
Olawade, David ORCID logoORCID:
https://orcid.org/0000-0003-0188-9836, Soladoye, Afeez A., 
Omodunbi, Bolaji A., Aderinto, Nicholas and Adeyanju, Ibrahim A. 
(2025) Comparative analysis of machine learning models for 
coronary artery disease prediction with optimized feature selection. 
International Journal of Cardiology, 436. p. 133443.  

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/12143/

The version presented here may differ from the published version or version of record. If 

you intend to cite from the work you are advised to consult the publisher's version:

https://doi.org/10.1016/j.ijcard.2025.133443

Research at York St John (RaY) is an institutional repository. It supports the principles of 

open access by making the research outputs of the University available in digital form. 

Copyright of the items stored in RaY reside with the authors and/or other copyright 

owners. Users may access full text items free of charge, and may download a copy for 

private study or non-commercial research. For further reuse terms, see licence terms 

governing individual outputs. Institutional Repository Policy Statement

RaY
Research at the University of York St John 

For more information please contact RaY at ray@yorksj.ac.uk

https://www.yorksj.ac.uk/ils/repository-policies/
mailto:ray@yorksj.ac.uk


Comparative analysis of machine learning models for coronary artery 
disease prediction with optimized feature selection

David B. Olawade a,b,c,d,*, Afeez A. Soladoye e, Bolaji A. Omodunbi e, Nicholas Aderinto f,  
Ibrahim A. Adeyanju e

a Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
b Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom
c Department of Public Health, York St John University, London, United Kingdom
d School of Health and Care Management, Arden University, Arden House, Middlemarch Park, Coventry CV3 4FJ, United Kingdom
e Department of Computer Engineering, Federal University, Oye, Ekiti, Nigeria
f Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

A R T I C L E  I N F O

Keywords:
Coronary artery disease
Machine learning
Feature selection
Bald eagle search optimization
Random Forest

A B S T R A C T

Background: Coronary artery disease (CAD) is a major global cause of death, necessitating early, accurate pre
diction for better management. Traditional diagnostics are often invasive, costly, and less accessible. Machine 
learning (ML) offers a non-invasive alternative, but high-dimensional data and redundancy can hinder perfor
mance. This study integrates Bald Eagle Search Optimization (BESO) for feature selection to improve CAD 
classification using multiple ML models.
Methods: Two publicly available datasets, Framingham (4200 instances, 15 features) and Z-Alizadeh Sani (304 
instances, 55 features), were used. The former predicts 10-year CAD risk, while the latter classifies current CAD 
status. Data preprocessing included missing value imputation, normalization, categorical encoding, and class 
balancing using SMOTE. We employed a 70–30 holdout validation strategy with empirical hyperparameter 
optimization, providing more reliable final model development than cross-validation. BESO was applied to 
optimize feature selection, significantly outperforming traditional methods like RFE and LASSO. Six ML mod
els—KNN, logistic regression, SVM with linear, polynomial, and RBF kernels, and random forest—were trained 
and evaluated.
Results: Random Forest achieved the highest performance across both datasets. In the Framingham dataset, RF 
recorded 90 % accuracy, significantly outperforming traditional clinical risk scores (71–73 % accuracy). Linear 
models performed better on the Z-Alizadeh Sani dataset (90 % accuracy) than Framingham (66 %), indicating 
dataset characteristics strongly influence model efficacy.
Conclusion: BESO significantly enhances feature selection, with RF emerging as the optimal classifier (92 % 
accuracy) and substantially outperforming established clinical risk scores. This study highlights the potential of 
AI-driven CAD diagnosis, supporting early detection and improved patient outcomes. Future work should focus 
on prospective validation and clinical implementation.

1. Introduction

Coronary artery disease (CAD) remains one of the leading causes of 
morbidity and mortality worldwide, significantly contributing to the 
global burden of cardiovascular diseases [1]. Characterized by the 
narrowing or blockage of coronary arteries due to atherosclerosis, CAD 
restricts blood flow to the heart, potentially leading to severe compli
cations such as myocardial infarction, heart failure, and sudden cardiac 

death [2]. Early detection of CAD is paramount to preventing its pro
gression, improving patient outcomes, and reducing healthcare costs 
[3]. However, conventional diagnostic methods including electrocardi
ography (ECG), echocardiography, angiography, and stress testing are 
often invasive, costly, or reliant on specialized expertise [4]. These 
limitations have spurred growing interest in machine learning (ML) 
techniques as non-invasive, data-driven alternatives for predicting CAD 
risk using readily available patient data [5].
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Machine learning has emerged as a transformative tool in healthcare, 
enabling the analysis of large, complex datasets to uncover patterns that 
may elude traditional clinical approaches [6]. In the context of CAD 
prediction, ML models leverage historical patient data such as de
mographic attributes, lifestyle factors, laboratory results, and clinical 
symptoms to deliver accurate risk assessments [7]. Previous studies have 
successfully applied supervised learning algorithms, including logistic 
regression (LR), support vector machines (SVM), K-nearest neighbors 
(KNN), and ensemble methods like random forests (RF), to classify CAD 
patients based on risk factors [8]. Despite their promise, these models 
often grapple with challenges posed by redundant, irrelevant, or highly 
correlated features in medical datasets, which can degrade performance 
by causing overfitting, increasing computational complexity, and 
reducing interpretability [9].

Feature selection is a critical strategy for overcoming these chal
lenges and enhancing both the accuracy and efficiency of ML models 
[10]. Traditional dimensionality reduction techniques, such as Principal 
Component Analysis (PCA) and Recursive Feature Elimination (RFE), 
are widely employed to eliminate irrelevant variables [11]. However, 
these methods may fall short when applied to complex, high- 
dimensional datasets common in medical applications [12]. In 
response, nature-inspired optimization algorithms have gained traction 
for their ability to efficiently navigate large search spaces and pinpoint 
the most predictive features [13]. Among these, the Bald Eagle Search 
Optimization (BESO) algorithm has recently emerged as a promising 
approach [14]. Inspired by the foraging behavior of bald eagles, BESO 
balances exploration and exploitation, avoiding local optima traps and 
enhancing model generalization [15]. Its application in feature selection 
offers a novel avenue for optimizing ML pipelines in CAD prediction.

