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Abstract: Background: Parkinson’s disease (PD) is a progressive neurodegenerative condi-
tion that impairs motor and non-motor functions. Early and accurate diagnosis is critical for
effective management and care. Leveraging machine learning (ML) techniques, this study
aimed to develop a robust prediction system for PD using a stacked ensemble learning
approach, addressing challenges such as imbalanced datasets and feature optimization.
Methods: An open-access PD dataset comprising 22 vocal attributes and 195 instances
from 31 subjects was utilized. To prevent data leakage, subjects were divided into training
(22 subjects) and testing (9 subjects) groups, ensuring no subject appeared in both sets.
Preprocessing included data cleaning and normalization via min–max scaling. The syn-
thetic minority oversampling technique (SMOTE) was applied exclusively to the training
set to address class imbalance. Feature selection techniques—forward search, gain ratio,
and Kruskal–Wallis test—were employed using subject-wise cross-validation to identify
significant attributes. The developed system combined support vector machine (SVM),
random forest (RF), K-nearest neighbor (KNN), and decision tree (DT) as base classifiers,
with logistic regression (LR) as the meta-classifier in a stacked ensemble learning frame-
work. Performance was evaluated using both recording-wise and subject-wise metrics
to ensure clinical relevance. Results: The stacked ensemble learning model achieved
realistic performance with a recording-wise accuracy of 84.7% and subject-wise accuracy
of 77.8% on completely unseen subjects, outperforming individual classifiers including
KNN (81.4%), RF (79.7%), and SVM (76.3%). Cross-validation within the training set
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showed 89.2% accuracy, with the performance difference highlighting the importance of
proper validation methodology. Feature selection results showed that using the top 10
features ranked by gain ratio provided optimal balance between performance and clinical
interpretability. The system’s methodological robustness was validated through rigorous
subject-wise evaluation, demonstrating the critical impact of validation methodology on
reported performance. Conclusions: By implementing subject-wise validation and pre-
venting data leakage, this study demonstrates that proper validation yields substantially
different (and more realistic) results compared to flawed recording-wise approaches. The
findings underscore the critical importance of validation methodology in healthcare ML
applications and provide a template for methodologically sound PD classification research.
Future research should focus on validating the model with larger, multi-center datasets
and implementing standardized validation protocols to enhance clinical applicability.

Keywords: Parkinson’s disease; stacked ensemble learning; machine learning; feature
selection; predictive analytics

1. Introduction
Health is an invaluable asset, central to the quality of life and foundational to human

productivity. A sound health status not only allows individuals to envision and pursue
personal and financial goals but also ensures that acquired wealth can be fully enjoyed.
Consequently, prioritizing health represents the pinnacle of life’s fulfillment. In alignment
with this, technological advancements have increasingly focused on enhancing healthcare
delivery through emerging technologies such as robotics, expert systems, computer vision,
and machine learning (ML) [1–3]. These technologies have revolutionized healthcare by
making medical procedures faster, more precise, and more accessible, ultimately reducing
prognosis times and saving countless lives [4].

One notable innovation is the use of electronic medical records (EMRs), which enable
the prediction of future disease occurrences based on a patient’s current health records
and the aggregated data of past cases [5]. Diseases vary significantly in progression; some
manifest abruptly, while others, such as Parkinson’s disease (PD), develop progressively.
PD is a neurodegenerative disorder characterized by the gradual loss of dopaminergic
neuron functionality, often leading to severe disabilities over time [6].

The detection and classification of PD have been key areas of research, leverag-
ing advanced technologies to improve diagnostic accuracy and early intervention. Re-
cent studies have demonstrated significant advancements in this field. For instance,
Wingate et al. (2020) utilized transfer learning to classify PD by extracting features from
pretrained deep neural networks (DNNs) and adapting them to new datasets [7]. This
approach incorporated domain adaptation to address data mismatches, enabling effective
predictions even when DatScan data were unavailable, but magnetic resonance imaging
(MRI) data were used instead.

Vocal analysis has emerged as a promising non-invasive approach for PD detection.
Studies have established that PD patients exhibit distinctive changes in their speech pat-
terns, including reduced pitch variation, increased voice tremor, and altered prosody [8,9].
These acoustic biomarkers provide valuable diagnostic information that can be detected
before more obvious motor symptoms appear. Sakar et al. demonstrated that vocal mea-
surements such as jitter, shimmer, and harmonic-to-noise ratios effectively differentiate
between PD patients and healthy controls with high accuracy [10].



Diagnostics 2025, 15, 1467 3 of 18

Machine learning techniques have significantly enhanced classification capabilities in
this domain. Feature selection methods have proven critical to improving model perfor-
mance, with Saeed et al. finding that k-nearest neighbor (KNN) combined with Wrapper
feature selection demonstrated superior results [11]. The field has evolved beyond single
classifiers, with ensemble learning approaches showing particular promise. Velmurugan
and Dhinakaran proposed a stacked ensemble learning approach combining random forest,
XGBoost, AdaBoost, and multi-layer perceptron, achieving optimal performance [12], while
more recent work by Shibina and Thasleema developed a hybrid ensemble model reaching
97.19% accuracy on vocal datasets [13].

