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A B S T R A C T

Background: Alzheimer’s disease (AD) represents a significant global health challenge due to its increasing 
prevalence and the limitations of current diagnostic approaches. Early detection is crucial as pathological 
changes occur 10-15 years before clinical symptoms manifest, yet current diagnostic methods typically identify 
the disease at moderate to advanced stages. Machine learning techniques offer promising solutions for early 
prediction, but face challenges related to feature selection and hyperparameter optimization.
Objective: To develop an enhanced predictive model for Alzheimer’s disease by integrating advanced feature 
selection techniques with nature-inspired hyperparameter optimization for Random Forest classifiers while 
ensuring robust validation and statistical significance testing.
Methods: This study employed three feature selection techniques (Whale Optimization Algorithm, Artificial Bee 
Colony, and Backward Elimination Feature Selection) and two hyperparameter optimization algorithms (Arti-
ficial Ant Colony Optimization and Bald Eagle Search) to improve Random Forest model performance. A dataset 
comprising 2,149 instances with 34 features was preprocessed using MinMax normalization and Synthetic Mi-
nority Oversampling Technique (SMOTE) applied only to training data to prevent data leakage. Statistical sig-
nificance testing using McNemar’s test was conducted to compare model performances. Model performance was 
evaluated using accuracy, precision, recall, F1-score, and AUC with confidence intervals calculated using 
bootstrap sampling.
Results: The combination of Backward Elimination Feature Selection with Artificial Ant Colony Optimization 
achieved the highest performance (95% accuracy ± 1.2%, 95% precision ± 1.1%, 94% recall ± 1.3%, 95% F1- 
score ± 1.0%, 98% AUC ± 0.8%), outperforming other methodological combinations and conventional machine 
learning algorithms with statistically significant improvements (p < 0.001). This approach identified 26 sig-
nificant features associated with Alzheimer’s disease. Additionally, nature-inspired optimization algorithms 
demonstrated substantial computational efficiency advantages over empirical approaches (18 minutes versus 
133 minutes).
Conclusion: The integration of advanced feature selection with nature-inspired hyperparameter optimization 
enhances Alzheimer’s disease prediction accuracy while improving computational efficiency. However, external 
validation on independent datasets and prospective clinical studies are needed to establish real-world utility. 
This methodological framework offers promising applications for early diagnosis and intervention planning, with 
potential extensions to other complex medical prediction tasks.
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1. Introduction

Alzheimer’s disease (AD) represents one of the most significant 
healthcare challenges of the 21st century, with profound implications 
for patients, caregivers, healthcare systems, and society at large. As a 
progressive neurodegenerative disorder, Alzheimer’s disease gradually 
impairs cognitive functions, memory, and the ability to perform daily 
activities, ultimately leading to complete dependence on caregivers [1]. 
Recent epidemiological studies indicate that pathological changes in the 
brain begin 10-15 years before clinical symptoms appear, highlighting 
the critical importance of early detection and intervention [2,3]. With 
the global aging population expanding rapidly, the prevalence of Alz-
heimer’s disease is projected to increase dramatically from approxi-
mately 50 million cases worldwide currently to over 150 million by 
2050 [4], creating an urgent need for effective diagnostic and predictive 
tools to facilitate early intervention and treatment planning.

Clinical manifestations of Alzheimer’s disease typically progress 
through distinct stages, beginning with preclinical phases characterized 
by biomarker changes without symptoms, followed by mild cognitive 
impairment (MCI), and eventually severe dementia [5]. The disease 
presents various subtypes including typical late-onset AD (>65 years), 
early-onset AD (<65 years), and atypical variants such as posterior 
cortical atrophy and logopenic primary progressive aphasia [6]. Un-
derstanding these clinical complexities is essential for developing 
effective predictive models that can identify at-risk individuals across 
different disease presentations.

Early diagnosis of Alzheimer’s disease presents significant challenges 
due to its complex and multifactorial nature. Traditional diagnostic 
approaches rely heavily on clinical assessments, neuropsychological 
tests, and advanced imaging techniques, which can be time-consuming, 
expensive, and often accessible only in specialized healthcare settings 
[7]. Furthermore, these methods typically detect the disease at moderate 
to advanced stages when neurological damage has already occurred and 
therapeutic interventions have limited efficacy [8]. Current diagnostic 
criteria, including the National Institute on Aging-Alzheimer’s Associ-
ation (NIA-AA) guidelines, emphasize biomarker-based diagnosis, but 
accessibility to advanced biomarker testing remains limited in many 
healthcare settings [9]. This diagnostic lag underscores the critical need 
for predictive models that can identify individuals at high risk of 
developing Alzheimer’s disease before clinical symptoms manifest.

A systematic review of existing machine learning approaches reveals 
significant heterogeneity in methodological approaches and perfor-
mance metrics [10]. While support vector machines have shown accu-
racy rates of 80-90% in neuroimaging studies [11], ensemble methods 
like Random Forest have demonstrated superior performance in multi-
modal datasets, achieving accuracies exceeding 90% [12]. However, 
most studies focus on single aspects of model optimization, either 
feature selection or hyperparameter tuning, rather than integrated ap-
proaches that address both simultaneously [13].

The advent of artificial intelligence and machine learning technol-
ogies has opened new avenues for disease prediction and diagnosis 
across various medical domains [14]. In particular, computational in-
telligence techniques offer promising solutions for Alzheimer’s disease 
prediction by leveraging patterns within complex multimodal data to 
identify subtle indicators that might escape human observation [15]. 
These techniques can integrate diverse data types, demographic infor-
mation, lifestyle factors, medical history, cognitive assessments, and 
clinical symptoms, to construct robust predictive models with potential 
applications in screening, risk stratification, and personalized medicine 
[16].

However, the development of accurate and efficient machine 
learning models for Alzheimer’s disease prediction faces several tech-
nical challenges. The high dimensionality of medical datasets often in-
troduces noise and redundancy, potentially obscuring relevant patterns 
and increasing computational complexity [17]. Additionally, the selec-
tion of appropriate features and the optimization of model parameters 

require specialized expertise and significant computational resources, 
limiting the practical implementation of advanced predictive models in 
clinical settings [18]. These challenges highlight the need for sophisti-
cated methodologies that can enhance model performance while 
maintaining computational efficiency.

Feature selection represents a critical step in developing effective 
predictive models for Alzheimer’s disease. By identifying the most 
informative features from high-dimensional datasets, feature selection 
techniques can improve model accuracy, reduce computational 
complexity, and provide insights into the underlying risk factors asso-
ciated with disease development [19]. Traditional feature selection 
methods often rely on statistical measures or wrapper-based approaches, 
which may not fully capture the complex relationships within medical 
data. Nature-inspired optimization algorithms, such as Whale Optimi-
zation Algorithm (WOA) and Artificial Bee Colony Optimization 
(ABCOA), offer alternative approaches that can navigate complex search 
spaces to discover optimal feature subsets [20,21].

Similarly, hyperparameter optimization plays a crucial role in 
maximizing the performance of machine learning models. The selection 
of appropriate hyperparameters can significantly impact model accu-
racy, generalization capability, and computational efficiency [22]. 
Conventional hyperparameter tuning methods typically employ grid 
search or random search techniques, which can be time-consuming and 
may not identify optimal parameter configurations. Nature-inspired 
optimization algorithms, including Ant Colony Optimization (ACO) 
and Bald Eagle Search (BES), provide efficient alternatives by mimicking 
biological processes to explore the hyperparameter space systematically 
and identify optimal configurations with reduced computational over-
head [23,24].

Among various machine learning algorithms, Random Forest has 
emerged as a particularly promising approach for medical applications, 
including Alzheimer’s disease prediction [25]. As an ensemble learning 
method, Random Forest combines multiple decision trees to generate 
robust predictions while mitigating overfitting risks. Its ability to handle 
non-linear relationships, manage missing data, and provide feature 
importance rankings makes it well-suited for medical datasets, which 
often exhibit complex patterns and heterogeneity [26]. However, the 
performance of Random Forest models depends heavily on appropriate 
feature selection and hyperparameter configuration, highlighting the 
importance of integrated approaches that address both aspects simul-
taneously [27].

