentially expressed genes from cisplatin resistant (Panel d), olaparib resistant (Panel e), rucaparib resistant (Panel f), and BRCA2
Revertant (Panel k) cell lines compared to passage-matched Parental samples. Downregulated (Panel g) and upregulated (Panel h)
differentially expressed genes for TKCC10 resistance cell lines compared to the parental cell line. Panel J Immunoblots of Capan1 Parent and
BRCA2 Revertant cell lysates probed for BRCA2, BRCA1, RAD51C and Actin protein expression. Multiple BRCA2 isoforms are displayed, arrows
indicate truncated and full-length isoforms. Panel l Difference in expression of resistance-associated genes relative to parental cell line was
analysed by 2-way ANOVA with Dunnett’s test for multiple comparisons (cisplatin resistant, red; olaparib resistant, blue; rucaparib resistant,
green; BRCA2 Revertant, black). Results are from 3 independent experiments (*, p < 0.05; **, p < 0.01; ****, p < 0.0001). Panel m Enrichment
analysis was performed on treatment resistant cell lines using Hallmark gene sets.
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BRCA2 reversion mutation through CRISPR-mediated reversion of
gene function.

Prolonged exposure. We sub cultured TKCC10 (a DDR deficient
BRCA1 mutated PDCL with relatively high basal RS, based on prior
analysis [25]) in treatment-spiked growth media (cisplatin, olaparib

or rucaparib; 3 independent populations per treatment, cultured
in parallel) at increasing concentrations over a 9-month time
period to produce resistant colonies which were able to tolerate a
five-ten fold higher concentration of the agent compared to the
passage matched parental population (Fig. 2a–c; Supplementary
Fig. S2a). We then performed RNASeq and analysis for each of the
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acquired resistant cell lines (Fig. 2d–f; Supplementary Fig. S2b,
S2c–S2e). Downregulation of genes implicated in programmed
cell death (CKMT1A, PTPN13) (Fig. 2g), and upregulation of genes
promoting cell migration (NTN1, JCAD, AMOTL1, ATP10D) (Fig. 2h)
are common to all acquired resistant models. While olaparib and
rucaparib acquired resistant models generated largely unique
transcriptomic profiles, they shared ~ 20% of the differentially
expressed genes. These included increased expression of genes
regulating multidrug resistance (TCEAL9↑), membrane trafficking
(EPN3↑), cell growth and proliferation (LIPG, BBF2H7), and
promotion of an immune repressive microenvironment (MFAP5↓,
CSF1↑), and downregulation of genes associated with redox
homoeostasis (PRXL2A↓), and DNA damage response pathway
control (ALDH1A1↓) (Fig. 2g, h). These data go some way to
explaining some of the underlying transcriptional changes driving
acquired resistance.

Mutation reversion. Reactivation of gene function by reversion
mutation is a significant cause of acquired resistance to DNAdamaging
agents in breast, ovarian and pancreatic cancer [49–51]. Capan1 is a
commonly used PDAC cell line harbouring a BRCA2 frameshift
mutation causing truncation of BRCA2 at its DNA binding domain
leading to homologous recombination repair deficiency and impedes
recovery from replication stress-induced lesions [52]. To recapitulate a
reversion mutation seen clinically, we used a Capan1BRCA2Revertant cell
line, which harbours a CRISPR-engineered reversionmutation in BRCA2
that partially restores gene function [33]. This in turn results in a ten-
fold lower sensitivity to olaparib (Fig. 2i, j). RNASeq results from the
Capan1BRCA2Revertant cell line revealed a significant increase in
expression of genes involved in growth and proliferation (ROBO1↑),
immunosuppression (HHLA2↑), and epithelial to mesenchymal trans-
formation (ADAM8↑, FAM3B↑), and decrease in genes involved in
membrane trafficking (FAM109B↓), programmed cell death (CALHM2↓),
cell migration (IQGAP2↓) (Fig. 2k; Supplementary S2f) when compared
to parental cell line which only carries a dysfunctional BRCA2 allele.
Previous studies in HR deficient ovarian and breast cancers that have

acquired resistance to platinum chemotherapy and/or PARP inhibitor
[53, 54] have implicated those genes enriched at collapsed replication
forks during ATR inhibition [55]. Our analysis showed changes in 20
DDR and RS associated genes, with 3 affected genes (EZH2, CHD5, and
POLQ) common to more than one resistance type. (Fig. 2l).
All acquired resistant cell lines had reduced RS scores compared to

parental (Supplementary Fig. S2g), and hallmark pathways analysis
revealed downregulation of the G2/M checkpoint, and E2F and MYC
targets, and upregulation of hypoxia pathways, promotion of
epithelial-mesenchymal transition, and IL2, IL6, TNFα, and KRAS
signalling in acquired resistance cell lines (Fig. 2m).