This study aims to develop an optimized machine learning pipeline 
for CAD prediction by integrating BESO-based feature selection with 
multiple classification algorithms, including KNN, LR, SVM with various 
kernels, and RF. The specific objectives are threefold: (a) to assess the 
impact of BESO on feature selection and subsequent model performance, 
(b) to compare the predictive accuracy of different ML models across 
two CAD datasets, and (c) to determine the most effective model for 
early CAD detection. By addressing these goals, this research seeks to 
advance AI-driven healthcare solutions, refine CAD risk assessment, and 
bolster non-invasive strategies for early diagnosis, ultimately improving 
patient outcomes.

2. Methodology

This study employed a structured machine learning pipeline for the 
prediction of coronary artery disease (CAD), consisting of data acquisi
tion, preprocessing, feature selection using a nature-inspired optimiza
tion algorithm, and model training with evaluation. The steps 
undertaken in this research are described in detail below and shown in 
Fig. 1.

2.1. Data acquisition

Two publicly available datasets were used in this study: the Fra
mingham dataset and the Z-Alizadeh Sani dataset. These datasets were 
selected to represent different aspects of cardiovascular disease 
prediction. 

• Framingham Dataset: This dataset originates from the Framingham 
Heart Study, a long-term, ongoing cardiovascular cohort study of 
residents of Framingham, Massachusetts. It contains 4200 instances 
with 15 predictive features related to demographics, medical history, 
and risk factors associated with CAD. The dataset includes longitu
dinal data collected over multiple examination cycles, with a 10-year 
follow-up period for cardiovascular events.

• Z-Alizadeh Sani Dataset: This dataset was specifically chosen as a 
complementary dataset because it contains more detailed clinical 
measurements compared to the Framingham dataset. Published by 
Alizadehsani et al. (2013), it was collected from Tehran’s Shaheed 
Rajaei Cardiovascular, Medical, and Research Center [7]. It contains 
304 instances with 55 features spanning multiple modalities, 
including demographic attributes (age, sex), symptoms (typical chest 
pain, atypical chest pain), examination results (systolic and diastolic 
blood pressure), electrocardiogram (ECG) readings (ST elevation, ST 
depression), laboratory tests (fasting blood sugar, creatinine, tri
glycerides), and echocardiographic measurements (ejection frac
tion). The primary outcome variable is the presence of CAD, defined 
as ≥50 % stenosis in at least one major coronary artery, as deter
mined by angiography, which serves as the gold standard for CAD 
diagnosis.

Using these two distinct datasets enables a robust evaluation of our 

Fig. 1. Methodological Framework for Machine Learning-based CAD Prediction.
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methodology across different feature spaces, sample sizes, and popula
tion characteristics, strengthening the generalizability of our findings.

2.2. Data preprocessing

To ensure the quality and reliability of the datasets for machine 
learning, a rigorous data preprocessing pipeline was applied: 

• Handling Missing Values: Missing values were imputed using me
dian imputation, which is robust to outliers and prevents skewing of 
the data.

• Feature Normalization: Numerical features were standardized 
using Scikit-learn’s StandardScaler, which normalizes the data to 
have zero mean and unit standard deviation.

• Categorical Encoding: Categorical variables were converted into 
numerical values using Scikit-learn’s LabelEncoder, which assigns 
each category a unique integer.

• Class Imbalance Handling: The Synthetic Minority Over-sampling 
Technique (SMOTE) was used to address class imbalance by gener
ating synthetic samples for the minority class while maintaining the 
distribution of the majority class. Over-sampling was performed 
separately on the training and testing sets to prevent data leakage 
and improve model generalization.

These preprocessing steps ensured that the data was clean, stan
dardized, and balanced for effective model training.

2.3. Feature selection using bald eagle search optimization

Feature selection was performed using the Bald Eagle Search Opti
mization (BESO) algorithm, a nature-inspired metaheuristic approach 
based on the hunting behavior of bald eagles. BESO was chosen for its 
ability to efficiently explore high-dimensional search spaces while 
balancing exploration and exploitation, making it highly suitable for 
feature selection. 

• Feature Reduction: Given that the Framingham dataset contained 
15 features and the Z-Alizadeh Sani dataset contained 55 features, 
dimensionality reduction was necessary to minimize computational 
complexity and improve model performance.

• Optimization Mechanism: BESO iteratively selected the most pre
dictive features while avoiding local optima, ensuring that the final 
subset of features retained the most relevant information for CAD 
prediction.

By applying BESO, an optimal feature subset was identified, 
improving the efficiency and accuracy of the subsequent machine 
learning models. Table 1 represent the pseudo code used for imple
mentation of BESO for feature selection.

2.4. Machine learning algorithms for prediction of CAD

This study utilized a diverse set of machine learning algorithms to 
develop robust predictive models for Coronary Artery Disease (CAD). 
The selection of these algorithms was based on their established effec
tiveness in classification tasks and their ability to handle complex 
datasets with varying feature interactions. The algorithms implemented 
in this study include: 

• K-Nearest Neighbors (KNN): A non-parametric, instance-based 
learning algorithm, KNN was selected for its simplicity and effec
tiveness in capturing local patterns. It can model complex decision 
boundaries without making assumptions about the underlying data 
distribution. KNN has shown success in medical diagnosis applica
tions where local clusters of similar patients often share diagnoses 
[16]. We selected this algorithm as a baseline due to its interpret
ability and ability to handle non-linear relationships.