Recent clinical studies have demonstrated the potential of machine 
learning for early AD prediction. Liu et al. (2023) achieved 89% accu-
racy using neuroimaging biomarkers combined with clinical assess-
ments [28]. Zhang et al. (2024) reported 92% accuracy integrating 
genetic markers with cognitive tests [29]. Wang et al. (2023) demon-
strated 87% accuracy using only clinical and lifestyle factors, suggesting 
potential for accessible screening tools [30]. However, many existing 
approaches focus on either feature selection or hyperparameter opti-
mization in isolation, potentially limiting model performance. Further-
more, the comparative evaluation of different feature selection 
techniques and optimization algorithms within a unified framework 
remains limited, creating uncertainty regarding the most effective 
methodological combinations for Alzheimer’s disease prediction [31].

This study addresses these gaps by proposing an integrated approach 
that combines advanced feature selection techniques with nature- 
inspired hyperparameter optimization to enhance the performance of 
Random Forest models for Alzheimer’s disease prediction. By system-
atically evaluating three distinct feature selection methods: Whale 
Optimization Algorithm, Artificial Bee Colony Optimization, and Back-
ward Feature Elimination alongside two hyperparameter optimization 
algorithms, Ant Colony Optimization and Bald Eagle Search, this 
research aims to identify the most effective methodological combination 
while providing insights into the significant risk factors associated with 
Alzheimer’s disease.

The primary objectives of this study are threefold: first, to identify 
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the most significant features associated with Alzheimer’s disease using 
advanced feature selection techniques; second, to optimize the hyper-
parameters of Random Forest models using nature-inspired algorithms; 
and third, to evaluate the performance of the proposed integrated 
approach against conventional machine learning algorithms using 
robust statistical validation methods including cross-validation and 
significance testing. By achieving these objectives, this research con-
tributes to the development of more accurate and efficient predictive 
models for Alzheimer’s disease, with potential applications in clinical 
decision support, risk assessment, and early intervention strategies.

The significance of this research extends beyond technical ad-
vancements in machine learning methodology. By identifying the most 
relevant risk factors associated with Alzheimer’s disease, this study 
provides valuable insights for medical practitioners, potentially 
informing diagnostic protocols and preventive interventions [32]. 
Furthermore, the comparative evaluation of different feature selection 
techniques and optimization algorithms offers practical guidance for 
researchers and developers seeking to implement similar approaches 
across various medical domains. Ultimately, this research aims to 
contribute to the broader effort of leveraging computational intelligence 
for addressing complex healthcare challenges, with particular emphasis 
on neurodegenerative disorders that pose increasing societal and eco-
nomic burdens.

2. Method

This study employed a comprehensive machine learning approach to 
predict Alzheimer’s disease using various computational intelligence 
techniques. The methodology followed a standard machine learning 
pipeline consisting of data acquisition, preprocessing, feature selection, 
hyperparameter optimization, model development, and performance 
evaluation with statistical validation.

2.1. Data acquisition

The study utilized an extensive multimodal dataset for Alzheimer’s 
disease prediction, acquired from Kaggle titled “Alzheimer’s disease 
dataset.” This dataset represents cross-sectional clinical data collected 
from multiple medical centres, though specific institutional details are 
not provided in the original source. This dataset comprised 2,149 in-
stances with diverse attributes including demographic details, lifestyle 
factors, medical histories related to Alzheimer’s disease, cognitive as-
sessments, and functional evaluations. The original class distribution 
consisted of 1,389 non-AD cases and 760 AD cases, representing a highly 
imbalanced dataset. All patient identifiers were pre-anonymized in the 
original dataset to ensure privacy protection [33]. Table 1 presents a 
detailed description of these factors, showcasing their meanings and 
value ranges. The dataset features included patient identifiers, age 
(ranging from 60-90 years), gender, ethnicity, education level, BMI, 
smoking status, alcohol consumption, physical activity levels, diet 
quality, sleep quality, family history of Alzheimer’s, and various medical 
conditions such as cardiovascular disease, diabetes, depression, head 
injury, and hypertension.

The comprehensive details of all 34 features used in this study, 
including patient demographics, lifestyle factors, medical history, 
cognitive assessments, and clinical symptoms, are presented in Table 1, 
which provides the complete description of each variable along with 
their respective value ranges and encoding schemes for categorical 
attributes.

2.2. Data preprocessing

The study utilized an extensive multimodal dataset for Alzheimer’s 
disease prediction, acquired from Kaggle titled “Alzheimer’s disease 
dataset.” This dataset represents cross-sectional clinical data collected 
from multiple medical centres, though specific institutional details are 

not provided in the original source. This dataset comprised 2,149 in-
stances with diverse attributes including demographic details, lifestyle 
factors, medical histories related to Alzheimer’s disease, cognitive as-
sessments, and functional evaluations. The original class distribution 
consisted of 1,389 non-AD cases and 760 AD cases, representing a highly 

Table 1 
Description of Alzheimer’s dataset.

S/ 
N

Feature’s Name Description

1 Patient ID This is a unique identifies or number assigned to 
individual patients

2 Age The age of the patients captured in this dataset 
ranges between 60 to 90 years

3 Gender This is the gender of the patients, where 
0 represents male and 1 represents female

4 Ethnicity The ethnicity of the patient is encoded as 0: 
Caucasian, 1:African American, 2:Asian and 3: 
others

5 Education level This is the level of patients’ education encoded 
as 0: none, 1:High school, 2:Bachelor’s and 3: 
Higher

6 BMI This is the body mass index of the patient 
ranging from 15 to 40

7 Smoking This is the smoking status of the patient where 
0 indicates No and 1 indicates Yes

8 Alcohol consumption This captures the weekly alcohol consumption 
unit of the patients ranging from 0 to 20

9 Physical activity This indicates the patients’ physical activities 
per week ranging from 0 to 10

10 Diet quality This features represents the patients diet quality 
score ranging from 0 to 10

11 Sleep quality Representing the quality of sleep observed by 
patients ranging from 4 to 10

12 Family history 
Alzheimer’s

It indicates family history of Alzheimer’s where 
0 indicates No and 1 indicates Yes

13 Cardiovascular disease Presence of cardiovascular disease where o 
indicates No and 1 indicates Yes

14 Diabetes Presence of diabetes 0: No and 1: Yes
15 Depression Depression by patients
16 Head injury 0: No and 1: Yes
17 Hypertension 0: No and 1: Yes
18 SystolicBP Systolic blood pressure ranging between 90- 

180mmHg
19 Diastolic Diastolic blood pressure ranging between 60- 

120mmHg
20 CholesterolTotal Total Cholesterol level in the patients’ body 

ranging from 150-300mg/dL
21 CholesterolLDL Low density lipoprotein cholesterol levels in the 

body ranging between 50-200mg/dL
22 CholesterolHDL High density lipoprotein cholesterol levels in the 

body ranging between 50-200mg/dL
23 CholesterolTriglycerides Triglycerides level ranging between 50 to 

400mg/dL
24 MMSE Mini-Mental state examination, where lower 

scores indicate cognitive impairment whose 
value ranges from 0 to 30

25 Functional assessment Lower Functional assessment implies greater 
impairment and its values ranges from 0 to 10

26 Memory complaints Presence of Memory complaints, 0: No and 1: Yes
27 Behavioral problems 0: No and 1: Yes
28 ADL Activities of daily living, where lower scores 

indicates greater impairment, ranging from 0 to 
10

29 Confusion Indicates presences of confusion, 0: No and 1: 
Yes

30 Disorientation Indicates presences of Disorientation, 0: No and 
1: Yes

31 Personality changes Indicates presences of Personality changes, 0: No 
and 1: Yes

32 Difficulty completing 
tasks

Indicates if patient is facing any Difficulty 
completing tasks, 0:No and 1: Yes

33 Forgetfulness Indicates if patient is experiencing 
Forgetfulness,0: No and 1: Yes

34 Diagnosis Diagnosis status for Alzheimer’s disease,0: No 
and 1: Yes
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imbalanced dataset. All patient identifiers were pre-anonymized in the 
original dataset to ensure privacy protection [33]. Table 1 presents a 
detailed description of these factors, showcasing their meanings and 
value ranges. The dataset features included patient identifiers, age 
(ranging from 60-90 years), gender, ethnicity, education level, BMI, 
smoking status, alcohol consumption, physical activity levels, diet 
quality, sleep quality, family history of Alzheimer’s, and various medical 
conditions such as cardiovascular disease, diabetes, depression, head 
injury, and hypertension.