Acquired resistance is associated with impaired RS tolerance
and recovery
We next investigated how acquired resistant PDCLs respond to
and recover from exogenous RS induced by treatment with

hydroxyurea (HU), a ribonucleotide reductase inhibitor. Cell lines
were treated overnight with 1 mM HU to induce replication fork
stalling at the G1/S border, and replication progression was
tracked by analysing the BrdU positive population in early S (S1),
mid-S phase (S2), or late S (S3) following removal of the inhibitor
(Fig. 3a). Although we found each acquired resistant cell line had
the same percentage of cells in each cell cycle phase as the
parental cell line at rest (Fig. 3a), S phase progression is
significantly altered in acquired resistance models. Parental
TKCC10 cells enter S phase 30 min following release (S1), with
most of the population transitioning through mid-S (S2) at
approximately 4 h post-release and reaching late S (S3) in 6–8 h.
In acquired resistance PDCLs, the transition through S phase is
much slower at 8 h post-release, with ~20% of cells failing to fully
complete S phase and transition into G2 (Fig. 3b, c) demonstrating
impaired tolerance and recover from exogenous RS. Considering
the importance of ATR/CHEK1 axis activity in RSR, we treated
acquired resistant models with ceralasertib for 72 h and showed
decreased sensitivity on viability assay in line with a lower RS score
(Supplementary Fig. S3a, b). To test the differences in recovery
potential with shorter exposure, we treated these cell lines with
1μM of ceralasertib for 5 h. While we saw the same initial amount
of replication-associated damage in the form of pan-nuclear
pRPA2 between the parental and the acquired resistant cell lines
(Fig. 3d; Supplementary Fig. S3c), the parental cell lines recovered
faster after the inhibitor was washed out, with pRPA2 foci retained
for at least 48 h in all of the resistant cell lines, and RAD51 foci
significantly increased in rucaparib acquired resistance model
(Fig. 3d; Supplementary Fig. S3c). These indicate RSR triggered by
ATR inhibition is retained following washing out the agent, which
opens the possibilities of concurrent or sequential combination
with other agents.

ATR and PARP inhibition are synergistic
Considering the reduction in endogenous RS as shown by reduced
RS signature score and reduced sensitivity to ATR inhibition in
acquired resistance models, we next asked if manipulation of the
RS response by combining ceralasertib and olaparib can re-
sensitise and overcome acquired resistance. Olaparib is known to
activate the G2/M checkpoint, causing an increase in the G2
population of exposed cells [56]. To assess the effects of olaparib
on cell cycle, we treated a panel of PDAC PDCLs with single agent
olaparib, and this slowed the production of replication associated
damage in acquired resistant cell lines by stalling cell cycle
progression at the G2/M border regardless of DDR status
(Supplementary Fig. S3d), making it ideal to combine with ATR
inhibitor.
Low dose olaparib and ceralasertib treatment used simulta-

neously over 10–14 days was synergistic for both parental and
acquired resistant cell lines (Fig. 3e) even though the parent cell
line remained more sensitive than resistant cell lines (MAX
Synergy scores: Parent = 9.179; Cisplatin resistant = 15.378;

Fig. 3 Ceralasertib and Olaparib are synergistic in treatment resistant PDAC. a TKCC10 parent and treatment resistant cell lines
were synchronised in G1/S by overnight treatment with hydroxyurea and replicating cells were tracked at 2 hourly intervals following release
using BrdU uptake. Cell cycle was assayed by propidium iodide staining b. Progression of replicating cells through S phase was analysed in
3 phases – Early S(S1), Mid S(S2), and Late S(S3); gating strategy is indicated. Percentage of the total population at each cell cycle phase is
shown for each timepoint c. TKCC10 parental and resistant cell lines were treated with ceralasertib and olaparib in a 5 × 5 matrix of dose
combinations (Ten-fold dilutions, 0–10 μM). Cell viability was assayed by MTS after 8 days’ exposure. Drug synergy was calculated using the
interaction potency (ZIP) model across the dose matrix d. TKCC10 parent and resistant cell lines were exposed to 1 μM ceralasertib for 5 hr, at
which time treatment containing medium was removed and replaced with growth medium. Rad51 and pRPA2 foci were analysed by confocal
microscopy at 16hr, 24hr and 48hr following washout. DAPI was used as a nuclear counterstain e. Clonogenicity analysis of the effect of
ceralasertib and olaparib in combination was performed on the TKCC10 cell line using treatment across a 0–0.5 μM dose range. Surviving
fraction was calculated relative to the plating efficiency and analysed by 2-way ANOVA. Survival curves were generated using the linear
quadratic model f. The response of resistant cell lines to ceralasertib and olaparib combination treatment and ceralasertib monotherapy (1 μM
concentrations for each, 24 h exposure) was assayed using Pan-nuclear γH2AX and Pan-nuclear pRPA2 staining as markers for replication
catastrophe (Panels g, h). Results were analysed by 2-way ANOVA with Tukey’s test for multiple comparisons (*, p < 0.05; ns, non-significant;
results from 2 independent experiments).
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Olaparib resistant = 14.02; Rucaparib resistant = 16.775; Fig. 3e);
and significantly reduced clonogenicity for the parent cell line at
sub-micromolar concentrations (Fig. 3f). We also observed an
increase in the G2 population, albeit for cell lines with high RS
scores, where activation of the S phase checkpoint by ceralasertib
appears to dominate (Supplementary Fig. S3D). In all but the