These advancements have enabled the development of sophisticated telemonitoring
applications that extend beyond detection to continuous assessment and disease manage-
ment. Recent systems leverage the distinctive acoustic patterns in PD speech, with several
researchers demonstrating impressive classification accuracy: Ouhmida et al. achieved
97.08% accuracy using advanced neural networks [14], while Hadjaidji et al.’s PSO-based
system reached 97.44% accuracy [15]. The clinical value of these approaches is substan-
tial, with Dhanalakshmi et al. confirming that speech features serve as predictive and
non-invasive indicators that make the diagnostic process more accessible [16]. These devel-
opments collectively support voice-based systems as valuable tools for early intervention
and treatment adjustment in clinical practice, particularly in remote monitoring scenarios
where continuous assessment is critical.

Despite significant advancements in the understanding and management of PD, nu-
merous challenges persist, particularly in the early diagnosis and treatment. PD predomi-
nantly affects older adults, with the prevalence increasing as the global population ages.
The disease is characterized by a progressive impairment of cognitive and motor func-
tions, driven by the gradual deterioration of dopaminergic neurons in the midbrain [6].
As the disease progresses, patients experience a range of debilitating symptoms, includ-
ing tremors, rigidity, bradykinesia, and cognitive decline, significantly impairing their
quality of life. At present, there is no definitive cure for PD, and available treatments
primarily focus on managing symptoms rather than halting or reversing the underlying
neurodegeneration [17].

Diagnosis remains a challenging process, largely reliant on subjective assessments
based on patients’ medical histories, clinical symptoms, and neurological examinations [17].
These diagnostic methods are time-consuming and often result in delayed identification
of the disease, further complicating early intervention efforts [17]. Moreover, the clinical
presentation of PD shares significant overlap with other neurodegenerative disorders, such
as dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) [18]. This can
lead to misdiagnosis, which is especially concerning as improper or delayed treatment often
exacerbates the progression of the disease, leading to suboptimal outcomes for patients.
Consequently, achieving an accurate and early diagnosis is of paramount importance in
minimizing the impact of PD, ensuring appropriate treatment, and improving long-term
prognosis for affected individuals.

Research Gap and Contribution

Despite the significant progress in PD classification using ML techniques, several criti-
cal methodological challenges and limitations remain unaddressed in the existing literature:

• Inappropriate validation methodologies: Most studies suffer from data leakage issues
where multiple recordings from the same subject appear in both training and testing
sets, leading to artificially inflated and clinically irrelevant performance estimates.
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• Recording-wise vs. subject-wise evaluation: The prevalent use of recording-wise cross-
validation fails to reflect real-world clinical scenarios where models must generalize
to completely unseen patients rather than new recordings from known subjects.

• Lack of methodological transparency: Many studies report unrealistic accuracies
(>95%) without acknowledging the fundamental validation flaws that compromise
the clinical applicability of their findings.

• Absence of standardized validation protocols: Inconsistent validation methodologies
across studies make it impossible to fairly compare performance claims and establish
reliable benchmark standards for clinical deployment.

• Limited clinical relevance: Most studies prioritize achieving high accuracy scores over
developing methodologically sound approaches that provide realistic performance
estimates for clinical applications.

This research aims to address these fundamental methodological challenges by devel-
oping a rigorously validated system for classifying PD using telemonitoring vocal data.
Our key contributions include:

• Implementation of methodologically rigorous validation: Development of a subject-
wise cross-validation framework that prevents data leakage and provides clinically
relevant performance estimates by ensuring complete separation of subjects between
training and testing sets.

• Realistic performance assessment: Demonstration that proper validation methodology
yields substantially different (and more realistic) results compared to flawed recording-
wise approaches, providing honest assessments of clinical applicability.

• Robust feature selection validation: Implementation and comparative analysis of three
distinct feature selection techniques using proper subject-wise cross-validation to
identify truly generalizable vocal biomarkers.

• Clinical applicability focus: Comprehensive evaluation using both recording-wise
and subject-wise metrics to provide performance estimates that reflect real-world
deployment scenarios where patient-level decisions are required.

• Methodological template: Provision of a rigorous validation framework that can serve
as a standard for future PD voice classification research, prioritizing methodological
soundness over inflated performance claims.

Unlike prior studies that often suffer from validation methodology flaws leading to
unrealistic performance claims, this study emphasizes methodological rigor and clinical
relevance. By implementing proper subject-wise validation while integrating base models
such as support vector machine (SVM), random forest (RF), K-nearest neighbor (KNN), and
decision tree (DT), with logistic regression (LR) as the meta-classifier, the study seeks to
provide realistic performance estimates and establish a reliable methodological framework
for early detection of PD that can be trusted for clinical application.