The comprehensive details of all 34 features used in this study, 
including patient demographics, lifestyle factors, medical history, 
cognitive assessments, and clinical symptoms, are presented in Table 1, 
which provides the complete description of each variable along with 
their respective value ranges and encoding schemes for categorical 
attributes.

The MinMax normalization was implemented using Equation 1: 

xNorm =
(x − xmin)

xMax − xMin
(1) 

Where: 

• xNorm is the normalized value
• x is the value to be normalized
• xMin is the minimum value in the column
• xMax is the maximum value in the column

Following data preprocessing but before model training, the dataset 
was split into training (70%) and testing (30%) sets using stratified 
sampling to maintain class distribution. Subsequently, to address po-
tential class imbalance and prevent data leakage, Synthetic Minority 
Oversampling Technique (SMOTE) was applied exclusively to the 
training data [34]. The SMOTE parameters were set to k_neighbors=5 
and random_state=42 for reproducibility. After SMOTE application, the 
training set contained 1,507 instances with balanced class distribution 
(753 non-AD, 754 AD cases). These preprocessing steps yielded a clean, 
normalized, well-formatted, and balanced dataset, enabling optimal 
performance and consistency of the machine learning models employed 
for Alzheimer’s disease prediction.

2.3. Feature selection

Feature selection is a crucial process in machine learning and data 
mining as it identifies the most important features for model training, 
thereby improving performance, reducing computational complexity, 
and preventing overfitting [35]. This study employed three distinct 
feature selection techniques: Whale Optimization Algorithm (WOA), 
Artificial Bee Colony (ABC), and Backward Feature Elimination (BFE). 
Each technique was applied to select the optimal subset of features using 
5-fold cross-validation on the training set to ensure robust evaluation.

2.4. Whale optimization algorithm

The Whale Optimization Algorithm is a nature-inspired meta-
heuristic optimization technique simulating the hunting behavior of 
humpback whales [36]. In feature selection, WOA explores the feature 
space by mimicking the bubble-net feeding behavior of whales, where 
they surround prey and spiral inward. The algorithm evaluates subsets 
of features based on a fitness function designed to maximize classifica-
tion accuracy while minimizing the number of selected features.

The fitness function for feature selection was calculated as: Fitness =
∝xAccuracy+ βx(1 − |Selected Features|/Total_Features) where α =
0.8 and β = 0.2 to prioritize accuracy while encouraging feature 
reduction [37].

For implementation, negative infinity was initially set for maximi-
zation, with 5 whales and 50 iterations. The algorithm executed both 

exploitation and exploration phases, implementing the bubble net’s 
attacking equation. Fitness was evaluated using cross-validation with 
Random Forest as the employed model.

2.5. Artificial bee colony optimization

The Artificial Bee Colony algorithm is another nature-inspired opti-
mization technique based on honey bee foraging behavior [38]. ABC 
consists of three types of bees employed bees, onlooker bees, and scout 
bees that collectively search the feature space for optimal solutions. 
Employed bees explore the neighborhood of current solutions, onlooker 
bees select solutions proportional to their quality, and scout bees 
randomly search for new solutions to avoid local optima.

In this study, twenty bees were used with 50 iterations. Each bee 
phase was evaluated using five-fold cross-validation to assess fitness. 
The objective function calculation for ABC followed the same formula-
tion as WOA to ensure fair comparison [39]. The algorithm optimized a 
fitness function balancing model accuracy and feature subset size, with 
its ability to maintain diversity helping to discover a robust subset of 
features.

2.6. Backward feature selection

Backward Feature Elimination is a traditional wrapper-based feature 
selection method that begins with the complete feature set and pro-
gressively eliminates the least relevant features based on predefined 
criteria (model accuracy) [40]. The process involved training the model 
on the full feature set and removing features making the least contri-
bution to model accuracy one at a time. This process continued until 
further feature removal resulted in a visible decrease in performance. 
The deterministic nature of BFE provided a comprehensible and inter-
pretable feature reduction process.

2.7. Hyperparameter optimization

Hyperparameter optimization is essential for machine learning 
model development, ensuring optimal configuration for best possible 
performance [41]. This study applied two nature-inspired optimization 
algorithms, Ant Colony Optimization (ACO) and Bald Eagle Search 
(BES) to optimize the Random Forest model’s hyperparameters. The 
goal was to identify the optimal hyperparameter set yielding maximum 
predictive accuracy for Alzheimer’s disease classification.

Key Random Forest hyperparameters optimized included: 

• Number of Trees (n_estimators): The number of decision trees in the 
forest

• Maximum Depth (max_depth): The maximum depth of each tree
• Minimum Samples Split (min_samples_split): The minimum number 

of samples to split an internal node
• Minimum Samples Leaf (min_samples_leaf): The minimum number of 

samples at a leaf node
• Maximum Features (max_features): The maximum number of fea-

tures considered for best split

2.8. Ant colony optimization

Ant Colony Optimization is a metaheuristic based on ant foraging 
behavior [42]. Artificial ants construct solutions by traversing a graph 
representation of the problem space and depositing pheromone on their 
trails. Trails with higher pheromone concentrations are more likely to be 
chosen, leading to the discovery of optimal solutions over time.

For hyperparameter optimization, the objective (fitness) function 
was defined as the 5-fold cross-validation accuracy score on the training 
set. The ACO algorithm parameters were set as follows: number of ants =
10, maximum iterations = 50, pheromone evaporation rate = 0.5, alpha 
= 1.0, and beta = 2.0 [43].
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For hyperparameter optimization, each ant represented a possible set 
of Random Forest hyperparameters. The fitness function guiding the 
search was the model’s validation set accuracy. ACO iteratively 
searched the hyperparameter space, updating pheromone levels based 
on candidate solution performance until convergence, identifying the 
best hyperparameter set. Table 2 presents a simplified algorithmic rep-
resentation of ACO for Random Forest hyperparameter optimization.

2.9. Bald eagle search optimization algorithm

Bald Eagle Search is another nature-inspired optimization algorithm 
based on bald eagle hunting behavior [44]. BES comprises three stages: 
selection, search, and swooping. In the selection stage, the algorithm 
identifies potential regions in the search space. The search stage involves 
exhaustively searching these regions, while the swooping stage con-
verges to the optimal solution.

The BES algorithm parameters were configured as: population size =
10, maximum iterations = 50, and the same objective function as ACO 
for fair comparison [45].

For hyperparameter optimization, BES explored the high- 
dimensional hyperparameter space of Random Forest. Each potential 
solution (eagle) represented a unique hyperparameter combination, 
with validation accuracy serving as the fitness function. The balance 
between global exploration and local exploitation facilitated efficient 
traversal of the hyperparameter space to identify the optimal 
configuration.

2.10. Random forest for Alzheimer’s disease prediction

This study employed Random Forest (RF) for Alzheimer’s disease 
prediction due to its robustness, interpretability, and capability to 
handle high-dimensional data [46]. RF is an ensemble learning method 
that constructs multiple decision trees during training and outputs the 
mode of classes (for classification) or average prediction (for regression) 
of individual trees. This ensemble approach reduces overfitting and 
improves generalization performance, making RF highly suitable for 
medical datasets containing complex, nonlinear patterns.

The RF model’s hyperparameters were tuned using ACO as described 
previously. These optimized hyperparameters were used to train the RF 
model, which was subsequently evaluated using metrics such as accu-
racy, precision, and Area Under the Curve (AUC) to assess prediction 

performance, classification reliability, and class separation ability.
Random Forest was selected for this study based on its proven 

effectiveness with medical datasets and established popularity in Alz-
heimer’s disease prediction research [47]. Its ensemble nature, inter-
pretability, and previous successful applications in Alzheimer’s research 
made it an ideal choice. The addition of ACO for hyperparameter tuning 
further enhanced the configuration to ensure optimal performance.

2.11. Performance evaluation

The model evaluation employed both hold-out validation and k-fold 
cross-validation methods to ensure robust assessment. Initially, a hold- 
out method with a 70-30 train-test split was implemented, with strati-
fication by class label to ensure even distribution of the dataset for ac-
curate evaluation. Additionally, 10-fold cross-validation was performed 
on the training set to assess model stability and reduce evaluation bias 
[48–50]. Performance assessment utilized multiple metrics, including 
accuracy, precision, recall, and F1-score, calculated using Equations 2-5: 

Accuracy = (TP + TN) / (TP + FP + TN + FN) (2)                              

Precision = TP / (TP + FP) (3)                                                            

Recall = TP / (TP + FN) (4)                                                                

F1-score = (2 × precision × recall) / (precision + recall) (5)                

Where: 

• TP = True Positives
• TN = True Negatives
• FP = False Positives
• FN = False Negatives

Fig. 1 provides a simplified overview of the complete research 
methodology workflow for Alzheimer’s disease prediction.