cisplatin resistant model, overnight exposure to combination
treatment reduced replication associated DNA damage (in the
form of RAD51 and pRPA foci) when compared to ceralasertib
monotherapy (Supplementary Fig. S3c; Supplementary Fig. S4d–g).
Using pan-nuclear γH2AX staining as an indicator for replication
catastrophe we found that simultaneous combination treatment
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did not significantly increase replication stress-associated cell
death in resistant cell lines when compared to ceralasertib alone
(Fig. 3g, h), and produced a small but significant reduction in
replication catastrophe measured for the parent cell line.
Considering that sensitivity to olaparib by ceralasertib depends

on a combination of S phase exit and replication stress signature,
we next investigated if sequentially scheduling treatment can
influence sensitivity.

Scheduled ATR inhibition enhances PARP inhibitor sensitivity
in resistant PDAC
We first assessed clonogenicity on the Parental TKCC10 cell line by
treating with one agent followed by treatment with the second
agent with each treatment completely washed out with PBS after
overnight exposure. We found treatment sequence order sig-
nificantly influenced the outcome. When ceralasertib was used
first, there was no dose-dependent effect on clonogenic synergy,
whereas sensitisation increased when cells were treated with
olaparib first (Fig. 4a). We then assessed the effect of sequential
treatment on acquired resistance models with 24 h exposure to
either ceralasertib or olaparib prior to treatment with the
alternative agent (using a viability matrix across the same dose
range as Fig. 3e).
The efficacy of ceralasertib was enhanced ten-fold by prior

exposure to olaparib using the acquired cisplatin resistant model.
With the acquired olaparib resistant model, sensitivity to olaparib
was enhanced by previous ceralasertib treatment, and with the
acquired rucaparib model sensitivity to rucaparib increased with
prior exposure to ceralasertib (Fig. 4b; Supplementary
Fig. S4a and b). In either case the opposite sequential order did
not produce a synergistic response of the same magnitude. These
data demonstrate that sensitivity to each PARP inhibiting agent is
dependent on adaptation to prior exposure and indicate that the
element driving resistance should be used as backbone in
combination with ATR inhibition.
We then investigated the underlying mechanisms contributing

to different synergy and sensitivity of various drug sequence and
regimens in different models of acquired resistance. The
percentage of pan-nuclear γH2AX positive cells generated when
ceralasertib was used prior to olaparib was significantly greater for
the olaparib resistant model, however in cisplatin and rucaparib
acquired resistance models, the opposite was true (Fig. 4c, d). This
pattern of enhanced DNA damage sensitivity associated with
specific treatment order is in line with the response for each
resistance model seen in Fig. 4b. To better understand if sensitivity
to treatment order is connected to each model’s capacity to
recover from replication-associated DNA damage, we next
measured the expression of nuclear markers for single strand
breaks (pRPA2 foci; Fig. 4e), and double strand breaks (Rad51;
Fig. 4f) as well as 53BP1 Foci (Fig. 4g). Expression of these markers
are in-line with the treatment sequence and regimens producing

peak synergy for each acquired resistance models. For both
Olaparib and Rucaparib acquired resistance models, significantly
more Rad51 foci were observed with sequential treatment,
indicating a greater reliance on these factors for SSB and DSB
stabilisation and repair.
We next investigated if the same patterns of treatment sensitivity

are seen in models of resistance acquired through reversion
mutation mechanism using Capan1 and Capan1BRCA2revertant iso-
genic cell lines. Inhibiting the RSR in the DDR proficient
Capan1BRCA2revertant cell line with ceralasertib prior to olaparib
increased residual DNA damage and restored sensitivity to olaparib
in viability assay, produced three-fold higher synergy (Supplemen-
tary Fig. S4c), and more replication catastrophe (Fig. 4h, i) than by
using olaparib first in the sequence. Foci counting assays confirms
these findings, showing increased DDR activity with ceralasertib
before olaparib for the Capan1BRCA2revertant cell line (Fig. 4j–l). Taken
together, this demonstrates that treatment sensitivity can poten-
tially be enhanced by combined manipulation of the DDR and RSR
pathways in a sequential manner and is effective regardless of the
mechanism driving resistance.