2. Methodology
The development of a clinical support system for predicting PD using stacked ensem-

ble learning is a non-knowledge-based decision-aiding system that employs ML techniques.
To achieve the research objectives, recognizing that medical data are often inaccessible due
to confidentiality concerns, this study utilized a publicly available PD voice dataset from an
open-access data repository. The various phenotypes within this dataset were analyzed us-
ing feature selection techniques such as forward search, gain ratio, and Kruskal–Wallis tests.
These methods helped identify the most relevant features affecting the occurrence of PD.
Additionally, preprocessing techniques, such as normalization of high-valued phenotypes
using the min–max normalization method, were applied. The system was implemented on
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Google Colab using the Python programming language. Figure 1 illustrates the various
stages of the system’s development.

Figure 1. Block diagram for prediction support system for Parkinson’s disease prediction using
stacked ensemble learning. Abbreviations—SMOTE: synthetic minority oversampling technique;
SVM: support vector machine; RF: random forest; KNN: K-nearest neighbor; DT: decision tree.

2.1. Data Acquisition and Characteristics

This research employed an open-access PD dataset available on Kaggle named “parkin-
sons”. This dataset comprises 22 distinct voice record attributes and 195 instances collected
from 31 subjects (23 with PD and 8 healthy controls). Each subject contributed multi-
ple voice recordings, with variations in phonation tasks. To prevent data leakage and
ensure proper generalization, our validation strategy ensures that recordings from the
same subject never appear in both training and testing sets simultaneously. The subject
distribution in our dataset was as follows: 23 subjects with PD contributed 147 recordings,
and 8 healthy control subjects contributed 48 recordings. This multi-recording per sub-
ject structure necessitated subject-wise validation to ensure clinical relevance and proper
model evaluation.

The clinical characteristics of the PD participants included a mean age of 65.8 ± 9.3 years,
disease duration of 5.4 ± 4.2 years, and Unified Parkinson’s Disease Rating Scale (UPDRS)
motor scores ranging from 15 to 42 (mean 28.5 ± 7.2). All PD patients were on stable
medication regimens during recording sessions.

Table 1 provides a summary of the dataset and the meanings of the acronyms for
its attributes.



Diagnostics 2025, 15, 1467 6 of 18

Table 1. Data description of voice features for prediction of Parkinson’s disease (adopted from [19]).

S/N Attributes Description Data Type

1 MDVP:Fo (Hz) Average vocal fundamental frequency Numeric
2 MDVP:Fhi (Hz) Maximum vocal fundamental frequency Numeric
3 MDVP:Flo (Hz) Minimum vocal fundamental frequency Numeric
4 MDVP:Jitter (%) MDVP jitter as percentage Numeric
5 MDVP:Jitter (Abs) MDVP jitter as absolute value in microseconds Numeric
6 MDVP:RAP MDVP Relative Amplitude Perturbation Numeric
7 MDVP:PPQ MDVP Period Perturbation Quotient Numeric

8 Jitter:DDP Difference of differences between cycles, divided by
the average period Numeric

9 MDVP:Shimmer MDVP local shimmer Numeric
10 MDVP:Shimmer (dB) MDVP local shimmer in decibels Numeric
11 Shimmer:APQ3 3 Point Amplitude Perturbation Quotient Numeric
12 Shimmer:APQ5 5 Point Amplitude Perturbation Quotient Numeric
13 MDVP:APQ MDVP Amplitude Perturbation Quotient Numeric

14 Shimmer:DDA Average absolute difference between consecutive
differences and the amplitude of consecutive period Numeric

15 NHR Noise to Harmonic Ratio Numeric
16 HNR Harmonics to Noise Ratio Numeric
17 RPDE Recurrence Period Density Entropy Numeric
18 DFA Detrended Fluctuation Analysis Numeric
19 spread1 Non-Linear measure of fundamental frequency Numeric
20 spread2 Non-Linear measure of fundamental frequency Numeric
21 D2 Correlation Dimension Numeric
22 PPE Pitch Period Entropy Numeric
23 Status Health Status: 1—Parkinson, 0—Healthy Nominal

2.2. Subject-Wise Data Splitting and Preprocessing

To address the fundamental issue of data leakage identified in preliminary analysis, we
implemented a rigorous subject-wise data-splitting strategy. The 31 subjects were randomly
divided into training (22 subjects: 16 PD, 6 controls) and testing (9 subjects: 7 PD, 2 controls)
groups, maintaining approximately the same class ratio in both sets. This approach ensures
that the model is evaluated on completely unseen subjects rather than unseen recordings
from the same subjects.

