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Abstract 
 
The aim of this study was to measure the reliability of the Extra Load Index (ELI) as a method 

for assessing relative load carriage economy.  

Seventeen volunteers (12 males, 5 females) performed walking trials at 3 km.h-1, 6 km.h-1 and 

a self-selected speed. Trial conditions were repeated 7 days later to assess test-retest reliability. 

Trials involved four, four-minute periods of walking, each separated by 5 minutes of rest. The 

initial stage was performed unloaded followed in a randomised order by a second unloaded 

period and walking with backpacks of 7kg and 20kg. 

Results show ELI values did not differ significantly between trials for any of the speeds (p = 

0.46) with either of the additional loads (p = 0.297).  The systematic bias, limits of agreement 

and coefficients of variation were small in all trial conditions. 

We conclude the ELI appears to be a reliable measure of relative load carriage economy.  
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Practitioner Summary 

This paper demonstrates that the Extra Load Index (ELI) is a reliable measure of load carriage 

economy at a range of walking speeds with both a light and heavy load. The ELI, therefore, 

represents a useful tool for comparing the relative economy associated with different load 

carriage systems. 

 

 
 
 

 

 

 

 

 

 



1. Introduction 

 

Load carriage economy can be defined as the energy demand for a given velocity of walking 

while carrying an external load and is determined by measuring steady-state oxygen 

consumption ( ሶܸ O2). Accounting for body mass, individuals with good load carriage economy 

use less oxygen and therefore, less energy than individuals with poor load carriage economy at 

the same velocity.  

 

The Extra Load Index (ELI) is a measure of load carriage economy, developed by Lloyd et 

al. (2010a) from the seminal work of Taylor et al. (1980). The advantage of the ELI (equation 

1) over other measures of load carriage economy is that it accounts for individual differences 

in oxygen consumption when walking unloaded. This enables simple comparisons between 

individuals and different loading methods.  

 

     (1) 

 

  

Equation 1. mlO2L refers to oxygen consumption when carrying a load per kilogram of the 

total mass (body mass and external load mass combined), mlO2U refers to oxygen consumption 

for unloaded walking per kilogram of body mass. 

 

An ELI value of 1 indicates that the additional energy expenditure required to transport an 

external load is proportional to the mass of the load. An ELI value < 1 indicates a relatively 

better economy, while an ELI value > 1 indicates a relatively worse economy. As such, if the 

aim when designing a load carriage system is to improve load carriage economy, then 

developers should aim to reduce the ELI value as much as possible. The ELI is sensitive enough 

to differentiate between load placements and can accommodate for variations in body 

composition, the magnitude of external load and walking speed (Lloyd et al. 2010a). The 

measure has previously been used to compare the relative economy of different load carriage 

systems (Lloyd et al. 2010a; Lloyd et al. 2010c; Lloyd and Cooke, 2011). However, the 

reliability of the ELI has yet to be reported. Knowledge of reliability is important if the measure 

is to be used with confidence.  

 

ELI = 
mlO2L 

. kg total mass-1 .  min-1 

mlO2U 
. kg body mass-1 . min-1 



While the reproducibility of ܸ ሶ O2 during treadmill running has been frequently reported (e.g. 

Brisswalter and Legros, 1994; Periera and Freedson, 1997; Pereira et al. 1994), few studies 

have determined the day-day variation in walking economy in healthy populations and to our 

knowledge, no studies have assessed the reliability of load carriage economy. Of those that 

have reported the reproducibility of walking economy in healthy adult populations (Wergel-

Kolmert and Wohlfart, 1999; de Mendonça and Pereira, 2008; Darter, Rodriquez, and Wilken, 

2013; Davidson, Gardinier, and Gates, 2016), the day to day variation appears to be less reliable 

compared to running economy, with coefficients of variation (CV) between ~ 8 - 9% and ~ 1.5 

- 5% for walking and running economy, respectively. Furthermore, the reliability of ሶܸ O2 

appears to decrease at lower intensities of both running (Pereira et al. 1994) and walking (de 

Mendonça and Pereira; 2008). A number of different exercise intensities have been employed 

in the load carriage literature with walking speeds ranging from ~ 3 km.h-1 (Maloiy et al. 1986; 

Lloyd et al. 2010b) to ~ 6 km.h-1 (Quesada et al. 2000) and loads ranging from 10% body mass 

(Abe et al. 2004; Singh and Koh, 2009) to in excess of 50% body mass (Lloyd et al. 2010b). 

For this reason, knowledge of the reproducibility of load carriage economy across a range of 

exercise intensities would be beneficial, particularly at lower intensities were the reliability of 

ሶܸ O2 appears to be lessened.  