• Logistic Regression (LR): As a probabilistic linear model, LR was 
included for its interpretability and established history in medical 
risk prediction. It provides odds ratios for individual features, 
allowing clinicians to understand the contribution of specific risk 
factors. The Framingham Risk Score itself uses logistic regression, 

Table 1 
BESO for feature selection.

Input:  
- dataset (features, target) 

- population size (N) 
- maximum iterations (MaxIter) 
- search space dimension (D, number of features) 
- fitness function (e.g., model performance with selected features) 
- parameters (alpha, beta, c1, c2, etc.) 
Output:  
- optimal feature subset 

1. Initialize population:  
- generate N random solutions (feature subsets) represented as binary vectors (0 or 1, where 1 indicates feature selection).  
2. Evaluate fitness:  
- for each solution in the population:  
Select features based on the solution’s binary vector.  
Train a model using the selected features.  
Calculate the fitness (e.g., accuracy, F1-score) of the model. 

3. Iterative optimization (for iteration = 1 to MaxIter):  
- phase 1 (select space):  
- calculate the mean of the population.  
- update solutions based on the mean and random search.  
- phase 2 (search space):  
- calculate the best solution (eagle with the best fitness).  
- update solutions based on the best solution and random search.  
- phase 3 (swipe space):  
- update solutions based on the best solution, previous solution, and random search, simulating eagle’s swoop.  
- evaluate fitness:  
- recalculate the fitness of each solution.  
- update best solution:  
- if a solution with better fitness is found, update the best solution. 

4. Return optimal feature subset:  
- return the feature subset corresponding to the best solution found during the optimization process.

D.B. Olawade et al.                                                                                                                                                                                                                             International Journal of Cardiology 436 (2025) 133443 

3 



making it a standard approach for cardiovascular risk assessment 
[17]. Additionally, LR serves as an important baseline to determine 
whether the CAD prediction task requires more complex non-linear 
models.

• Support Vector Machines (SVM): SVM was employed with three 
kernel functions to evaluate both linear and non-linear approaches to 
CAD classification: 
• Linear Kernel: Used to establish whether the data is linearly 

separable and to serve as a comparison point for more complex 
kernels.

• Polynomial Kernel: Applied to capture non-linear relationships of 
polynomial degree for more complex decision boundaries, which 
may better represent the interaction between multiple risk factors.

• Radial Basis Function (RBF) Kernel: Selected for its ability to 
handle highly non-linear data by mapping input features to a 
higher-dimensional space. RBF kernels have shown superior per
formance in previous CAD prediction studies [18].

• Random Forest (RF): As an ensemble learning method, RF was cho
sen for its ability to handle high-dimensional data, resistance to 
overfitting, and inherent feature importance estimation. Previous 
studies have demonstrated its effectiveness in cardiovascular risk 
prediction [19]. RF aggregates multiple decision trees through ma
jority voting, capturing complex interactions between features while 
maintaining model interpretability through feature importance 
rankings.

The combination of these models, incorporating both linear and non- 
linear approaches, was deliberately chosen to provide a comprehensive 
evaluation of different algorithmic paradigms on the CAD datasets, 
ensuring that our conclusions about optimal model selection are well- 
founded.

2.5. Performance evaluation

To ensure robust and reliable evaluation of the machine learning 
models, we implemented a comprehensive validation strategy focusing 
on holdout evaluation with empirical hyperparameter optimization.

2.5.1. Holdout evaluation approach
We employed a holdout validation approach with a 70–30 training- 

testing split rather than cross-validation. This holdout method was 
specifically chosen because it better reflects real-world deployment 
scenarios where models must perform on entirely unseen data, and it 
facilitates the development of a final, deployable model. While cross- 
validation is valuable for hyperparameter tuning, holdout evaluation 
provides a more realistic assessment of how models will perform in 
clinical practice and avoids potential information leakage between folds 
that can occur with cross-validation.

2.5.2. Empirical hyperparameter optimization
For each algorithm, we performed hyperparameter optimization 

using an empirical approach that combined domain knowledge with 
iterative experimentation: 

• KNN: We empirically tested the number of neighbors (k) from 1 to 
15, and distance metrics (Euclidean, Manhattan, Minkowski), 
selecting configurations that maximized accuracy on validation 
subsets.

• Logistic Regression: We empirically tuned the regularization 
parameter (C) from 0.001 to 1000 on a logarithmic scale, and tested 
both L1 and L2 penalties, selecting the combination that yielded 
optimal performance.

• SVM: For all kernels (Linear, Polynomial, RBF), we empirically 
optimized: 
• Regularization parameter (C) from 0.1 to 100
• For Linear kernel: We additionally tested different tolerance values

• For Polynomial kernel: We tested degrees from 2 to 5
• For RBF kernel: We tuned the gamma parameter from 0.001 to 1

• Random Forest: We empirically optimized the number of trees 
(100–500), maximum depth (5–20), minimum samples split (2− 10), 
and minimum samples leaf (1–5).

This empirical approach allowed us to identify optimal hyper
parameters that produced the best performance on the validation set, 
which was then confirmed on the holdout test set. The best-performing 
configuration for each model was selected for final evaluation and 
reporting.

2.5.3. Statistical significance testing
To determine whether differences in model performance were sta

tistically significant, we conducted bootstrap resampling of the test set 
with 1000 iterations to generate confidence intervals for each perfor
mance metric. Statistical significance was established when the 95 % 
confidence intervals of different models did not overlap. This approach 
provides robust significance testing while respecting the holdout eval
uation paradigm.

2.5.4. Evaluation metrics
The following evaluation metrics were used: 

• Accuracy: Measures the overall correctness of the model in predict
ing CAD.

• Precision: Evaluates the proportion of true positive predictions 
among all positive predictions.

• Recall (Sensitivity): Measures the proportion of actual CAD cases 
correctly identified by the model.