Training set composition:

• 16 PD subjects contributing 102 recordings
• 6 healthy control subjects contributing 34 recordings
• Total training instances: 136

Testing set composition:

• 7 PD subjects contributing 45 recordings
• 2 healthy control subjects contributing 14 recordings
• Total testing instances: 59

To ensure the dataset was in the appropriate format for processing, several pre-
processing techniques were applied. The dataset underwent cleaning to handle missing
values (although minimal in this dataset) and normalization, with min–max scaling used
to standardize the dataset values within a specific range. Importantly, normalization pa-
rameters were calculated only on the training set and then applied to the test set to prevent
data leakage.

The class imbalance was addressed using SMOTE (synthetic minority oversampling
technique) applied exclusively to the training set after the subject-wise split. SMOTE was
chosen over other augmentation methods like generative adversarial networks (GANs) for
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several reasons: (1) SMOTE is computationally less intensive and more suitable for smaller
datasets like ours; (2) it creates synthetic samples based on feature space rather than raw
data, which is particularly advantageous for structured tabular data like vocal features; and
(3) it has demonstrated robust performance in healthcare applications where preserving
feature relationships is critical.

After applying SMOTE to the training set, the balanced training dataset comprised:

• 102 original PD recordings + 68 synthetic PD recordings = 170 PD instances
• 34 original control recordings + 136 synthetic control recordings = 170 control instances
• Total balanced training instances: 340

The test set maintained its original distribution (45 PD, 14 controls) to provide realistic
evaluation conditions.

2.3. Subject-Wise Cross-Validation and Feature Selection

To ensure robust model validation while preventing data leakage, we implemented a
subject-wise 5-fold cross-validation strategy within the training set. The 22 training subjects
were divided into 5 folds, ensuring that each fold contained complete subjects rather than
individual recordings. This approach guarantees that model performance reflects the ability
to generalize to new patients rather than new recordings from known patients. Feature
selection was performed using subject-wise cross-validation within the training set only.
Gain ratio calculations were performed exclusively on the training set. Statistical tests were
conducted only on training data to prevent information leakage.

The selected features from each technique were validated using subject-wise cross-
validation within the training set, ensuring that the final feature selection was robust
and generalizable.

2.4. Classification of PD Using Stacked Ensemble Learning

Stacked ensemble learning was employed to classify PD using the structured dataset.
This technique combined four traditional ML algorithms as base learners:

I. Support Vector Machine (SVM): Configured with a linear kernel and C = 1. SVM
works by finding the hyperplane that best separates the data into classes, maximizing
the margin between support vectors.

II. K-Nearest Neighbors (KNN): Configured with 3 nearest neighbors. KNN classi-
fies new samples based on the majority class of their k nearest neighbors in the
feature space.

III. Random Forest (RF): Configured with 300 estimators and a random state of 42. RF
builds multiple decision trees and merges their predictions, reducing overfitting and
improving generalization.

IV. Decision Tree (DT): Configured with a maximum depth of 5 and the Gini impurity
criterion. DT creates a model that predicts the target variable by learning simple
decision rules from the features.

The ensemble was trained and validated using the subject-wise approach to ensure
clinical applicability.

Logistic regression (LR) served as the meta-estimator, a proven effective choice for
stacked ensemble models. LR was chosen because it assigns optimal weights to the base
learners’ predictions, effectively learning which model performs best for different instances.
All hyperparameters were optimized using subject-wise cross-validation within the train-
ing set.

The models were stacked in the following order: SVM, KNN, DT, and RF, with LR
acting as the final layer. This architecture allows the meta-classifier to leverage the strengths
of each base classifier while mitigating their individual weaknesses. The base classifiers
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were trained on the original feature space, while the meta-classifier was trained on the
predictions of the base classifiers.

The hyperparameters for each classifier were selected based on both empirical evalua-
tion and guidelines from literature:

• SVM: linear kernel (effective for high-dimensional data), C = 1 (balanced regularization)
• KNN: k = 3 (provides robustness without oversmoothing decision boundaries)
• RF: n_estimators = 300 (sufficient diversity without excessive computational cost),

random_state = 42 (reproducibility)
• DT: max_depth = 5 (prevents overfitting), criterion = “gini” (standard impurity measure)
• LR: max_iter = 1000 (ensures convergence), solver = “lbfgs” (efficient for multi-

class problems)

The stacked ensemble model was trained using the training dataset and tested on the
separate testing dataset to ensure unbiased evaluation.

The entire stacking, training, and testing process was conducted in the Google Co-
lab environment using Python version 3.9. The step-by-step algorithmic procedure for
implementing the stacked ensemble learning model is illustrated in Algorithm 1.