 

The purpose of this study, therefore, was to establish the reliability of the ELI as a measure 

of load carriage economy across a range of walking speeds with both light and heavy loads. 

 

 

 

 

 

 

 

 



2. Methods 

Participants: 

 

Seventeen apparently healthy volunteers (12 males, 5 females) took part in the study (age 

29 ± 10.7 years, mass 77.5 ± 13.9 kg, stature 177 ± 8.7 cm). All volunteers had no history of 

back pain and gave written informed consent to participate. The study received approval from 

the institutional ethics committee at Leeds Trinity University.  

 

Experimental Design: 

 

All trials were conducted at Leeds Trinity University. Participants attended the laboratory 

on six occasions in order to complete test-retest reliability of three different trial conditions. 

Trial conditions differed in walking speed, with a slow speed (3 km.h-1), fast speed (6 km.h-1) 

and a self-selected speed (4.4 ± 0.7 km.h-1). Trial conditions were completed in a randomised 

order, separated by a minimum of 48 hours and repeated identically seven days later. The order 

in which trial conditions were undertaken was randomised via a Latin square design with 

participants randomly assigned (by drawing lots) to one of three speeds. Trials involved four, 

four-minute periods of walking, each separated by 5 minutes of rest. The initial stage was 

performed unloaded followed in a randomised order by a second unloaded period and walking 

with backpacks of 7kg and 20kg. The order of loading was identical for each of the initial trial 

and repeat trials. In an attempt to control for possible circadian variations in walking economy, 

test-retest trails were performed at approximately the same time of day for each individual 

Participants were also asked to maintain a similar diet and refrain from moderate-vigorous 

exercise and alcohol consumption in the 24 hours prior to each test.  

 

Experimental Procedures: 

 

Loading Methods: 

For each loading condition, participants were fitted with a traditional back-loading rucksack, 

with a hip belt for support (AARN, New Zealand). The mass of the load was made up of the 

rucksack itself plus sandbags and water bottles, stored in plastic containers to help evenly 

distribute the load and improve stability within the rucksack. Participants were asked to wear 



a t-shirt, shorts and the same footwear during each test, in order to minimise the influence of 

clothing.  

 

Initial Screening and Habituation: 

The first laboratory visit included an initial screening of participants for any 

contraindications to exercise. Body mass (Seca scales, UK) and stature (Seca, UK) were 

measured, followed by a habituation period lasting ~ 20 minutes, which involved walking on 

the motorised treadmill (Mercury, HP Cosmos, Germany) at each of the walking speed 

conditions, with and without the 7 kg and 20 kg backpacks. The facemask for the online gas 

analysis system (Metalyzer 3B, Cortex, Germany) was also fitted, in order for participants to 

become accustomed to it. The self-selected walking speed established during the habituation 

period, recorded as the speed at which participants felt most comfortable while walking 

unloaded, was used as the self-selected walking speed in subsequent trials. 

 

Experimental Trials: 

Each trial began by recording the participant’s body mass in order to calculate the ELI for 

that trial. Resting heart rate (Polar, H7, Finland) and oxygen uptake were then measured for 

two minutes prior to exercise. Exercise began with participants walking unloaded at 0% 

gradient for four minutes at a speed determined by the trial condition. After four minutes, there 

was a five-minute rest period, during which, participants stepped off the treadmill and removed 

the facemask. Heart rate was monitored during the rest period to ensure that participants 

returned to the baseline resting level established before exercise began. The final minute of 

each rest period was used to refit the facemask and rucksack. The procedure of four minutes 

walking followed by five minutes of rest was then repeated with the light load, heavy load and 

unloaded walking for a second time, in a randomised order if it was the first trial or in an 

identical order to the first test if it was a repeat trial.  

 

Expired Gas Analysis: 

Expired gas measurements were made continuously throughout each period of exercise 

using a computerised online breath-by-breath system (Metalyzer 3B, Cortex, Germany). On 

the completion of each test, the data were averaged for 60-second intervals. Means and standard 

deviations were calculated for ܸ ሶ O2 (l.min-1). The ܸ ሶ O2 in the final minute of each walking period 

was used to calculate the Extra Load Index (ELI; equation 1).  