Sequential ATR and PARP inhibition is effective in
PDAC PDCLs
We next investigated if sequential ceralasertib and olaparib
treatment could be effective in the endogenous resistance setting
by further screening a panel of 10 PDCLs with varying degree of
DDR status and RS signature as previously described [25] for
synergy and relative clonogenicity. In these models, BRCA1 and
BRCA2 loss through mutation are the main cause of DDR
deficiency (Fig. 5a), and SLFN11 expression positively correlated
to RS signature scores (Fig. 5b, Supplementary Fig. S5a). We found
olaparib first then ceralasertib achieved significantly higher
synergy scores in DDR deficient / RS high models using viability
assays. However, in DDR proficient / RS low models, ceralasertib
first then olaparib was more synergistic (Fig. 5c; Supplementary
Fig. S5b). Results for clonogenicity mirrored the outcome of
synergy scoring assays, with olaparib first sensitising DDR deficient
PDCLs to ceralasertib, and ceralasertib first enhancing sensitivity
to olaparib for DDR proficient PDCLs (Fig. 5d). However, the role of
RS signature is less evident in the different treatment sequence, as
cell lines with lower RS scores typically have poor plating
efficiency, and colony formation capacity in this assay format.
Taken together, the different sequential treatment regimen can
potentially be effective in other settings including DDR proficient
and a range of RS score models.

DISCUSSION
DNA damaging agent containing regimens such as FOLFIRINOX
and NALIRIFOX [57] as well as PARP inhibitors such as olaparib and
rucaparib have demonstrated survival benefits in patients with

Fig. 4 Ceralasertib sensitises acquired resistant PDAC to PARP inhibition. a Clonogenicity assay results from the TKCC10 cell line after
sequential ceralasertib and olaparib treatment using a matrix of sequential dose combinations. Results were analysed by nonlinear regression
relative to the surviving fraction of the vehicle for pretreated (red symbol) or non-pretreated (clear symbol) conditions. Graphs are
representative of 2 independent experiments and p values for significantly different curves are indicated. Representative clonogenicity assay
images are shown. b TKCC10 (Parent) and Cisplatin, Olaparib or Rucaparib resistant cell lines were sequentially treated with ceralasertib and
olaparib in a 5 × 5 matrix of dose combinations (Ten-fold dilutions, 0–10 μM) in either order. Cell viability was assayed, and drug synergy
calculated using the interaction potency (ZIP) model. Dashed lines indicate maximum synergy. TKCC10 acquired resistance cell lines and
Capan1 Parental and BRCA2 Revertant cell lines were seeded at sub-confluent densities on coverslips and treated for 24 h with 0.1 μM
concentrations of ceralasertib or olaparib prior to 24 h treatment with the alternative agent at 0.1 μM; control (white bars); ceralasertib before
olaparib (red bars); olaparib before ceralasertib (black bars). Graphs indicate percentage of cells for each condition with Pan-γH2AX stained
nuclei d, i, pRPA2 foci per cell e, j Rad51 foci per cell f, k and 53BP1 foci per cell g, l. The effect of combination was analysed by 2-way ANOVA
with Tukey’s test for multiple comparisons. Conditions were compared to vehicle control (p < 0.001, ###; p < 0.0001, ####), and effect of
alternative treatment order was compared (*, p < 0.05; **, p < 0.01; ****, p < 0.0001). Results are from 2 independent experiments, with at least
4 different fields of view captured for image analysis. Representative confocal images from Pan-γH2AX staining are shown in TKCC10 acquired
resistance cell lines c and Capan1 Parental and BRCA2 Revertant h.
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PDAC, and in some cases exceptional responses that translated to
prolonged survival. However, patients who derived meaningful
benefits remains the minority, and inevitably, even the responders
eventually acquire treatment resistance, which is associated with
poor prognosis. Significant efforts have been generated by the
scientific and clinical communities to overcome acquired resis-
tance, either with combinatorial regimens, or targeting other