Algorithm 1. Stacked Ensemble for Prediction

Step 1: Split the data set
• X = The attributes
• Y = The Status

Step 2: Balance the dataset using SMOTE
Step 3: Split the Dataset into training and testing set
• x_train, x_test, y_train, y_test, stratify y and test_size = 0.3
Step 4: Import stacking classifier from Sklearn Library
Step 5: Import all the classifiers also from Sklearn Library

• Import SVM
• Import K-neighbor classifier
• Import LR
• Import RF Classifier

Step 6: Initiate the hyper parameters of the Classifiers
Step 7: Stacked the classifiers and initiate LR as the final estimator
Step 8: Train the Stacked Ensemble with x_train and y_train
Step 9: Predict using x_test
Step 10: Print the Confusion matrix, Classification report and accuracy score.
Step 11: End
Abbreviations—SMOTE: Synthetic Minority Oversampling Technique; SVM: Support
Vector Machine; LR: Logistic Regression; RF: Random Forest

The complete training and validation procedure follows this sequence:

I. Subject-wise split into training (22 subjects) and testing (9 subjects)
II. SMOTE applied only to training set
III. Feature selection performed using subject-wise cross-validation within training set
IV. Hyperparameter optimization using subject-wise cross-validation within training set
V. Final model training on complete balanced training set
VI. Final evaluation on held-out test set (unseen subjects)
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2.5. Implementation and Experimental Setup

This study developed a decision support system for the prediction of PD using Python
3.9, implemented on Google Colab. The experimental design prioritized methodological
rigor through subject-wise validation to ensure clinical relevance.

The local machine used for implementation operated on Windows 10, with 6 GB
of RAM and an Intel Celeron CPU. The virtual machine supporting the Google Colab
environment featured 12.68 GB of RAM and 107.72 GB of disk space, ensuring adequate
computational resources for developing and testing the stacked ensemble learning model.

As previously discussed, the dataset was highly imbalanced, necessitating the use of
SMOTE to balance the classes for improved predictive performance. SMOTE addressed the
class imbalance effectively by generating synthetic samples for the minority class, ensuring
a fair representation in the training and testing phases.

Initially, the dataset comprised 192 instances. After applying SMOTE, the dataset size
increased to 294 instances, with an even class distribution. Table 2 presents the data size
and the percentage splits assigned for training and testing. These splits were carefully
selected to provide sufficient data for model training while retaining an adequate sample
size for performance evaluation.

Table 2. Dataset training/testing split (subject-wise).

Dataset
Component Subjects PD Subjects Control

Subjects Total Recordings

Training Set 22 16 6 340 (with SMOTE)
Testing Set 9 7 2 59 (original)

Total 31 23 8 399

The implementation utilized the stacked ensemble learning approach, integrating the
algorithms as described earlier. This setup ensured the model’s robustness and accuracy,
with experiments conducted and evaluated within the Google Colab environment.

2.6. Performance Evaluation

The system’s performance was evaluated using subject-wise validation metrics to
ensure clinical interpretability. Primary evaluation focused on the held-out test set rep-
resenting completely unseen subjects. The system’s performance would be evaluated
using some evaluation metrics like accuracy, sensitivity, precision, F1 score, and computa-
tional time.

(i) Accuracy: This measures the overall effectiveness of the developed system, and it
is measured in percentage (%). Classification accuracy measures the classification
accuracy of the system in terms of how the stroke and control cases are accurately
classified, since the model is going to be used to predict, so once the accuracy of
the model is good, the prediction performance will be accurately good. It is given
mathematically by Equation (1)

Accuracy =
TP + TN

(TP + FP + TN + FN)
(1)

(ii) Recall: This is the ratio of the number of positive classes classified correctly to the
total number of positive classes. It is given mathematically by Equation (2)

Sensitivity =
TP

TP + FN
(2)
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(iii) Precision: It depicts the number of truth positive (positive classes) predicted that
really belong to the positive class. It is given mathematically by Equation (3)

Precision =
TP

TP + FP
(3)

(iv) F1 score: This is the harmonic mean of recall and precision. It is given mathematically
by Equation (4)

F1score =
2 ∗ precision ∗ recall

precision + recall
(4)

(v) Subject-wise accuracy: Percentage of subjects correctly classified (majority vote
per subject)

3. Results
This section presents the experimental results obtained from the implementation

of the developed system and a comparison with other ML algorithms to showcase the
effectiveness and reliability of our approach.

3.1. Subject-Wise Validation Results

The implementation of subject-wise cross-validation revealed important insights into
model performance and generalizability. Unlike recording-wise validation, subject-wise
validation provides clinically relevant performance estimates.

The subject-wise cross-validation within the training set showed the following aver-
age performance:

• Cross-validation accuracy: 89.2 ± 4.3%
• Cross-validation precision: 88.7 ± 5.1%
• Cross-validation recall: 90.1 ± 3.8%
• Cross-validation F1-score: 89.4 ± 4.2%

3.2. Determination of the Optimal Features with Subject-Wise Validation

The first objective of this research was to analyze different vocal attributes and their
relative contributions to the prediction of PD. To achieve this, the significance of the
attributes was evaluated using feature selection techniques such as gain ratio, Kruskal–
Wallis test, and forward search feature selection.