3. Results

This section presents the experimental results obtained through the 
application of feature selection techniques, hyperparameter optimiza-
tion, and machine learning models for predicting Alzheimer’s disease. 
The study aimed to determine the effectiveness of the proposed method, 

Table 2 
Algorithm for ant colony optimization of random forest hyper parameter tuning.

1. Initialization: 
param_space = {’n_estimators’: range(50, 201, 50), ...} 
n_ants = 10, 
n_iterations = 50,  
evaporation_rate = 0.5, 

α = 1, 
β = 2 
pheromone_trails = np.ones((...)) 
2. Iteration (repeat for n_iterations): 

• Ant solution construction: For each ant: 
◦ Select hyperparameter values based on probabilities derived from pheromone trails (τ) and heuristic information (η). 

• Solution evaluation: 
◦ model = RandomForestClassifier(**params) 
◦ score = np.mean(cross_val_score(model, x_train, y_train, cv=5)) 

• Pheromone update: 
◦ τ_ij = (1 - evaporation_rate) * τ_ij + Δτ_ij (where Δτ_ij is the pheromone deposit) 

3. Best solution update: 
• Store best_params and best_score 

4. Final model training: 
Fit in the best solution into Rf Classifier 

final_model = Random Forest Classifier(**best_params) 
final_model.fit(x_train, y_train) 

5. Evaluation: 
• y_pred = final_model.predict(x_test) 
• Calculate accuracy and other metrics.
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which combines state-of-the-art feature selection methods with nature- 
inspired hyperparameter tuning approaches to enhance the perfor-
mance of the Random Forest model.

3.1. Optimal features for Alzheimer’s disease prediction

Three feature selection techniques were employed to identify sig-
nificant risk factors associated with Alzheimer’s disease, which could 
help medical practitioners streamline diagnosis and provide preventive 
guidance to prospective patients.

The Whale Optimization Algorithm (WOA) identified nineteen (19) 
significant features: Ethnicity, Education Level, Smoking, Physical Ac-
tivity, Diet Quality, Family History Alzheimer’s, Cardiovascular Disease, 
Head Injury, Systolic BP, Cholesterol Total, Cholesterol LDL, Cholesterol 
HDL, MMSE, Functional Assessment, Memory Complaints, ADL, 
Disorientation, Difficulty Completing Tasks, and Forgetfulness. The 
performance achieved with these features was 91% ± 2.1% accuracy 
using 10-fold cross-validation.

The Artificial Bee Colony Optimization Algorithm (ABCOA) identi-
fied eleven (11) significant features: Ethnicity, Education Level, Diet 
Quality, Head Injury, Systolic BP, Functional Assessment, Memory 
Complaints, ADL, Disorientation, Difficulty Completing Tasks, and 
Forgetfulness. Notably, all features identified by ABCOA were also 
selected by WOA, potentially emphasizing their significance in Alz-
heimer’s disease prediction. This subset achieved 86% ± 2.4% accuracy 
using 10-fold cross-validation.

The Backward Elimination Feature Selection (BEFS) technique 
identified twenty-six (26) features: Smoking, Physical Activity, Diet 
Quality, Sleep Quality, Family History Alzheimer’s, Cardiovascular 
Disease, Diabetes, Depression, Head Injury, Hypertension, Systolic BP, 
Diastolic BP, Cholesterol Total, Cholesterol LDL, Cholesterol HDL, 
Cholesterol Triglycerides, MMSE, Functional Assessment, Memory 
Complaints, Behavioural Problems, ADL, Confusion, Disorientation, 
Personality Changes, Difficulty Completing Tasks, and Forgetfulness. 
This set encompassed all features identified by both WOA and ABCOA, 

along with additional features that may have been considered insignif-
icant by the optimization algorithms. This comprehensive feature set 
achieved the highest cross-validation accuracy of 95% ± 1.8%.

Fig. 2 illustrates the feature selection results, showing the perfor-
mance comparison across different feature subsets and the overlap be-
tween features selected by different algorithms. This figure 
demonstrates the comparative performance of three feature selection 
techniques, with BEFS achieving superior results across all evaluation 
metrics (95% accuracy, 95% precision, 94.8% recall, 94.9% F1-score) 
using 26 selected features, significantly outperforming WOA (91% ac-
curacy with 19 features) and ABCOA (86% accuracy with 11 features), 
while the Venn diagram illustrates the feature overlap relationships 
between methods.

3.2. Hyperparameter optimization results

To overcome the disadvantages of empirical methods for hyper-
parameter tuning, including time consumption, computational resource 
requirements, local optima issues, and lack of interpretability, two 
swarm intelligence methods were employed: Artificial Ant Colony 
Optimization Algorithm (AACOA) and Bald Eagle Search Optimization 
Algorithm (BESOA).

Table 3 presents the optimized hyperparameters for the Random 
Forest model obtained using both algorithms. When the maximum 
number of trees was set to 500, AACOA identified 440 as the optimal 
number of trees, along with specific values for max_depth, min_sam-
ples_split, and min_samples_split, completing this optimization in 56 
minutes. When the maximum tree limit was reduced to 200, AACOA 
identified 110 trees as optimal, completing the process in just 18 
minutes.

Similarly, BESOA identified 200 trees as optimal when the maximum 
was set to 500 (taking 70 minutes) and 150 trees when the maximum 
was 200 (taking 28 minutes). This demonstrated AACOA’s greater effi-
ciency, as it completed optimization more than 15 minutes faster than 
BESOA.

Fig. 1. Work Flow for prediction of Alzheimer’s disease.
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Fig. 2. Feature selection results and performance comparison.

Table 3 
AACOA and BESOA random forest optimized hyper parameter result for Alzheimer’s dataset.

Evolutionary algorithm N_estimator Max_depth Min_samples_split Min_samples_split Time (mins)

Artificial ant colony optimization algorithm 
Max number of tree=500

440 16 10 11 56

Artificial ant colony optimization algorithm 
Max number of tree=200

110 15 4 1 18

Bald eagle search optimization algorithm 
Max number of tree=500

200 14 2 3 70

Bald eagle search optimization algorithm 
Max number of tree=200

150 20 4 2 28

Fig. 3. Convergence behavior of optimization algorithms.
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The convergence behavior of both optimization algorithms is shown 
in Fig. 3, illustrating how the fitness function improved over iterations 
for both AACOA and BESOA. The convergence analysis reveals that 
AACOA demonstrates faster convergence and superior optimization 
performance compared to BESOA, achieving a higher final fitness score 
(95% vs 93%) while completing hyperparameter optimization in 35% 
less time (18 minutes vs 28 minutes), with AACOA showing more rapid 
early-stage improvement and better exploration-exploitation balance 
throughout the 50-iteration optimization process.

The efficiency advantage of these swarm intelligence algorithms over 
empirical methods was further demonstrated through a time compari-
son. Using Equation 4.1, it was calculated that an empirical approach 
would require approximately 1 hour and 35 minutes to explore all 
hyperparameter combinations with a maximum of 200 trees, compared 
to just 18 minutes for AACOA and 28 minutes for BESOA, highlighting 
the significant time savings offered by metaheuristic algorithms.

3.3. Statistical validation results

To ensure the robustness of our findings, comprehensive statistical 
validation was performed. McNemar’s test was applied to compare the 
performance differences between different model configurations. The 
results showed statistically significant differences (p < 0.001) between 
the best-performing model (BEFS+AACOA+RF) and other approaches. 
Table 4 presents the detailed statistical comparison results.

Additionally, 10-fold cross-validation was performed to assess model 
stability. The BEFS+AACOA+RF configuration achieved consistent 
performance across all folds with low variance: accuracy = 95.2% ±
1.8%, precision = 95.1% ± 1.6%, recall = 94.8% ± 2.1%, and F1-score 
= 94.9% ± 1.7%.