 

Statistical Analysis: 

 

Bland-Altman plots were generated to assess the systematic bias and 95% limits of 

agreement (LoA: mean of the differences  1.96 SD of the differences; Bland and Altman, 

1986) for each trial condition. Prior to creating the Bland-Altman plots, Heteroscedasticity was 

formally assessed by plotting the absolute differences between the two trials against the 

individual means and calculating the correlation coefficient. Coefficient of variation (CV) and 

standard error of measurement (SEM) were also assessed following the guidelines of Atkinson 

and Nevill (1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Results 

 

ELI values did not differ significantly between test-retest trials in any of the walking speed 

conditions (p = 0.464) with either of the additional loads (p = 0.297). Following confirmation 

that heteroscedasticity was not present in any of the trial conditions, the systematic bias and 

95% LoA were determined and are presented in table 1. The CV and SEM (table 1) were small 

in all conditions with the highest CV (4.17%) and SEM (0.04) recorded when walking at 3km.h-

1 with 7 kg.  ELI values did increase significantly with walking speed (p = 0.018). 

 

[Table 1 near here] 

 

[Table 2 near hear] 

 

There was no significant difference between the two unloaded periods of walking performed 

in each of the trial conditions (p = 0.235). The variations in ሶܸ O2 between the unloaded periods 

of walking in each trial are presented in table 2. There was no significant difference in ሶܸ O2 

between test-retest trials (p = 0.851). Walking at 6 km.h-1 with a load of 20 kg produced the 

largest LoA and SEM of ± 0.19 l.min-1 and 0.06 l.min-1, respectively. The largest CV (4.50%) 

was measured for the self-selected speed when carrying 20 kg. ሶܸ O2 did significantly increase 

with an increase in walking speed (p = 0.001) and when the mass of the load carried increased 

(p = 0.001).   

 

 [Table 3 near here] 

 

 

 

 

 

 

 

 

 

 



4. Discussion 

 

The ELI demonstrated good reliability at different walking speeds with both a relatively 

light and heavy load. The systematic bias was small in all conditions, with the largest LoA 

within  0.11, the largest SEM was 0.04 and the highest magnitude of CV was 4.17%. The ELI 

was found to be most reliable at the self-selected speed with the light load (95% LoA = 0.05; 

CV = 1.75%; SEM = 0.02). The self-selected speed was also the only condition in which the 

CV appeared larger when carrying the heavy load than when carrying the light load. This is, 

perhaps, because the speed-load combination of the self-selected speed with a light load was 

closest to representing the participant’s natural walking pattern, and therefore, the between day 

variation was smallest in this condition. Additionally, the self-selected speed was chosen 

unloaded, which might have led to greater variability with the heavier load. 

 

The ELI was assessed across a range of walking speeds with both relatively light and heavy 

loads because a range of speed-load combinations are employed in a variety of applied 

scenarios. Individuals in the military services are regularly required to carry heavy loads in 

excess of 30 kg at walking speeds of between 5-6 km.h-1 (Harman et al. 2001), while school 

children and individuals in rural areas of developing countries often adopt a slower walking 

pace of around 3km.h-1 with both light and heavy loads (Singh and Koh, 2009; Lloyd et al. 

2010b). Although previous research, particularly those on military personnel, have used loads 

in excess 40 kg (Harman et al. 2000), 20 kg was chosen in this study due to the untrained nature 

of some participants and because similar loads have been frequently used to represent a heavy 

load in the literature (e.g. Lloyd et al. 2011; Birrell and Haslam, 2009). As much of the 

literature on unloaded exercise suggests that the reliability of energy expenditure increases as 

the exercise intensity increases, and as there was no difference in the reliability of ELI across 

a range of exercise intensities in the present study, we would expect ELI values to demonstrate 

good reliability with loads in excess of 20 kg. 

 

As expected given the ELI results, the results of ሶܸ O2 also showed good test-retest reliability 

with the largest LoA within  0.19 l.min-1, a highest SEM of 0.06 l.min-1 and a highest CV of 

4.50%. Furthermore, there appears to be little difference in test-retest reliability between 

unloaded and loaded ሶܸ O2. This demonstrates a better level of reliability than previously 

reported for walking economy at speeds of 4-5 km.h-1 (Wergell-Kolmert and Wohlfart, 1999; 



de Mendonça and Pereira, 2008) and is similar to the CV of 4.4% reported when walking 

intensity is increased by gradients up to 10% (de Mendonça and Pereira, 2008). In the present 

study, the CV for ሶܸ O2 did not reduce as a result of increasing walking speed or when carrying 

an external load. Furthermore, the present study showed that the LoA and SEM were lower at 

3 km.h-1 compared to 6 km.h-1, which is somewhat unexpected, given that previous research 

has suggested that an increase in exercise intensity increases reliability of ሶܸ O2 (Pereira et al. 