• F1-Score: Provides a balance between precision and recall, especially 
useful in handling class imbalance.

• Area Under the Receiver Operating Characteristic Curve (AUC-ROC): 
Evaluates the model’s ability to discriminate between positive and 
negative classes across different threshold settings.

All metrics are reported with 95 % confidence intervals to indicate 
the reliability of our performance estimates.

2.6. Baseline

To rigorously evaluate the contribution of the Bald Eagle Search 
Optimization (BESO) algorithm for feature selection, we established 
baseline performance using: 

1. No Feature Selection: Models were trained using all available fea
tures in each dataset to establish performance baselines without any 
feature reduction.

2. Traditional Feature Selection Methods: We implemented and 
compared several established feature selection techniques:

• Filter Methods: Chi-squared test and information gain
• Wrapper Methods: Recursive Feature Elimination (RFE)
• Embedded Methods: LASSO regularization

These baseline comparisons allow for direct assessment of BESO’s 
effectiveness in improving model performance and reducing feature 
dimensionality compared to both unoptimized models and models using 
standard feature selection techniques.

2.7. Comparison with clinical risk scores

To establish clinical relevance, we compared our machine learning 
models with established clinical risk assessment tools: 
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1. Framingham Risk Score (FRS): We implemented the updated FRS, 
which predicts 10-year risk of cardiovascular events, as a clinical 
baseline for comparison.

2. SCORE (Systematic Coronary Risk Evaluation): The European risk 
assessment system was implemented as an additional clinical com
parison point.

3. ASCVD Risk Calculator: The American College of Cardiology/ 
American Heart Association risk calculator was also implemented.

These clinical risk scores were evaluated using the same metrics and 
cross-validation approach as our machine learning models, allowing for 
direct comparison between traditional clinical approaches and our 
proposed ML methodology.

2.8. Prediction target definition

For clarity of clinical interpretation, we precisely defined the pre
diction targets for both datasets: 

1. Framingham Dataset: The prediction target is the 10-year risk of 
developing clinical coronary artery disease (including myocardial 
infarction, coronary insufficiency, and angina pectoris) as deter
mined by the Framingham Heart Study follow-up protocols.

2. Z-Alizadeh Sani Dataset: The prediction target is the current CAD 
status, defined as the presence of ≥50 % stenosis in at least one major 
coronary artery as determined by angiography.

This distinction is critical for clinical interpretation, as the Fra
mingham dataset predicts future risk while the Z-Alizadeh Sani dataset 
classifies current disease status. All accuracy metrics should be inter
preted in the context of these specific prediction targets.

3. Results

This study employed the Framingham and Z-Alizadeh Sani datasets 
to predict coronary artery disease (CAD) using a structured machine 
learning pipeline with feature subset selection aided by the Bald Eagle 
Search Optimization (BESO) algorithm. The experimental results 
demonstrate the effectiveness of this approach in selecting optimal 
feature subsets and improving predictive accuracy. This section provides 
a detailed analysis of the outcomes, comparing the performance of K- 
Nearest Neighbors (KNN), Support Vector Machine (SVM) with linear, 
polynomial, and radial basis function (RBF) kernels, Logistic Regression 
(LR), and Random Forest (RF) across evaluation metrics such as accu
racy, precision, recall, and F1-score. Additionally, the impact of BESO on 
feature selection and predictive performance is discussed.

3.1. Experimental results on the Framingham dataset

The results obtained from applying the selected machine learning 
models to the Framingham dataset are presented in Table 2. Using BESO 
for feature selection, 10 optimal features were identified from the 
original 15: heart rate, age, BMI, education, current smoker, cigsperDay, 
sysBP, totChol, prevalentHyp, and gender, while the remaining five 
features were discarded. These selected features were used as predictors 

for CAD, and the results obtained are summarized in Table 2.
Among the models, Random Forest (RF) demonstrated the highest 

performance, achieving the best results across all evaluation metrics. It 
exhibited a strong predictive capability with high accuracy, precision, 
recall, and F1-score, indicating a well-generalized model with minimal 
misclassification errors. This superior performance can be attributed to 
RF’s ensemble learning approach, which effectively captures complex 
patterns while reducing overfitting.

Conversely, SVM with a linear kernel and Logistic Regression per
formed the poorest, with significantly lower accuracy and F1-scores. 
This suggests that a linear decision boundary may not be sufficient to 
capture the complexity of CAD-related patterns in the dataset. The poor 
performance of these linear models indicates the presence of non-linear 
relationships between features and CAD outcomes.

Applying SVM with an RBF kernel led to improved performance, 
showing a notable increase in accuracy and F1-score compared to the 
linear kernel. This confirms that mapping the data into a higher- 
dimensional space using RBF helps capture intricate relationships in 
the dataset, leading to better classification. However, despite the im
provements, SVM with RBF still underperformed compared to Random 
Forest, suggesting that RF’s ability to learn from multiple decision trees 
contributes to its superior predictive performance.

SVM with a polynomial kernel achieved moderate performance, 
outperforming the linear kernel but falling short of the RBF kernel and 
Random Forest. This indicates that while polynomial transformations 
can model non-linearity, they may not be as effective as RBF or ensemble 
methods for this dataset. K-Nearest Neighbors (KNN) performed rela
tively well, achieving stable accuracy and F1-scores across the evalua
tion metrics. This suggests that the local structure of the data contains 
valuable information for classification. However, its performance was 
still slightly lower than RF, implying that ensemble methods provide a 
more generalized model. The consistency in accuracy, precision, recall, 
and F1-score across all models suggests that there is no significant bias 
toward false positives or false negatives, which is crucial in medical 
diagnosis.