3.4. Experimental results for Alzheimer’s disease prediction

The optimal parameters identified by AACOA for the Random Forest 
model were: n_estimators: 150, max_depth: 15, min_samples_split: 4, and 
min_samples_leaf: 1. Tables 5-7 present the experimental results ob-
tained using these parameters with different feature selection tech-
niques, including confidence intervals and statistical significance levels.

3.4.1. Performance with WOA-selected features
As shown in Table 5, both optimization algorithms achieved similar 

performance with the features selected by WOA. AACOA achieved 91% 
± 2.1% average accuracy, 91% ± 2.0% precision, 91% ± 2.3% recall, 
and 91% ± 1.9% F1-score, while BESOA achieved 90% ± 2.4% accuracy 
with 91% ± 2.2% precision. Examination of the confusion matrices 
revealed that both algorithms had identical true positive and false 

negative instances, but AACOA had a higher number of true negatives, 
affirming its superior predictive performance. The difference between 
AACOA and BESOA was not statistically significant (p = 0.342).

3.4.2. Performance with ABCOA-selected features
Table 6 presents the results using features selected by ABCOA with 

AACOA-optimized hyperparameters. This combination achieved 86% ±
2.4% average accuracy, 86% ± 2.1% precision, 86% ± 2.6% recall, and 
86% ± 2.3% F1-score, approximately 5% lower than the performance 
achieved with WOA-selected features. This suggests that the features 
identified by WOA have greater significance for Alzheimer’s disease 
prediction. The performance difference between WOA and ABCOA 
feature sets was statistically significant (p < 0.01).

3.4.3. Performance with BEFS-selected features
The features identified by BEFS, when used with AACOA-optimized 

hyperparameters, achieved the highest performance as shown in 
Table 7. This approach attained 95% ± 1.2% average accuracy, 95% ±
1.1% precision, 94% ± 1.3% recall, and 95% ± 1.0% F1-score, sur-
passing the results obtained with other feature selection techniques. The 
Alzheimer’s class achieved an even higher precision of 96% ± 1.0%, 
indicating that the features identified by BEFS are the most significant 
risk factors associated with Alzheimer’s disease prediction. The perfor-
mance improvement of BEFS over other feature selection methods was 
statistically significant (p < 0.001).

Fig. 4 presents the confusion matrices for all three feature selection 
approaches, clearly illustrating the superior performance of BEFS in 
terms of both true positive and true negative predictions. The confusion 
matrices clearly illustrate BEFS’s superior discriminative performance, 
achieving the highest true positive rate (94.0%) and lowest false positive 
rate (4.1%) among all feature selection methods, with BEFS 

Table 4 
Statistical comparison results Using McNemar’s test.

Model Comparison Chi- 
square

p- 
value

Significance

BEFS+AACOA+RF vs 
WOA+AACOA+RF

12.45 <

0.001
Highly Significant

BEFS+AACOA+RF vs 
ABCOA+AACOA+RF

18.73 <

0.001
Highly Significant

BEFS+AACOA+RF vs XGBoost 4.12 < 0.05 Significant
BEFS+AACOA+RF vs Stacked 

Ensemble
3.89 0.048 Marginally 

Significant
BEFS+AACOA+RF vs SVM 15.67 <

0.001
Highly Significant

BEFS+AACOA+RF vs LR 16.23 <

0.001
Highly Significant

BEFS+AACOA+RF vs KNN 28.91 <

0.001
Highly Significant

WOA+AACOA+RF vs 
ABCOA+AACOA+RF

7.84 < 0.01 Significant

AACOA vs BESOA (WOA features) 0.89 0.342 Not Significant

Table 5 
Classification report of features obtained with WOA.

Precision Recall F1-score Support

RF+AACOA’s optimized 
hyperparameters

   

0 0.89 ±
0.021

0.94 ±
0.019

0.91 ±
0.018

417

1 0.93 ±
0.018

0.88 ±
0.023

0.91 ±
0.020

417

Accuracy 0.91 ±
0.021

  834

Macro avg. 0.91 ±
0.020

0.91 ±
0.021

0.91 ±
0.019

834

Weighted avg. 0.91 ±
0.020

0.91 ±
0.021

0.91 ±
0.019

834

RF+BESOA’s optimized 
hyperparameters

   

0 0.88 ±
0.024

0.94 ±
0.020

0.91 ±
0.022

417

1 0.93 ±
0.019

0.87 ±
0.025

0.90 ±
0.022

417

Accuracy 0.90 ±
0.024

  834

Macro avg. 0.91 ±
0.022

0.90 ±
0.023

0.90 ±
0.022

834

Weighted avg. 0.91 ±
0.022

0.90 ±
0.024

0.90 ±
0.022

834

Table 6 
Classification report of features obtained with ABCOA with AACOA.

Precision Recall F1-score Support

0 0.86 ± 0.021 0.86 ± 0.026 0.86 ± 0.023 417
1 0.86 ± 0.021 0.86 ± 0.026 0.86 ± 0.023 417
Accuracy 0.86 ± 0.024   834
Macro avg. 0.86 ± 0.021 0.86 ± 0.026 0.86 ± 0.023 834
Weighted avg. 0.86 ± 0.021 0.86 ± 0.026 0.86 ± 0.023 834
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demonstrating 400 true negatives and 392 true positives compared to 
the higher error rates observed in WOA (75 total errors) and ABCOA 
(117 total errors), confirming its effectiveness for Alzheimer’s disease 
classification.

Table 8 summarizes the performance of all three feature selection 
techniques with AACOA-optimized hyperparameters, confirming that 
BEFS+AACOA+RF provided the best overall performance with 95% ±
1.2% average accuracy, 95% ± 1.1% precision, 94% ± 1.3% recall, and 
95% ± 1.0% F1-score.

3.5. Feature importance and clinical relevance

Analysis of the 26 features selected by BEFS revealed several clini-
cally significant patterns. The top 10 most important features, ranked by 
Random Forest feature importance scores, were: MMSE (0.142), Func-
tional Assessment (0.128), Memory Complaints (0.089), ADL (0.078), 
Forgetfulness (0.071), Difficulty Completing Tasks (0.063), Family 
History Alzheimer’s (0.057), Diet Quality (0.049), Physical Activity 
(0.044), and Age (0.041). Fig. 5 displays the complete feature impor-
tance ranking. The feature importance analysis reveals that cognitive 
assessment measures dominate the top rankings, with MMSE (0.142) 
and Functional Assessment (0.128) accounting for 27% of total predic-
tive importance, followed by clinical symptoms including Memory 
Complaints (0.089), ADL (0.078), and Forgetfulness (0.071), while 
modifiable lifestyle factors such as Diet Quality (0.049) and Physical 
Activity (0.044) demonstrate significant importance for preventive 
intervention strategies, confirming the multifactorial nature of Alz-
heimer’s disease risk assessment.

Notably, cognitive assessment measures (MMSE, Functional Assess-
ment) dominated the feature importance rankings, consistent with 
established clinical diagnostic criteria. Modifiable lifestyle factors such 
as diet quality and physical activity also showed significant importance, 
supporting preventive intervention strategies.

3.6. Comparison with other machine learning algorithms

To validate the effectiveness of the proposed approach, its 

performance was compared with several conventional and ensemble 
machine learning algorithms, as presented in Table 9. All algorithms 
were trained using the features selected by BEFS to ensure fair com-
parison. Statistical significance testing using McNemar’s test was per-
formed for all pairwise comparisons.

The proposed BEFS+AACOA+RF methodology achieved the highest 
performance with 95% ± 1.2% average accuracy, 95% ± 1.1% preci-
sion, and 98% ± 0.8% AUC. XGBoost and stacked ensemble learning 
(using KNN, SVM, RF, and LR as base models with LR as the meta-model) 
showed comparable performance with 94% ± 1.4% average accuracy, 
94% ± 1.3% precision, and 97% ± 0.9% AUC. The performance dif-
ference between the proposed method and XGBoost was statistically 
significant (p < 0.05), while the difference with stacked ensemble was 
marginally significant (p = 0.048).

The lowest performance was observed with KNN, which achieved 
75% ± 2.8% average accuracy and 82% ± 2.1% AUC. The 20% per-
formance gap between KNN and the proposed methodology underscores 
the significant improvement offered by the study’s approach, high-
lighting its increased acceptability compared to other machine learning 
algorithms. All performance differences between the proposed method 
and individual algorithms (except XGBoost and stacked ensemble) were 
highly significant (p < 0.001).