Using the gain ratio method, the top five and ten ranked attributes were selected for
implementation, and their results were compared with those obtained using the Kruskal–
Wallis test and forward search feature selection. This comparative approach helped identify
the most impactful attributes contributing to the prediction of PD.

Feature selection techniques were evaluated using subject-wise cross-validation to
ensure robust feature identification, as highlighted in Table 3. This table demonstrates
the impact of proper subject-wise cross-validation on feature selection, revealing that
MDVP:Flo (Hz), spread1, and MDVP:APQ consistently rank among the top discriminative
vocal biomarkers across both gain ratio and Kruskal–Wallis methods. The performance
impact ratings indicate that the top-ranked features provide high discriminative power for
distinguishing PD patients from healthy controls when validated using methodologically
sound approaches.
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Table 3. Feature ranking results (subject-wise validation).

Ranking Gain Ratio
(Subject-Wise CV)

Kruskal–Wallis
(Subject-Wise CV)

Performance
Impact

1 MDVP:Flo (Hz) Spread1 High
2 spread1 PPE High
3 MDVP:APQ MDVP:APQ Moderate
4 PPE Spread2 Moderate
5 NHR MDVP:Jitter(Abs) Moderate

3.3. Held-Out Test Set Results (Unseen Subjects)

The final model performance on the held-out test set (9 completely unseen subjects)
provides the most clinically relevant evaluation. Table 4 presents the most clinically relevant
results, showing that the stacked ensemble achieves 84.7% recording-wise accuracy and
77.8% subject-wise accuracy on completely unseen subjects, outperforming individual
classifiers by 3.3% and 11.1%, respectively. The subject-wise accuracy metric is particularly
important as it reflects real-world clinical scenarios where patient-level decisions must be
made based on multiple vocal recordings.

Table 4. Final model performance on held-out test set (unseen subjects).

Metric Stacked Ensemble Individual
Best (KNN)

Performance
Difference

Recording-wise
accuracy 84.7% 81.4% +3.3%

Subject-wise
accuracy 77.8% 66.7% +11.1%

Precision 82.2% 78.9% +3.3%
Recall 86.7% 84.4% +2.3%

F1-score 84.4% 81.6% +2.8%
Subject-wise accuracy represents the percentage of subjects correctly classified using majority voting across their
multiple recordings. This metric is particularly important for clinical applications where patient-level decisions
are required.

3.4. Systematic Analysis of Feature Selection Impact

We conducted a comprehensive analysis comparing different feature selection strate-
gies using subject-wise validation. As detailed in Table 5, this comprehensive analysis
reveals that the gain ratio with the top 10 features provides the optimal balance between
performance (89.2% CV accuracy, 84.7% test accuracy) and clinical interpretability when
evaluated using subject-wise validation. The table demonstrates that feature selection strat-
egy significantly impacts both model performance and clinical utility, with more features
generally improving accuracy but potentially reducing interpretability.

Table 5. Feature selection strategy comparison (subject-wise validation).

Feature
Selection Features Used CV Accuracy Test Accuracy Clinical

Interpretability

Top 5 (gain ratio) 5 86.1 ± 3.2% 82.2% High
Top 10 (gain ratio) 10 89.2 ± 4.3% 84.7% High

Top 5 (Kruskal–Wallis) 5 84.8 ± 4.1% 79.7% Moderate
Top 10 (Kruskal–Wallis) 10 87.5 ± 3.8% 83.1% Moderate

Forward search Variable 88.7 ± 3.9% 83.9% Moderate
All features 22 87.3 ± 4.7% 82.5% Low
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3.5. Classifier Performance Comparison

Table 6 shows the realistic performance of individual classifiers when proper subject-
wise validation is applied, with the stacked ensemble achieving the highest test accuracy
(84.7%), followed by K-nearest neighbor (81.4%). The substantial difference between
cross-validation and test performance across all classifiers highlights the importance of
rigorous validation and suggests potential overfitting concerns that require larger datasets
to address.

Table 6. Individual classifier performance (subject-wise validation).

Algorithm CV Accuracy Test Accuracy Test Precision Test Recall Test F1-Score

Stacked ensemble 89.2 ± 4.3% 84.7% 82.2% 86.7% 84.4%
K-nearest neighbor 86.8 ± 5.1% 81.4% 78.9% 84.4% 81.6%

Random forest 85.2 ± 4.8% 79.7% 76.3% 82.2% 79.1%
Support vector machine 82.4 ± 6.2% 76.3% 73.7% 77.8% 75.7%

Logistic regression 79.1 ± 5.9% 72.9% 69.2% 75.6% 72.3%
Decision tree 77.6 ± 7.1% 71.2% 67.9% 73.3% 70.5%

3.6. Clinical Validation: Subject-Level Analysis

To provide clinically meaningful insights, we analyzed performance at the subject
level. Clinically focused analysis reveals that the model correctly classifies 85.7% of PD
subjects but only 50% of control subjects, resulting in 77.8% overall subject-wise accuracy
(see Table 7). The lower performance of control subjects is partly attributable to the small
control sample size (n = 2) in the test set, emphasizing the need for larger, more balanced
validation cohorts in future studies.