1994; de Mendonça and Pereira, 2008). However, the difference in ሶܸ O2 between 3 km.h-1 and 

6 km.h-1 in LoA and SEM were small, and there was no difference in CV between speeds and 

no significant difference in ሶܸ O2 between the conditions.  

 

Unloaded ሶܸ O2 was measured twice in each trial to assess its reliability between repeated 

bouts of walking on the same day because of its important role as the denominator in the 

calculation of the ELI. Based on previous literature, we predicted that ሶܸ O2 during unloaded 

walking might be less reliable than ሶܸ O2 during loaded walking, as the exercise intensity is 

lower. However, there was no difference in ሶܸ O2 between the two unloaded periods in each trial 

(Table 2) and as such, ሶܸ O2 from the first unloaded period of each trial was used in the 

calculation of the ELI.        

 

 

5. Conclusion 

Based on the evidence provided here, the ELI appears to be a reliable measure of relative 

load carriage economy that can be easily interpreted by developers and manufacturers as well 

as scientific researchers. We conclude the ELI represents a useful and reliable tool for 

comparing the relative economy of different load carriage systems. 

 

 

 

 

 

 

 

 

 



References 

 

Abe, D., Yanagawa, K. and Niihata, S., 2004. Effects of load carriage, load position, and 
walking speed on energy cost of walking, Applied Ergonomics. 35 (4), 329-335. 

Atkinson, G. and Nevill, A.M., 1998. Statistical methods for assessing measurement error 
(reliability) in variables relevant to sports medicine, Sports medicine. 26 (4) 217-238. 

Birrell, S.A. & Haslam, R., 2009. Subjective skeletal discomfort measured using a comfort 
questionnaire following a load carriage exercise, Military medicine. 174 (2) 177-182. 

Bland, J.M. and Altman, D., 1986. Statistical methods for assessing agreement between two 
methods of clinical measurement, The lancet.  327 (8476). 307-310. 

Brisswalter, J. amd Legros, P., 1994, Daily stability in energy cost of running, respiratory 
parameters and stride rate among well-trained middle distance runners, International 
Journal of Sports Medicine. 15 (05), 238-241. 

Darter, B.J., Rodriguez, K.M. and Wilken, J.M., 2013. Test–retest reliability and minimum 
detectable change using the k4b2: oxygen consumption, gait efficiency, and heart rate for 
healthy adults during submaximal walking. Research quarterly for exercise and sport, 
84(2), 223-231. 

 
Davidson, A., Gardinier, E.S. and Gates, D.H., 2016. Within and between-day reliability of 

energetic cost measures during treadmill walking. Cogent Engineering, 3(1), 1251028. 

de Mendonça, G. and Pereira, F.D., 2008. Between-day variability of net and gross oxygen 
uptake during graded treadmill walking: effects of different walking intensities on the 
reliability of locomotion economy, Applied Physiology, Nutrition, and Metabolism. 33(6), 
1199-1206. 

Harman, E., Hoon, K., Frykman, P. and Pandorf, C., 2000. The effects of backpack weight on 
the biomechanics of load carriage, Natick, MA: U.S. Army Research Institute of 
Environmental Medicine. Report No. 00-14. 

Harman, E., Han, K. and Frykman, P., 2001. Load-speed interaction effects on the 
biomechanics of backpack load carriage, Natick, MA: U.S. Army Research Institute of 
Environmental Medicine. RTO meeting proceedings 56. 

Lloyd, R., Hind, K., Parr, B., Davies, S. and Cooke, C., 2010a. The Extra Load Index as a 
method for comparing the relative economy of load carriage systems, Ergonomics. 53 
(12), 1500-1504.  

Lloyd, R., Parr, B., Davies, S., Partridge, T. and Cooke, C., 2010b. A comparison of the 
physiological consequences of head-loading and back-loading for African and European 
women, European journal of applied physiology. 109 (4), 607-616. 



Lloyd, R., Parr, B., Davies, S. & Cooke, C., 2010c. No 'free ride' for African women: A 
comparison of head-loading versus back-loading among Xhosa women, South African 
Journal of Science. 106 (3-4), 01-05. 

Lloyd, R., Parr, B., Davies, S. and Cooke, C., 2011. A kinetic comparison of back-loading and 
head-loading in Xhosa women, Ergonomics. 54 (4), 380-391. 

Lloyd, R. & Cooke, C., 2011. Biomechanical differences associated with two different load 
carriage systems and their relationship to economy, Human Movement. 12 (1), 65-74. 

Maloiy, G., Heglund, N.C., Prager, L., Cavagna, G.A. and Taylor, C.R., 1986. Energetic cost 
of carrying loads: have African women discovered an economic way? Nature. 319, 668-
669. 