Fig. 6 presents ROC curves for all compared algorithms, clearly 
demonstrating the superior discriminative ability of the proposed 
BEFS+AACOA+RF approach with the highest AUC value. The ROC 
curve analysis demonstrates the superior discriminative performance of 
the proposed BEFS+AACOA+RF method, achieving the highest AUC of 
0.98 compared to conventional algorithms including XGBoost and 
Stacked Ensemble (both 0.97), SVM and LR (both 0.91), and KNN (0.82), 
with the proposed method showing consistently high sensitivity across 
all specificity levels and providing optimal performance in the high- 
specificity region critical for clinical screening applications, represent-
ing meaningful clinical value for large-scale population screening.

Table 7 
Classification report of features obtained with BEFS and AACOA.

Precision Recall F1-score Support

0 0.94 ± 0.012 0.96 ± 0.011 0.95 ± 0.011 417
1 0.96 ± 0.010 0.93 ± 0.013 0.94 ± 0.012 417
Accuracy 0.95 ± 0.012   834
Macro avg. 0.95 ± 0.011 0.94 ± 0.013 0.95 ± 0.010 834
Weighted avg. 0.95 ± 0.011 0.94 ± 0.013 0.95 ± 0.010 834

Fig. 4. Confusion matrices comparison.

Table 8 
Summary of the Alzheimer’s experimentation results.

S/ 
N

Methodology Avg. 
Accuracy

Avg. 
Precision

Avg. 
Recall

Avg. 
F1- 
score

1 WOA+AACOA+RF 0.91 ±
0.021

0.91 ±
0.020

0.91 ±
0.021

0.91 ±
0.019

2 ABCOA+AACOA+RF 0.86 ±
0.024

0.86 ±
0.021

0.86 ±
0.026

0.86 ±
0.023

3 BEFS+AACOA+RF 0.95 ±
0.012

0.95 ±
0.011

0.94 ±
0.013

0.95 ±
0.010
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3.7. Computational efficiency analysis

Table 10 summarizes the computational efficiency comparison be-
tween different optimization approaches. The nature-inspired algo-
rithms demonstrated substantial time savings: AACOA completed 
hyperparameter optimization in 18 minutes compared to 95 minutes for 
grid search, representing an 81% reduction in computational time. 
Similarly, feature selection using WOA and ABCOA completed in 12 and 
15 minutes respectively, compared to 45 minutes for exhaustive 
wrapper methods.

3.8. Cross-validation and robustness analysis

To further validate the robustness of our approach, we performed 

stratified 10-fold cross-validation repeated 10 times (100 total evalua-
tions). The BEFS+AACOA+RF model demonstrated consistent perfor-
mance across all repetitions with minimal variance: mean accuracy =
95.1% ± 1.6%, precision = 95.0% ± 1.4%, recall = 94.7% ± 1.8%, and 
F1-score = 94.8% ± 1.5%. The coefficient of variation was less than 2% 
for all metrics, indicating excellent model stability.

4. Discussion

The present study aimed to develop an enhanced predictive model 
for Alzheimer’s disease by integrating advanced feature selection tech-
niques with nature-inspired hyperparameter optimization for Random 
Forest classifiers. While the individual components of our approach 
(feature selection algorithms and hyperparameter optimization) are 
well-established, the novelty lies in their systematic integration and 
comprehensive comparative evaluation within a unified framework 
specifically designed for Alzheimer’s disease prediction. The findings 
demonstrate the significant potential of this integrated approach, 
particularly the combination of Backward Elimination Feature Selection 
(BEFS) with Artificial Ant Colony Optimization Algorithm (AACOA) for 
hyperparameter tuning, which achieved superior performance 
compared to other methodological combinations and conventional 
machine learning algorithms.

The clinical significance of our findings extends beyond mere algo-
rithmic improvements. The identified 26 risk factors provide actionable 
insights for healthcare practitioners, with several features representing 
modifiable risk factors amenable to preventive interventions. For 
instance, the importance of diet quality (ranking 8th in feature impor-
tance) and physical activity (ranking 9th) aligns with current clinical 
guidelines for dementia prevention [51]. These findings suggest that our 
model could be implemented in primary care settings to identify 
high-risk individuals who might benefit from lifestyle interventions 
before clinical symptoms appear.

One of the most significant contributions of this study is the 
comprehensive evaluation of different feature selection techniques for 
Alzheimer’s disease prediction. The varying performance levels 
observed across the three feature selection methods: WOA, ABCOA, and 

Fig. 5. Feature importance ranking from BEFS-selected features.

Table 9 
Comparison of Machine Learning Algorithms and the Study’s Result for Pre-
diction of Alzheimer’s Disease.

S/ 
N

Algorithm Avg. 
Accuracy

Avg. 
Precision

Avg. 
Recall

Avg. 
F1- 
score

AUC

1 KNN 0.75 ±
0.028

0.76 ±
0.027

0.75 ±
0.029

0.72 
±

0.031

0.82 
±

0.021
2 SVM 0.85 ±

0.022
0.85 ±
0.021

0.85 ±
0.023

0.85 
±

0.022

0.91 
±

0.015
3 LR 0.84 ±

0.023
0.84 ±
0.022

0.84 ±
0.024

0.84 
±

0.023

0.91 
±

0.016
4 XGBoost 0.94 ±

0.014
0.94 ±
0.013

0.94 ±
0.015

0.94 
±

0.014

0.97 
±

0.009
5 Stacked Ensemble 0.94 ±

0.014
0.94 ±
0.013

0.94 ±
0.015

0.94 
±

0.014

0.97 
±

0.009
6 BEFS+AACOA+RF 0.95 ±

0.012
0.95 ±
0.011

0.94 ±
0.013

0.95 
±

0.010

0.98 
±

0.008
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BEFS highlight the critical importance of feature selection in developing 
effective predictive models for complex medical conditions. The sub-
stantial performance difference between BEFS (95% accuracy) and 
ABCOA (86% accuracy) demonstrates that feature selection methodol-
ogy can impact model performance by up to 9 percentage points, which 
could translate to significant differences in clinical utility. This finding 
aligns with previous research by Sarica et al. [52], who emphasized the 
importance of appropriate feature selection in neuroimaging-based 
Alzheimer’s disease classification.

However, we acknowledge the potential for overfitting given our 

relatively small dataset (2,149 instances) and large feature space 
(initially 34 features). To mitigate this concern, we implemented several 
strategies: stratified cross-validation, bootstrap confidence intervals, 
and statistical significance testing. The consistent performance across 
repeated cross-validation (95.1% ± 1.6% with coefficient of variation <
2%) suggests reasonable model stability. Nevertheless, validation on 
independent, larger datasets remains essential to confirm these findings.

The superior performance achieved with BEFS may be attributed to 
its comprehensive approach to feature evaluation, which allows for the 
identification of features that might be overlooked by optimization al-
gorithms focused primarily on global search patterns. The twenty-six 
features identified by BEFS encompassed a broad spectrum of risk fac-
tors, including several surprising findings: the relatively high impor-
tance of sleep quality (feature rank 12) and the inclusion of cholesterol 
triglycerides, which may indicate metabolic syndrome’s role in AD 
pathogenesis [53]. This comprehensive feature set likely captured the 
multifactorial nature of Alzheimer’s disease more effectively than the 
more limited feature subsets identified by WOA and ABCOA. As high-
lighted by Livingston et al. [54], Alzheimer’s disease involves complex 
interactions between genetic, environmental, and lifestyle factors, 
which necessitates comprehensive consideration of diverse risk factors 
for accurate prediction.

Regarding clinical integration, our model shows promise for imple-
mentation in various healthcare settings. In primary care environments, 
the model could serve as a screening tool to identify individuals war-
ranting specialist referral or intensive monitoring. The 26 selected fea-
tures are all obtainable through standard clinical assessments and 
patient history, making implementation feasible without specialized 
equipment. However, several barriers must be addressed: regulatory 
approval for clinical decision support tools, integration with electronic 
health record systems, and training for healthcare providers on model 
interpretation and limitations [55].

Fig. 6. ROC curves comparison for all machine learning algorithms.

Table 10 
Computational efficiency comparison between different optimization 
approaches.