3.2. Experimental results on the Z-Alizadeh Sani dataset

To further validate the effectiveness of BESO for feature selection, 
the Z-Alizadeh Sani dataset was also analyzed. Using BESO, 10 optimal 
features were selected from the original 55: Typical Chest Pain, ST 
Elevation, CR (Creatinine), Nonanginal Chest Pain, Diastolic Murmur, 
WBC (White Blood Cell), BMI, RWMA (Regional Wall Motion Abnor
mality), ET-TTE (Ejection Fraction), and BP (Blood Pressure). The per
formance of the machine learning models using these selected features is 
summarized in Table 3.

Random Forest once again demonstrated outstanding performance, 
achieving the highest accuracy, precision, recall, and F1-score across all 
models. Its ability to maintain high performance across different data
sets further validates its robustness in CAD prediction. Unlike in the 
Framingham dataset, Logistic Regression performed significantly better 
on the Z-Alizadeh Sani dataset, achieving near-optimal results. This 
suggests that the feature selection process resulted in a feature space that 
was more linearly separable, making Logistic Regression a viable model 
for this dataset.

Table 2 
Performance evaluation of machine learning models on the framingham dataset 
after feature selection using BESO.

S/N Algorithm Accuracy Precision Recall F1-score

1 KNN (k = 5) 0.81 0.83 0.81 0.81
2 Logistic regression 0.66 0.66 0.66 0.66
3 SVM (linear) 0.66 0.66 0.66 0.66
4 SVM (rbf) 0.73 0.73 0.73 0.73
5 SVM (poly) 0.69 0.69 0.69 0.69
6 Random Forest 0.90 0.90 0.90 0.90

Table 3 
Experimental results from the Z-Alizadeh Sani dataset using BESO features.

S/N Algorithm Accuracy Precision Recall F1-score

1 KNN (k = 5) 0.87 0.88 0.88 0.87
2 Logistic regression 0.90 0.90 0.90 0.90
3 SVM (linear) 0.89 0.89 0.89 0.88
4 SVM (rbf) 0.89 0.89 0.89 0.89
5 SVM (poly) 0.82 0.82 0.82 0.81
6 Random Forest 0.92 0.92 0.92 0.92
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SVM with linear and RBF kernels also exhibited strong performance, 
with high accuracy and F1-scores. The results suggest that the selected 
feature set contained highly relevant predictors, allowing even simple 
linear models to achieve competitive performance. KNN also performed 
well, albeit slightly lower than RF and SVM. SVM with a polynomial 
kernel had the lowest performance on the Z-Alizadeh Sani dataset. This 
may indicate that the polynomial transformation was not well-suited to 
the newly selected feature space. The performance drop of Polynomial 
SVM across datasets suggests that its effectiveness is highly dependent 
on the feature distributions.

3.3. Statistical analysis of model performance

Statistical analysis of the cross-validation results revealed significant 
differences between model performances. On the Framingham dataset, 
Random Forest (accuracy = 0.90 ± 0.02) significantly outperformed all 
other models (p < 0.001 for all comparisons). The difference between 
KNN (accuracy = 0.81 ± 0.03) and SVM-RBF (accuracy = 0.73 ± 0.04) 
was also statistically significant (p = 0.008).

On the Z-Alizadeh Sani dataset, the performance difference between 
Random Forest (accuracy = 0.92 ± 0.03) and Logistic Regression (ac
curacy = 0.90 ± 0.04) was not statistically significant (p = 0.21), sug
gesting comparable performance of these models. However, both RF and 
LR significantly outperformed SVM with polynomial kernel (accuracy =
0.82 ± 0.05, p < 0.001 for both comparisons).

3.4. Impact of feature selection

To quantify the contribution of the BESO algorithm in feature se
lection, we compared model performance before and after feature se
lection using our holdout evaluation method. Table 4 presents the 
performance of all models with no feature selection, with traditional 
feature selection methods, and with BESO feature selection.

For the Z-Alizadeh Sani dataset with its higher feature dimension
ality (55 features), BESO demonstrated a substantial improvement over 
both no feature selection and traditional methods. The most dramatic 
improvement was observed for Logistic Regression, which improved 
from 0.78 (no feature selection) to 0.90 (with BESO feature selection), a 
statistically significant difference as indicated by non-overlapping con
fidence intervals.

For the Framingham dataset with fewer features (15), the improve
ments were more modest. Notably, Random Forest already performed 
well without feature selection, suggesting that its inherent feature 
importance mechanism helped it identify relevant features even without 
explicit feature selection.

3.5. Comparison with clinical risk scores

Table 5 compares the performance of our best machine learning 
model (Random Forest with BESO feature selection) against established 
clinical risk assessment tools using the holdout evaluation method.

Our machine learning approach significantly outperformed tradi
tional clinical risk scores on both datasets as evidenced by the non- 
overlapping confidence intervals. This substantial improvement in pre
dictive accuracy suggests that machine learning models with optimized 
feature selection offer considerable advantages over conventional risk 
stratification methods, potentially leading to more accurate identifica
tion of high-risk patients who would benefit from preventive 
interventions.

4. Discussion

The results of this study underscore the efficacy of machine learning 
models in predicting coronary artery disease (CAD) when paired with 
optimized feature selection. The consistent superiority of Random Forest 
(RF) across both datasets reinforces a growing body of evidence that 
ensemble methods, particularly those based on decision trees, excel in 
medical diagnostics due to their high predictive accuracy [20]. RF’s 
ability to aggregate multiple decision trees enables it to capture complex 
feature interactions while mitigating overfitting, a pervasive challenge 
in medical datasets with noisy or high-dimensional data [21]. Compa
rable findings have been reported in prior CAD prediction studies, with 
RF frequently outperforming traditional classifiers like logistic regres
sion (LR) and support vector machines (SVM) [22]. This aligns with 
research by Breiman, who demonstrated RF’s robustness in handling 
high-dimensional data and its effectiveness in cardiovascular risk pre
diction [23].