Pereira, M. and Freedson, P., 1997. Intraindividual variation of running economy in highly 
trained and moderately trained males, International Journal of Sports Medicine. 18 (02), 
118-124. 

Pereira, M.A., Freedson, P.S. and Maliszewski, A.F., 1994. Intraindividual variation during 
inclined steady-rate treadmill running, Research quarterly for exercise and sport. 65 (2), 
184-188. 

Quesada, P.M., Mengelkoch, L.J., Hale, R.C. and Simon, S.R., 2000. Biomechanical and 
metabolic effects of varying backpack loading on simulated marching, Ergonomics. 43 
(3), 293-309. 

Singh, T. and Koh, M., 2009. Effects of backpack load position on spatiotemporal parameters 
and trunk forward lean, Gait & posture. 29 (1), 49-53. 

Taylor, C.R., Heglund, N.C., McMahon, T.A. and Looney, T.R., 1980. Energetic cost of 
generating muscular force during running: a comparison of large and small animals, The 
Journal of experimental biology. 86(1), 9-18. 

Wergel‐Kolmert, U. and Wohlfart, B. 1999. Day‐to‐day variation in oxygen consumption and 
energy expenditure during submaximal treadmill walking in female adolescents, Clinical 
Physiology. 19(2), 161-168. 

 

 

 

 

 

 

 



Tables with captions 

 

Table 1. Reliability measures for the Extra Load Index at different walking speeds with 7 kg 

and 20 kg loads 

 
3 km.h-1 

 
Self-Selected 

Speed 

 
6 km.h-1 

 

  

 

 

7 kg 

 

20 kg 

 

7 kg 20 kg 

 

7 kg 20 kg 

         
Trial 1 

 

0.94 0.95  0.98 0.99  0.97 1.00 

Trial 2 

 

0.95 0.95  0.96 0.96  0.98 1.00 

Systematic Bias  

 

-0.01 0.00  0.01 0.03  -0.02 0.00 

95% LoA () 

 

0.11 0.10  0.05 0.09  0.09 0.07 

CV (%) 

 

4.17 2.74  1.75 3.42  3.51 2.51 

SEM 0.04 0.03  0.02 0.03  0.03 0.03 

LoA = limits of agreement; CV = coefficient of variation; SEM = standard error of 

measurement 

 

 

 

 



Table 2. Reliability measures for ሶܸ O2 (l.min-1) between repeated bouts of unloaded walking 

within the same trial. 

 3 km.h-1  Self-Selected Speed  6 km.h-1 
 

Trial 1 Trial 2  Trial 1 Trial 2  Trial 1 Trial 2 

Unloaded 1 0.69 0.7  0.87 0.89  1.27 1.24 

Unloaded 2 0.67 0.68  0.87 0.88  1.25 1.24 

Systematic Bias -0.02 -0.02  0.00 -0.01  -0.01 0.00 

CV 3.62 3.68  2.3 2.63  1.86 2.72 

SEM 0.02 0.03  0.02 0.02  0.02 0.03 

LoA = limits of agreement; CV = coefficient of variation; SEM = standard error of 

measurement 



 

Table 3. Reliability measures for ሶܸ O2 (l.min-1) at different walking speeds with 7 kg and 20 kg loads. 

 
3 km.h-1 

 
Self-Selected Speed 

 
6 km.h-1 

 
U1 U2 7 kg 20 kg 

 
U1 U2 7 kg 20 kg 

 
U1 U2 7 kg 20 kg 

Trial 1 0.69 0.67 0.71 0.83 
 

0.87 0.87 0.93 1.09 
 

1.27 1.25 1.34 1.59 

Trial 2 0.70 0.68 0.72 0.84 
 

0.89 0.88 0.94 1.08 
 

1.24 1.24 1.33 1.56 

Systematic Bias -0.01 -0.01 -0.02 -0.01 
 

-0.02 -0.01 -0.01 0.01 
 

0.03 0.01 0.01 0.03 

95% LoA () 0.06 0.07 0.05 0.09 
 

0.07 0.09 0.08 0.14 
 

0.16 0.15 0.14 0.19 

CV (%) 3.78 4.08 3.59 4.32 
 

3.62 4.05 3.62 4.50 
 

3.80 4.01 3.58 3.64 

SEM 0.03 0.03 0.03 0.04 
 

0.03 0.04 0.03 0.05 
 

0.05 0.05 0.05 0.06 

U1 = Unloaded; U2 = Unloaded 2; LoA = limits of agreement; CV = coefficient of variation; SEM = standard error of measurement 

 

 