Optimization 
Method

Task Time 
Required

Efficiency 
Gain

Grid Search Hyperparameter 
Optimization

95 minutes Baseline

AACOA Hyperparameter 
Optimization

18 minutes 81% 
reduction

BESOA Hyperparameter 
Optimization

28 minutes 71% 
reduction

Exhaustive Wrapper Feature Selection 45 minutes Baseline
WOA Feature Selection 12 minutes 73% 

reduction
ABCOA Feature Selection 15 minutes 67% 

reduction
BEFS Feature Selection 8 minutes 82% 

reduction
Combined 

Traditional
Total Pipeline 140 minutes Baseline

Combined Nature- 
Inspired

Total Pipeline 26 minutes 81% 
reduction
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The comparative analysis of different hyperparameter optimization 
techniques represents another valuable contribution of this study. The 
superior efficiency of AACOA compared to BESOA in terms of compu-
tational time (18 minutes versus 28 minutes for 200 maximum trees) 
demonstrates the practical advantages of ant colony optimization for 
hyperparameter tuning. This finding is particularly relevant for clinical 
applications, where computational efficiency can facilitate the imple-
mentation of sophisticated predictive models in resource-constrained 
healthcare settings. The substantial time savings achieved with swarm 
intelligence algorithms compared to empirical approaches (18 minutes 
versus 1 hour and 35 minutes) further emphasizes the practical utility of 
these methods, as noted by Claesen and De Moor [56] in their review of 
hyperparameter optimization techniques.

The marginal improvement of our proposed method over XGBoost 
(95% vs 94% accuracy) raises questions about the practical significance 
of this gain. However, the 1% improvement in accuracy, combined with 
the 1% improvement in AUC (98% vs 97%), represents meaningful 
clinical value when applied to large populations. For screening appli-
cations targeting millions of individuals, a 1% improvement in accuracy 
could prevent thousands of misclassifications.

The optimal hyperparameters identified by AACOA (n_estimators: 
150, max_depth: 15, min_samples_split: 4, min_samples_leaf: 1) differ 
notably from default settings commonly used in Random Forest imple-
mentations, highlighting the importance of proper hyperparameter 
tuning for maximizing model performance. This finding is consistent 
with the work of Probst et al. [57], who demonstrated that optimization 
of Random Forest hyperparameters can lead to significant performance 
improvements across various clinical prediction tasks. The relatively 
deep tree structure (max_depth: 15) suggests that complex decision 
boundaries are necessary to capture the intricate patterns associated 
with Alzheimer’s disease risk factors, reflecting the complex etiology of 
the condition.

From a translational perspective, several considerations are crucial 
for moving this research toward clinical implementation. First, the 
model requires validation on external datasets from different pop-
ulations and healthcare systems to establish generalizability. Second, 
prospective clinical studies are needed to demonstrate real-world utility 
and impact on patient outcomes. Third, regulatory pathways for AI- 
based clinical decision support tools must be navigated, including FDA 
approval processes and compliance with medical device regulations 
[58].

The comparative evaluation against other machine learning algo-
rithms provides valuable context for assessing the relative merits of the 
proposed approach. The slight performance advantage of 
BEFS+AACOA+RF (95% accuracy, 98% AUC) over alternative algo-
rithms such as XGBoost and stacked ensemble learning (94% accuracy, 
97% AUC) suggests that while the proposed methodology offers superior 
performance, other ensemble approaches can achieve comparable re-
sults. This finding indicates that the choice between different high- 
performing algorithms may depend on specific implementation re-
quirements, such as interpretability, computational efficiency, or inte-
gration capabilities. The substantially lower performance of simpler 
algorithms like KNN (75% accuracy) reinforces the need for sophisti-
cated approaches when addressing complex medical prediction tasks, as 
previously noted by Ebrahimighahnavieh et al. [59].

Despite these promising results, several limitations warrant consid-
eration. The single-dataset validation limits generalizability, particu-
larly given the Kaggle dataset’s unknown demographic composition and 
potential selection biases. The cross-sectional nature of our data pre-
vents assessment of disease progression prediction, which would be 
more clinically valuable than binary classification. Additionally, our 
model lacks integration with emerging biomarkers such as amyloid-beta 
and tau proteins, which represent the current gold standard for AD 
pathophysiology assessment [60].

From a clinical perspective, the identification of significant risk 
factors through feature selection provides valuable insights that could 

inform diagnostic practices and preventive interventions. The consistent 
selection of factors such as cognitive assessment scores (MMSE), func-
tional assessments, memory complaints, and clinical symptoms 
(forgetfulness, disorientation, difficulty completing tasks) across all 
three feature selection methods reinforces the established diagnostic 
criteria for Alzheimer’s disease [61]. Additionally, the importance of 
modifiable risk factors such as diet quality, physical activity, and car-
diovascular health markers aligns with recent advances in understand-
ing the preventable aspects of dementia [62].

The practical implications of this research extend beyond the specific 
context of Alzheimer’s disease prediction. The demonstrated effective-
ness of integrating advanced feature selection with nature-inspired 
hyperparameter optimization could inform methodology development 
across various medical prediction tasks. The substantial time savings 
achieved through swarm intelligence algorithms address one of the key 
barriers to implementing sophisticated machine learning approaches in 
clinical settings—computational efficiency. As noted by Deo [63], the 
practical utility of machine learning in medicine depends not only on 
predictive accuracy but also on computational feasibility and integra-
tion capabilities.

Looking toward future research directions, several avenues warrant 
exploration. First, multimodal data integration incorporating neuro-
imaging, genetic markers, and blood-based biomarkers could enhance 
predictive performance. Second, longitudinal studies tracking disease 
progression could enable more sophisticated temporal modeling. Third, 
external validation across diverse populations and healthcare systems is 
essential for establishing generalizability. Finally, implementation sci-
ence approaches should evaluate the real-world impact of such models 
on clinical decision-making and patient outcomes.

5. Limitations

Several key limitations must be acknowledged. First, the study relied 
on a single Kaggle dataset, which may not represent the diversity of 
Alzheimer’s disease presentations across different populations and 
healthcare systems. The unknown demographic composition and po-
tential selection biases limit generalizability to broader patient 
populations.

Second, the cross-sectional nature of the dataset prevents assessment 
of disease progression prediction, which would be more clinically 
valuable than binary classification. Longitudinal data would enable 
development of models that track disease trajectory and identify critical 
intervention points.

Third, validation was performed only on internal dataset splits 
without external validation on independent datasets or prospective 
clinical validation. This represents a significant limitation for estab-
lishing real-world utility and clinical implementation.

Fourth, the relatively small dataset size (2,149 instances) combined 
with high dimensionality raises concerns about potential overfitting, 
despite our statistical validation measures. Larger, multi-site validation 
studies are essential for confirming model robustness.

Finally, the model focuses solely on clinical and lifestyle data 
without incorporating emerging biomarkers such as amyloid-beta, tau 
proteins, or neuroimaging features, which represent current gold stan-
dards for AD pathophysiology assessment [64].

6. Conclusion

This study successfully demonstrated that integrating advanced 
feature selection techniques with nature-inspired hyperparameter opti-
mization significantly enhances Alzheimer’s disease prediction accu-
racy. The BEFS+AACOA+RF approach achieved 95% accuracy with 26 
clinically relevant risk factors, outperforming conventional machine 
learning methods with substantial computational efficiency gains.

Key findings include: identification of actionable risk factors for 
clinical intervention, 81% reduction in computational time compared to 
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traditional optimization methods, and statistically significant perfor-
mance improvements over existing approaches. The selected features 
provide valuable insights for preventive medicine, emphasizing modi-
fiable risk factors such as diet quality and physical activity. However, 
external validation on independent datasets and prospective clinical 
studies are essential before implementation. Future research should 
focus on multi-site validation, integration of biomarker data, and lon-
gitudinal disease progression modeling.

This methodological framework offers promising applications for 
early diagnosis and risk stratification, with potential extensions to other 
complex medical prediction tasks, ultimately contributing to improved 
patient outcomes through earlier intervention and personalized care 
strategies.
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method to detect Parkinson’s disease via gait analysis. In: Engineering Applications 
of Neural Networks: 18th International Conference. EANN; 2017. p. 609–19. 
August 25–27, 2017, Proceedings. Springer International Publishing; 2017.

[28] Liu X, Chen K, Wu T, Weidman D, Lure F, Li J. Use of multimodality imaging and 
artificial intelligence for diagnosis and prognosis of early stages of Alzheimer’s 
disease. Transl. Res. 2023;256:73–83.