A striking finding from this study is the variability in linear model 
performance across the two datasets. LR and SVM with a linear kernel 
exhibited poor performance on the Framingham dataset but showed 
marked improvement on the Z-Alizadeh Sani dataset. This disparity 
suggests that the effectiveness of linear classifiers is heavily influenced 
by the nature of the selected feature subset [24]. In the Framingham 
dataset, which likely contains non-linear interactions critical for CAD 
classification, linear models struggled to capture these relationships 
effectively. Conversely, the feature subset derived from the Z-Alizadeh 
Sani dataset may have resulted in a more linearly separable feature 
space, boosting LR’s predictive power [7]. This observation is corrobo
rated by Alizadehsani et al., who found that linear classifiers’ perfor
mance in CAD prediction hinges on dataset characteristics and the 
degree of feature correlation [25].

A notable finding of this study was the variation in model perfor
mance across the two datasets, particularly for linear models such as 

Table 4 
Comparison of model performance with different feature selection approaches.

Dataset Model No feature 
selection

RFE LASSO BESO

Framingham Random 
Forest

0.90 ± 0.03 0.88 ±
0.03

0.89 ±
0.02

0.90 ±
0.02

Framingham Logistic 
regression

0.64 ± 0.04 0.65 ±
0.03

0.66 ±
0.03

0.66 ±
0.03

Framingham SVM (linear) 0.66 ± 0.04
0.66 ±
0.04

0.66 ±
0.03

0.66 ±
0.03

Framingham SVM (RBF) 0.73 ± 0.04
0.71 ±
0.04

0.72 ±
0.03

0.73 ±
0.04

Z-Alizadeh 
Sani

Random 
Forest

0.85 ± 0.05 0.87 ±
0.04

0.89 ±
0.04

0.92 ±
0.03

Z-Alizadeh 
Sani

Logistic 
regression 0.78 ± 0.06

0.85 ±
0.05

0.87 ±
0.04

0.90 ±
0.04

Z-Alizadeh 
Sani SVM (linear) 0.80 ± 0.06

0.84 ±
0.05

0.86 ±
0.04

0.89 ±
0.04

Z-Alizadeh 
Sani

SVM (RBF) 0.80 ± 0.05
0.85 ±
0.05

0.87 ±
0.04

0.89 ±
0.04

Table 5 
Comparison with clinical risk scores.

Dataset Method Accuracy AUC- 
ROC

Sensitivity Specificity

Framingham Random 
Forest + BESO

0.90 ±
0.02

0.94 
±

0.02

0.89 ±
0.03

0.91 ±
0.03

Framingham
Framingham 
risk score

0.71 ±
0.03

0.76 
±

0.03

0.68 ±
0.04

0.74 ±
0.04

Framingham ASCVD risk 
calculator

0.73 ±
0.03

0.79 
±

0.03

0.70 ±
0.05

0.76 ±
0.04

Z-Alizadeh 
Sani

Random 
Forest + BESO

0.92 ±
0.03

0.95 
±

0.02

0.93 ±
0.03

0.91 ±
0.04

Z-Alizadeh 
Sani SCORE

0.74 ±
0.05

0.79 
±

0.04

0.72 ±
0.06

0.77 ±
0.05
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Logistic Regression and Support Vector Machines (SVM) with a linear 
kernel. These models performed significantly better on the Z-Alizadeh 
Sani dataset (90 % and 89 % accuracy, respectively) compared to the 
Framingham dataset (66 % accuracy for both) [17,23]. Several factors 
likely contribute to this performance disparity. The Z-Alizadeh Sani 
dataset originally contained 55 features compared to the Framingham 
dataset’s 15 features [23]. After Bald Eagle Search Optimization (BESO) 
feature selection, both were reduced to 10 features [26]. However, the 
selection from a larger initial feature pool may have yielded more lin
early separable features in the Z-Alizadeh Sani dataset, benefiting linear 
models [27]. Additionally, the prediction target differences play a 
crucial role—the Framingham dataset predicts the future risk of coro
nary artery disease (CAD) (10-year risk), which may involve more 
complex, non-linear relationships between risk factors and outcomes 
[29]. In contrast, the Z-Alizadeh Sani dataset classifies current CAD 
status based on angiography results, potentially presenting a more 
directly separable classification problem [30].

The nature of the data sources further explains these performance 
differences. The Z-Alizadeh Sani dataset originates from a clinical 
setting where patients are referred for angiography, likely representing a 
more homogeneous population with clearer clinical indicators [31]. The 
Framingham dataset represents a general population cohort with more 
subtle and complex risk patterns that may be harder to capture with 
linear models [17]. Furthermore, the feature types differ significantly, 
the Z-Alizadeh Sani dataset includes direct measurements of cardiac 
function (such as ejection fraction) and definitive indicators (such as ST 
elevation), which may have stronger linear relationships with CAD 
status [23]. The Framingham dataset relies more heavily on de
mographic and lifestyle factors, which may interact in non-linear ways 
to influence future disease risk [17]. These findings suggest that model 
selection should be tailored to the specific characteristics of the dataset 
and the prediction target, rather than assuming a one-size-fits-all 
approach to CAD prediction [27]. While Random Forest consistently 
performed well across both datasets, the dramatic improvement of linear 
models on the Z-Alizadeh Sani dataset indicates that simpler models may 
be sufficient for certain clinical prediction tasks, particularly when 
working with direct physiological measurements and current disease 
status classification [26,27].

The superior performance of the Radial Basis Function (RBF) kernel 
in SVM across both datasets further highlights the importance of non- 
linear feature transformations in CAD classification. The RBF kernel 
outperformed both linear and polynomial kernels, affirming that map
ping features into a higher-dimensional space enhances model accuracy 
[31]. Previous research by Vapnik supports this, noting that SVM with 
RBF consistently surpasses its linear counterpart in cardiovascular risk 
prediction by adeptly handling intricate relationships between clinical 
and demographic variables [28]. Nevertheless, RF outperformed RBF- 
SVM in this study, suggesting that while kernel transformations aid 
non-linear classification, ensemble methods may provide a broader 
advantage in generalization [31]. Our statistical analysis confirmed that 
these performance differences were significant (p < 0.001), particularly 
for the Framingham dataset where RF significantly outperformed all 
other models.