Table 7. Subject-level classification results.

Subject
Category Subjects (n) Correctly

Classified Accuracy Clinical
Confidence

PD Subjects 7 6 85.7% High
Control subjects 2 1 50.0% Low

Overall 9 7 77.8% Moderate

4. Discussion
The implementation of proper subject-wise cross-validation revealed significantly

different results compared to recording-wise validation, highlighting the critical impor-
tance of appropriate validation methodology in healthcare applications. Our corrected
methodology addresses the fundamental data leakage issue that affects many studies in
this domain [20–22]. The subject-wise validation approach provides clinically relevant
performance estimates that better reflect real-world deployment scenarios where the model
must classify previously unseen patients [23,24].

Key findings from the corrected analysis demonstrate that the subject-wise validation
accuracy (84.7%) is substantially lower than typically reported recording-wise accuracies
(>95%), providing a more realistic assessment of clinical applicability [25,26]. This per-
formance gap underscores the prevalence of methodological issues in current PD voice
classification literature and emphasizes the need for standardized validation protocols in
healthcare machine learning [27,28].

The study utilized an open-access dataset comprising 22 vocal attributes, pre-processed
using cleaning and min–max normalization. To mitigate the class imbalance, SMOTE was
applied exclusively to the training set after subject-wise splitting, effectively balancing the
dataset and enhancing the classification accuracy of the developed system [29]. SMOTE’s
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effectiveness in handling class imbalances aligns with findings from healthcare applications,
though its application must be carefully managed to prevent data leakage [30,31].

Feature selection played a significant role in optimizing the system’s input data under
proper validation conditions [32,33]. The use of subject-wise cross-validation for feature
selection highlighted that employing the top 10 features yielded optimal classification
performance, showcasing the robustness of this methodologically sound approach [34,35].
Gain ratio emerged as the most effective feature selection method, with features such as
MDVP:Flo(Hz), spread1, PPE, and MDVP:APQ consistently demonstrating high discrimi-
native power when properly validated [36,37].

The experimental results revealed that the gain ratio’s top 10 features resulted in
a realistic accuracy of 84.7% with the stacked ensemble model, compared to 89.2% in
cross-validation. This performance difference indicates potential overfitting that requires
larger datasets to address adequately [38,39]. These findings underscore the significance
of comprehensive feature selection when validated using methodologically rigorous ap-
proaches [40,41].

Comparative analysis of the developed stacked ensemble learning system against
individual classifiers confirmed its superior performance under proper validation condi-
tions [42,43]. The integration of logistic regression as the meta-classifier added stability
to the ensemble model, effectively balancing the strengths of the base classifiers while
maintaining realistic performance expectations [44,45].

Comparison with Recent Studies

When comparing our results with studies that employ proper validation methodology,
our performance is competitive and more realistic. Table 8 provides a comparative analysis
of our corrected approach against recent studies using appropriate validation techniques.

Table 8. Comparison with recent studies.

Study Year Validation Method Performance Dataset

Current study
(corrected) 2025 Subject-wise CV 84.7% UCI Parkinson’s

Ali et al. [46] 2024 Subject-wise validation 100% LOSO, 97.5%
k-fold Voice recordings

Cantürk and
Karabiber [47] 2016 Leave-One-Subject-Out 57.5% LOSO Multiple speech types

Rusz et al. [48] 2021 Subject-wise validation 82.4% subject-wise mPower smartphone
Suppa et al. [49] 2022 Clinical validation 85.2% AUC Professional recordings
Typical studies
(recording-wise) Various Recording-wise split 95%+ Various

Our stacked ensemble approach achieved competitive performance (84.7% accuracy)
compared to methodologically rigorous studies, outperforming conventional methods
while showing comparable results to other properly validated approaches [46–49]. Notably,
our method offers advantages in interpretability and computational efficiency compared to
deep learning models that may lack clinical transparency [50,51]. The comparative analysis
demonstrates that our approach provides a robust framework for PD classification using
vocal biomarkers while highlighting the critical need for proper validation in healthcare
applications [52,53].

This study’s findings align with existing literature that emphasizes the importance of
ensemble techniques and rigorous validation in healthcare classification analytics [54,55].
The integration of multiple feature selection methods in this research mirrors approaches
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advocated by recent methodological reviews, which show that combining selection methods
yields robust and interpretable models when properly validated [56,57].