aspects of the DNA damage response pathways. Some of the
limitations to deploy combinatorial strategy has been dose
limiting toxicity as demonstrated by the VIOLETTE clinical trial,
where the olaparib plus adavosertib (AZD1775, WEE1 inhibitor)
arm was terminated early due to toxicity [58]. The same trial also
terminated the concurrent olaparib plus ceralasertib arm due to
no additional benefit with the addition of ATR inhibitor over PARP

a

c

d

b

DDR d
ef

ici
en

t, 
RS h

igh

DDR d
ef

ici
en

t, 
RS lo

w

DDR p
ro

fic
ien

t, 
RS h

igh

DDR p
ro

fic
ien

t, 
RS lo

w

–10

–5

0

5

10

Z
IP

 s
co

re

Olaparib pretreatment

Ceralasertib pretreatment

ns ns

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0

�M Olaparib

�M Olaparib �M Olaparib �M Olaparib �M Olaparib

�M Olaparib �M Olaparib �M Olaparib

S
u

rv
iv

in
g

 f
ra

ct
io

n

S
u

rv
iv

in
g

 f
ra

ct
io

nNo pretreatment
1 �M ceralasertib

ns

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

in
g

 f
ra

ct
io

n No pretreatment
1 �M ceralasertib

p = 0.0336

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0
No pretreatment
1 �M ceralasertib

ns

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

in
g

 f
ra

ct
io

n No pretreatment
1 uM olaparib

p < 0.0001

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

in
g

 f
ra

ct
io

n No pretreatment
1 �M olaparib

ns

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

in
g

 f
ra

ct
io

n No pretreatment
1 uM olaparib

p < 0.0001

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

in
g

 f
ra

ct
io

n No pretreatment
1 �M ceralasertib

p < 0.0001

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rv
iv

in
g

 f
ra

ct
io

n No pretreatment
1 �M olaparib

p = 0.0297

DDR deficient DDR proficient

TKCC_10 TKCC_2.1 TKCC_05 Mayo4911

RS score = 9.0045 RS score = 6.2576 RS score = 8.0926 RS score = 2.0534

ARID1A

BRCA2

53BP1

Vinculin

ATM

p53

DDR deficient DDR proficient

BRCA1
HPD

E
TK

CC10
TK

CC2.
1

TK
CC05

TK
CC27

TK
CC22

M
ay

o4
63

6
TK

CC15
TK

CC18
M

ay
o5

28
9

M
ay

o4
91

1

M

Prim
ary

* Mutational variant
M     Promoter hypermethylation
A     Gene amplification

A

M M

M

HPD
E

TK
CC10

TK
CC2.

1
TK

CC05

TK
CC27

TK
CC22

M
ay

o4
63

6
TK

CC15
TK

CC17
TK

CC18
M

ay
o5

28
9

M
ay

o4
91

1

ATR

SLFN11

Actin

Cyclin E

Rad51C

Rad51

pRPA(S4/S8)

RS high RS low RS high RS low

A

Prim
ary

* Mutational variant
M
A

Promoter hypermethylation
Gene amplification

DDR deficient DDR proficient

K.J. Herbert et al.

10

British Journal of Cancer



inhibitor alone in acquired platinum resistance triple negative
breast cancer [58]. Similarly, while the CAPRI trial using the same
olaparib plus ceralasertib regimen as VIOLETTE demonstrated
encouraging evidence of clinical benefit in PARP inhibitor
acquired resistant high grade serous ovarian cancer [59], there
was some tolerability challenges with concurrent administration of
the two investigational drugs, likely indicating the requirement of
reducing dose intensity compared to respective monotherapies,
or intermittent on-off treatments.
Here, we provide in vitro evidence of novel therapeutic strategy

of sequential ceralasertib than olaparib to overcome acquired
PARP inhibitor and platinum resistance in PDAC models by
exploitation of RSR in terms of tolerance and recovery as
therapeutic vulnerability. We further demonstrated the sequence
of DNA damaging agents and ceralasertib matters as well as the
context of the prior line DNA damaging agent exposure. Finally,
we showed that we were able to use this sequential treatment
regimen of ceralasertib first then olaparib to sensitise a large panel
of PDAC models to olaparib regardless of their DNA damage
response status and / or innate replication stress level. While
current clinical investigations have focused around concurrent
doing of Olaparib and ceralsertib with variable dose intensity and
on-off regimens, the sequential regimen we have presented here
may be a viable alternative strategy to circumvent the challenges
of dose limiting toxicity in the combinatorial regimens trailed
clinically. The presented novel therapeutic strategy should be
further tested in clinically relevant in vivo models of pancreatic
cancer before being tested further in well-designed clinical trials
for patients who acquired resistance to DNA damaging agents.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon request.
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