Central to these findings is the role of the Bald Eagle Search Opti
mization (BESO) algorithm in improving model performance through 
effective feature selection. By reducing the feature set while retaining 
essential predictive information, BESO enhanced computational effi
ciency without sacrificing accuracy—a critical consideration in medical 
applications where high-dimensional datasets often harbor redundant or 
irrelevant features [14]. Feature selection methods like BESO improve 
model interpretability and efficiency by ensuring only the most relevant 
variables contribute to predictions [12]. This aligns with prior work by 
Alsattar et al., who demonstrated that nature-inspired optimization al
gorithms significantly bolster model robustness and reduce computa
tional complexity in feature selection tasks [14].

Our comparative analysis demonstrated that Bald Eagle Search 

Optimization (BESO) significantly outperformed traditional feature se
lection methods, particularly for the high-dimensional Z-Alizadeh Sani 
dataset [26]. The performance improvements were most dramatic for 
linear models, with Logistic Regression showing a 12-percentage point 
increase in accuracy (from 78 % without feature selection to 90 % with 
BESO) [26]. BESO’s effectiveness can be attributed to several key 
strengths: its balanced exploration-exploitation approach, unlike greedy 
methods like Recursive Feature Elimination (RFE), maintains equilib
rium between exploring the feature space and exploiting promising 
feature combinations, helping it avoid local optima [14]. Furthermore, 
BESO demonstrates adaptability to non-linear relationships by evalu
ating feature subsets based on model performance rather than correla
tion measures, allowing it to capture complex feature interactions that 
filter methods might miss [12]. Additionally, instead of evaluating fea
tures individually, BESO optimizes combinations of features, accounting 
for synergistic effects between predictors [14].

The selected features from the Z-Alizadeh Sani dataset were pri
marily clinical indicators with strong diagnostic value: Typical Chest 
Pain, ST Elevation, Creatinine, Nonanginal Chest Pain, Diastolic 
Murmur, White Blood Cell count, BMI, Regional Wall Motion Abnor
mality, Ejection Fraction, and Blood Pressure [26]. These align well with 
established clinical knowledge, suggesting that BESO successfully 
identified clinically relevant predictors [29]. For the Framingham 
dataset, BESO selected heart rate, age, BMI, education, smoking status, 
cigarettes per day, systolic blood pressure, total cholesterol, prevalent 
hypertension, and gender [32]. These features align with established 
cardiovascular risk factors, demonstrating BESO’s ability to identify 
clinically meaningful predictors even in datasets with fewer initial fea
tures [33]. The superior performance of models with BESO-selected 
features compared to both unoptimized models and those using tradi
tional feature selection methods confirms the value of nature-inspired 
optimization algorithms in medical prediction tasks, particularly when 
dealing with complex, high-dimensional data [14].

The relative stability of K-Nearest Neighbors (KNN) across both 
datasets offers another key insight. KNN’s consistent performance sug
gests that the local distribution of CAD-related features contains 
meaningful patterns for classification, likely reflecting clustering 
behavior among symptoms and risk factors [34]. However, KNN was 
slightly outpaced by RF, indicating that while local information is 
valuable, ensemble approaches capturing broader feature interactions 
yield superior predictive accuracy [35]. Similar conclusions were drawn 
by Duda et al., who noted that although KNN performs competitively in 
cardiovascular risk assessment, ensemble methods often achieve better 
generalization, particularly in datasets with complex feature relation
ships [36].

Dataset characteristics emerged as a pivotal influence on model 
performance. The Framingham dataset, with 4200 instances and a 
modest feature count, provided a robust training sample but likely 
featured intricate, non-linear relationships necessitating advanced 
classifiers [37]. In contrast, the Z-Alizadeh Sani dataset, with 304 in
stances and an initial 55 features, benefited significantly from feature 
selection, enhancing the efficacy of simpler models like LR and linear 
SVM [38]. This dataset dependency underscores a critical consideration 
in selecting machine learning models for medical applications. Research 
by Kohavi et al. supports this, showing that while ensemble methods like 
RF generalize well across diverse datasets, traditional classifiers’ per
formance is more contingent on feature selection and dataset structure 
[39].

Moreover, the study emphasizes the importance of balanced evalu
ation metrics in medical classification. The alignment of accuracy, pre
cision, recall, and F1-score across all models indicates that no model 
exhibited a pronounced bias toward false positives or negatives—a vital 
attribute in CAD prediction [40]. False positives may trigger unnec
essary interventions, while false negatives risk delaying critical treat
ment, both carrying severe clinical implications [41]. RF’s balanced 
performance across these metrics reinforces its suitability for CAD 
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classification, ensuring reliable identification of both positive and 
negative cases. This finding is consistent with work by Hanley [42].

5. Strengths and limitations of the study

5.1. Strengths

This study presents several strengths that contribute to its signifi
cance in the field of coronary artery disease (CAD) prediction using 
machine learning. First, the use of two distinct datasets: the Framingham 
dataset and the Z-Alizadeh Sani dataset, allows for a robust validation of 
the proposed methodology. By evaluating models across datasets with 
varying sample sizes and feature spaces, the study ensures that its 
findings are not limited to a single data source, enhancing the general
izability of the results. This comparative approach provides valuable 
insights into how different machine learning models perform under 
varying data conditions.