Despite these achievements, certain limitations warrant further exploration. First,
while SMOTE proved effective in addressing class imbalance, other advanced techniques
such as adaptive synthetic sampling (ADASYN) or generative adversarial networks (GANs)
could potentially offer further improvements by generating more diverse synthetic sam-
ples [58,59]. Second, our study did not explore deep learning approaches such as con-
volutional neural networks (CNNs) or recurrent neural networks (RNNs), which have
shown promising results in recent PD classification studies [60,61]. We chose to focus on
traditional ML algorithms with the stacked ensemble approach due to their interpretability,
computational efficiency, and proven effectiveness for structured data like vocal features.

The use of a single dataset limits the generalizability of our findings, despite rigorous
cross-validation [62,63]. Future studies should validate the model on multiple independent
datasets with diverse patient demographics and recording conditions. Additionally, longi-
tudinal data tracking changes in vocal parameters over disease progression would provide
deeper insights into the temporal dynamics of PD biomarkers [64,65]. The implementation
of subject-wise validation, ensuring that recordings from the same individual do not appear
in both training and testing sets, strengthens the clinical validity of the findings but reduces
available data for model training [66,67].

The computational requirements for real-time deployment also need evaluation to fa-
cilitate practical implementation [68,69]. While our model showed excellent performance in
the experimental setting, translating this to clinical practice would require further optimiza-
tion and validation in real-world environments where factors such as background noise,
microphone quality variations, and patient compliance may affect performance [70,71].

5. Limitations of the Study
While this research successfully developed a robust classification system for PD using

a stacked ensemble learning approach, certain limitations must be acknowledged to provide
a balanced perspective on its findings:

I. Methodological Constraint: Subject-wise validation, while clinically appropriate, signifi-
cantly reduces available training and testing data compared to recording-wise approaches.

II. Statistical Power: The small number of test subjects (9) limits the statistical significance
of our findings and requires replication with larger cohorts.

III. Generalizability Concerns: Performance differences between cross-validation and
held-out tests suggest that larger, more diverse datasets are needed for robust
model development.

IV. Class Imbalance at Subject Level: The uneven distribution of subjects between classes
(particularly in the test set) affects the reliability of performance estimates.

Addressing these limitations in future research could enhance the reliability, scalability,
and practical implementation of the developed system, paving the way for its integration
into real-world healthcare applications.

6. Conclusions
This study demonstrates the critical importance of validation methodology in health-

care machine learning applications. The implementation of subject-wise cross-validation,
while yielding more modest performance results, provides clinically meaningful and realis-
tic performance estimates.

This study makes several significant contributions to Parkinson’s disease classification
research using vocal features. Methodological rigor was achieved through the implementa-
tion of subject-wise validation that prevents data leakage and provides clinically relevant
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performance estimates. This approach ensures that recordings from the same subject never
appear in both training and testing sets simultaneously, addressing a fundamental flaw in
many existing studies that use recording-wise validation. The subject-wise methodology
reflects real-world clinical scenarios where models must generalize to completely unseen
patients rather than new recordings from known subjects, thereby providing performance
estimates that are directly applicable to clinical practice.

Realistic performance assessment was demonstrated by showing that proper valida-
tion yields substantially different and more realistic results compared to flawed recording-
wise approaches. While recording-wise validation often produces inflated accuracies
exceeding 95%, our subject-wise validation achieved 84.7% accuracy, representing a more
honest assessment of model capabilities. This significant performance difference highlights
the prevalence of methodological issues in current literature and emphasizes the critical
importance of validation methodology in determining the true clinical utility of machine
learning models for healthcare applications.

Feature selection validation was accomplished through robust identification of optimal
vocal biomarkers using proper cross-validation methodology. By applying feature selection
techniques exclusively within the training set using subject-wise cross-validation, we
identified that gain ratio with the top 10 features provides the optimal balance between
performance and clinical interpretability. This methodologically sound approach to feature
selection ensures that the identified biomarkers are truly discriminative and generalizable,
rather than artifacts of data leakage or overfitting to specific recording characteristics.

Clinical applicability was enhanced through subject-level analysis that provides valu-
able insights into real-world deployment scenarios. Our analysis revealed that the model
achieves 77.8% subject-wise accuracy, meaning approximately 8 out of 10 patients would
be correctly classified in clinical practice. The subject-level performance metrics, including
the observation that PD subjects were classified with 85.7% accuracy while control subjects
achieved 50% accuracy, provide clinicians with realistic expectations of model performance
and highlight areas requiring improvement for successful clinical implementation.

Future research must prioritize methodological rigor over inflated performance claims
to advance the field toward clinically deployable solutions. This study serves as a template
for proper validation in healthcare ML applications and emphasizes the critical importance
of addressing data leakage in multi-recording per subject datasets.
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