[29] Zhang Y, Wang S, Xia K, Jiang Y, Qian T. Alzheimer’s disease multiclass diagnosis 
via multimodal neuroimaging embedding feature selection and fusion. Inf. Fusion. 
2024;91:296–309.

[30] Wang H, Xu T, Tang C, Yao L, Zhang X, Gong M, et al. Predicting Alzheimer’s 
disease progression using multi-modal deep learning approach. Sci. Rep. 2023;13 
(1):1571.

[31] Ebrahimighahnavieh MA, Luo S, Chiong R. Deep learning to detect Alzheimer’s 
disease from neuroimaging: a systematic literature review. Comput. Methods 
Programs Biomed. 2020;187:105242.

[32] Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. 
Dementia prevention, intervention, and care: 2020 report of the Lancet 
Commission. Lancet 2020;396(10248):413–46.

[33] Sweeney L. k-anonymity: a model for protecting privacy. Int. J. Uncertain. 
Fuzziness Knowl.-Based Syst. 2002;10(05):557–70.

[34] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority 
over-sampling technique. J. Artif. Intell. Res. 2002;16:321–57.

[35] Chandrashekar G, Sahin F. A survey on feature selection methods. Comput. Electr. 
Eng. 2014;40(1):16–28.

[36] Mirjalili S, Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95: 
51–67.

[37] Mafarja M, Mirjalili S. Whale optimization approaches for wrapper feature 
selection. Appl. Soft. Comput. 2018;62:441–53.

[38] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function 
optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007;39(3): 
459–71.

[39] Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter 
optimization. Inf. Sci. (Ny) 2012;192:120–42.

[40] Guyon I, Elisseeff A. An introduction to variable and feature selection. J. Mach. 
Learn. Res. 2003;3(Mar):1157–82.

[41] Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J. Mach. 
Learn. Res. 2012;13(2):281–305.

[42] Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEe Comput. Intell. 
Mag. 2006;1(4):28–39.

[43] Dorigo M, Stützle T. Ant colony optimization: overview and recent advances. 
Handbook of metaheuristics. Springer; 2019. p. 311–51.

[44] Alsattar HA, Zaidan AA, Zaidan BB. Novel meta-heuristic bald eagle search 
optimisation algorithm. Artif. Intell. Rev. 2020;53(3):2237–64.

[45] Alsattar HA, Zaidan AA, Zaidan BB, et al. Novel meta-heuristic bald eagle search 
optimisation algorithm. Artif. Intell. Rev. 2020;53:2237–64.

[46] Breiman L. Random forests. Mach. Learn. 2001;45(1):5–32.
[47] Sarica A, Cerasa A, Quattrone A. Random forest algorithm for the classification of 

neuroimaging data in Alzheimer’s disease: A systematic review. Front. Aging 
Neurosci. 2017;9:329.

[48] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and 
model selection. Proc. 14th Int. Jt. Conf. Artif. Intell. 1995;2:1137–43.

[49] McNemar Q. Note on the sampling error of the difference between correlated 
proportions or percentages. Psychometrika 1947;12(2):153–7.

[50] Efron B, Tibshirani RJ. An introduction to the bootstrap. CRC press; 1994.
[51] Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. 

Dementia prevention, intervention, and care: 2020 report of the Lancet 
Commission. Lancet 2020;396(10248):413–46.

[52] Sarica A, Cerasa A, Quattrone A. Random forest algorithm for the classification of 
neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging 
Neurosci. 2017;9:329.

[53] Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type 3 diabetes? A 
critical appraisal. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017;1863(5): 
1078–89.

[54] Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. 
Dementia prevention, intervention, and care: 2020 report of the Lancet 
Commission. Lancet 2020;396(10248):413–46.

A.A. Soladoye et al.                                                                                                                                                                                                                            Current Research in Translational Medicine 73 (2025) 103526 

13 

http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0001
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0001
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0002
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0002
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0002
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0003
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0003
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0003
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0003
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0004
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0004
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0004
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0004
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0005
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0005
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0005
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0006
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0006
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0006
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0007
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0007
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0007
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0008
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0008
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0009
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0009
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0009
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0009
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0010
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0010
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0011
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0011
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0012
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0012
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0012
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0013
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0014
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0014
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0014
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0015
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0015
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0015
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0016
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0016
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0016
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0017
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0017
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0017
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0018
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0019
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0019
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0019
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0020
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0020
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0021
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0021
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0022
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0022
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0023
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0023
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0024
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0024
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0025
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0026
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0026
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0026
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0027
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0027
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0027
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0027
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0028
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0028
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0028
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0029
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0029
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0029
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0030
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0030
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0030
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0031
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0031
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0031
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0032
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0032
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0032
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0033
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0033
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0034
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0034
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0035
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0035
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0036
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0036
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0037
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0037
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0038
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0038
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0038
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0039
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0039
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0040
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0040
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0041
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0041
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0042
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0042
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0043
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0043
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0044
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0044
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0045
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0045
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0046
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0047
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0047
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0047
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0048
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0048
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0049
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0049
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0050
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0051
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0051
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0051
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0052
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0052
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0052
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0053
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0053
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0053
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0054
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0054
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0054


[55] Topol EJ. High-performance medicine: the convergence of human and artificial 
intelligence. Nat. Med 2019;25(1):44–56.

[56] Claesen M, De Moor B. Hyperparameter search in machine learning. arXiv preprint 
arXiv:1502.02127; 2015.

[57] Probst P, Wright MN, Boulesteix AL. Hyperparameters and tuning strategies for 
random forest. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 2019;9(3):e1301.

[58] FDA. Software as a Medical Device (SaMD): Clinical Evaluation. Guidance for 
Industry and Food and Drug Administration Staff. U.S. Food and Drug 
Administration; 2017.

[59] Ebrahimighahnavieh MA, Luo S, Chiong R. Deep learning to detect Alzheimer’s 
disease from neuroimaging: a systematic literature review. Comput. Methods 
Programs Biomed. 2020;187:105242.

[60] Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma 
biomarkers in Alzheimer disease. Nat. Rev. Neurol. 2010;6(3):131–44.

[61] McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jr Jack CR, Kawas CH, et al. 
The diagnosis of dementia due to Alzheimer’s disease: recommendations from the 
National Institute on Aging-Alzheimer’s Association workgroups on diagnostic 
guidelines for Alzheimer’s disease. Alzheimers. Dement. 2011;7(3):263–9.

[62] Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. 
Dementia prevention, intervention, and care: 2020 report of the Lancet 
Commission. Lancet 2020;396(10248):413–46.

[63] Deo RC. Machine learning in medicine. Circulation 2015;132(20):1920–30.
[64] Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma 

biomarkers in Alzheimer disease. Nat. Rev. Neurol. 2010;6(3):131–44.

A.A. Soladoye et al.                                                                                                                                                                                                                            Current Research in Translational Medicine 73 (2025) 103526 

14 

http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0055
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0055
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0056
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0056
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0057
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0057
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0058
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0058
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0058
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0059
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0059
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0059
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0060
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0060
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0061
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0061
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0061
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0061
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0062
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0062
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0062
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0063
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0064
http://refhub.elsevier.com/S2452-3186(25)00035-2/sbref0064

	Enhancing Alzheimer’s disease prediction using random forest: A novel framework combining backward feature elimination and  ...
	1 Introduction
	2 Method
	2.1 Data acquisition
	2.2 Data preprocessing
	2.3 Feature selection
	2.4 Whale optimization algorithm
	2.5 Artificial bee colony optimization
	2.6 Backward feature selection
	2.7 Hyperparameter optimization
	2.8 Ant colony optimization
	2.9 Bald eagle search optimization algorithm
	2.10 Random forest for Alzheimer’s disease prediction
	2.11 Performance evaluation

	3 Results
	3.1 Optimal features for Alzheimer’s disease prediction
	3.2 Hyperparameter optimization results
	3.3 Statistical validation results
	3.4 Experimental results for Alzheimer’s disease prediction
	3.4.1 Performance with WOA-selected features
	3.4.2 Performance with ABCOA-selected features
	3.4.3 Performance with BEFS-selected features

	3.5 Feature importance and clinical relevance
	3.6 Comparison with other machine learning algorithms
	3.7 Computational efficiency analysis
	3.8 Cross-validation and robustness analysis

	4 Discussion
	5 Limitations
	6 Conclusion
	CRediT authorship contribution statement
	References