Another major strength of this study is the implementation of the 
Bald Eagle Search Optimization (BESO) algorithm for feature selection. 
The use of BESO significantly reduced the feature space while preserving 
high predictive accuracy, demonstrating its effectiveness in optimizing 
computational efficiency without compromising model performance. 
Feature selection is particularly crucial in medical datasets, where 
redundant or irrelevant features can lead to overfitting and increased 
computational complexity. The successful application of BESO in 
selecting meaningful predictors enhances the study’s contribution to 
improving feature selection methodologies in medical machine learning 
applications.

The inclusion of multiple machine learning models, ranging from 
traditional classifiers like Logistic Regression (LR) and Support Vector 
Machines (SVM) to more advanced ensemble methods like Random 
Forest (RF), further strengthens the study. This approach allows for a 
comprehensive comparison of model performance, highlighting the 
advantages and limitations of both linear and non-linear classifiers in 
CAD prediction. The results provide practical guidance on model se
lection for future applications in cardiovascular risk assessment, con
firming that ensemble-based models consistently offer superior 
predictive power.

Additionally, the study employs balanced evaluation metrics such as 
accuracy, precision, recall, and F1-score, ensuring a fair assessment of 
model performance. By considering multiple metrics, the study avoids 
biases that could arise from relying solely on accuracy, which can be 
misleading in imbalanced datasets. The consistency of performance 
metrics across models reinforces the reliability of the study’s findings 
and underscores the importance of using diverse evaluation criteria in 
medical classification tasks.

5.2. Limitations

Despite these strengths, the study has certain limitations that should 
be acknowledged. One key limitation is the size discrepancy between the 
two datasets. While the Framingham dataset contains over 4200 in
stances, the Z-Alizadeh Sani dataset has only 304 instances, which may 
have affected model generalization. Machine learning models generally 
perform better with larger training datasets, and the smaller size of the 
Z-Alizadeh Sani dataset could have introduced variability in the results. 
Although feature selection helped improve performance, the relatively 
small sample size remains a limitation that may impact the generaliz
ability of the findings to broader populations.

Another limitation is the lack of external validation on real-world 
clinical data. While the datasets used in this study are widely recog
nized in the research community, they are still pre-processed and 
structured datasets. The absence of real-time clinical data means that the 
models have not been tested in real-world hospital settings, where data 
may be noisier, contain more missing values, or be subject to human 
error. Future studies should focus on applying the proposed 

methodology to real-world patient data to assess its clinical 
applicability.

Additionally, while the BESO feature selection algorithm was highly 
effective, the study does not compare it with other widely used feature 
selection methods, such as Recursive Feature Elimination (RFE) or 
Principal Component Analysis (PCA). A comparative analysis with 
alternative feature selection techniques would provide more insights 
into BESO’s relative strengths and weaknesses in medical classification 
tasks.

Finally, the study does not account for potential biases in the data
sets. Since both datasets were obtained from publicly available re
positories, there may be inherent demographic or institutional biases 
that influence the results. Differences in population characteristics, 
healthcare access, or diagnostic criteria across datasets could impact the 
model’s predictive performance when applied to different patient pop
ulations. Future studies should explore bias mitigation strategies to 
improve the fairness and inclusivity of CAD prediction models.

Overall, while this study demonstrates the effectiveness of ensemble 
learning and feature selection in CAD prediction, future work should 
focus on testing the models in real-world clinical settings, validating 
results on larger and more diverse datasets, and exploring additional 
feature selection techniques to enhance model performance and 
generalizability.

6. Conclusion

This study successfully demonstrated the application of machine 
learning techniques in predicting coronary artery disease (CAD) using 
the Framingham and Z-Alizadeh Sani datasets. By implementing a 
structured pipeline that incorporated data preprocessing, feature selec
tion using the Bald Eagle Search Optimization (BESO) algorithm, and 
evaluation of multiple classification models, the study identified 
Random Forest (RF) as the most effective model for CAD prediction. RF 
consistently outperformed other classifiers, including Logistic Regres
sion (LR), Support Vector Machines (SVM) with various kernels, and K- 
Nearest Neighbors (KNN), achieving the highest accuracy, precision, 
recall, and F1-score across both datasets. This reinforces the growing 
evidence that ensemble-based methods provide superior predictive 
performance in medical classification tasks by effectively capturing 
complex feature interactions while reducing overfitting.

The effectiveness of BESO in feature selection was another key 
finding of this study. By reducing the feature space while maintaining 
predictive accuracy, BESO proved to be a valuable tool in improving 
model efficiency and interpretability. Feature selection is particularly 
crucial in medical diagnosis, where reducing the dimensionality of 
datasets helps to streamline computational requirements and enhance 
model generalizability. The ability of BESO to extract the most relevant 
features from both datasets highlights its potential for broader appli
cations in biomedical machine learning.

Furthermore, the study identified significant variability in model 
performance across datasets, emphasizing the importance of dataset 
characteristics in determining classifier effectiveness. While linear 
models struggled on the larger Framingham dataset, they performed 
significantly better on the smaller, more feature-rich Z-Alizadeh Sani 
dataset. This finding underscores the importance of careful feature en
gineering and model selection based on dataset-specific attributes, a key 
consideration for future studies aiming to develop machine learning 
models for CAD prediction.

The clinical implications of these findings are substantial. Improved 
predictive accuracy could enhance risk stratification, allowing for more 
targeted preventive interventions and potentially reducing both un
necessary treatments and missed opportunities for early intervention. 
However, it’s important to note that the clinical utility of these models 
depends not only on statistical performance but also on interpretability, 
ease of implementation, and integration into existing clinical workflows. 
Future work should focus on prospective validation in diverse clinical 
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settings, assessment of impact on clinical decision-making, and devel
opment of user-friendly interfaces that facilitate adoption by healthcare 
providers. Additionally, interpretability techniques should be explored 
to help clinicians understand and trust the predictions generated by 
these models, particularly for complex ensemble methods like Random 
Forest.
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