
Soladoye, Afeez A., Olawade, David
ORCID logoORCID: https://orcid.org/0000-0003-0188-9836, 
Adeyanju, Ibrahim A., Adereni, Temitope, Olagunju, Kazeem M and 
David-Olawade, Aanuoluwapo Clement (2025) Enhancing leukemia
detection in medical imaging using deep transfer learning. 
International Journal of Medical Informatics, 203 (10602).  

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/12270/

The version presented here may differ from the published version or version of record. If 

you intend to cite from the work you are advised to consult the publisher's version:

https://doi.org/10.1016/j.ijmedinf.2025.106023

Research at York St John (RaY) is an institutional repository. It supports the principles of 

open access by making the research outputs of the University available in digital form. 

Copyright of the items stored in RaY reside with the authors and/or other copyright 

owners. Users may access full text items free of charge, and may download a copy for 

private study or non-commercial research. For further reuse terms, see licence terms 

governing individual outputs. Institutional Repository Policy Statement

RaY
Research at the University of York St John 

For more information please contact RaY at ray@yorksj.ac.uk

https://www.yorksj.ac.uk/ils/repository-policies/
mailto:ray@yorksj.ac.uk


Enhancing leukemia detection in medical imaging using deep 
transfer learning

Afeez A. Soladoye a, David B. Olawade b,c,d,e,* , Ibrahim A. Adeyanju a , Temitope Adereni f ,  
Kazeem M. Olagunju g, Aanuoluwapo Clement David-Olawade h

a Department of Computer Engineering, Federal University, Oye-Ekiti, Nigeria
b Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
c Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom
d Department of Public Health, York St John University, London, United Kingdom
e School of Health and Care Management, Arden University, Arden House, Middlemarch Park, Coventry CV3 4FJ, United Kingdom
f Department of Public Health, University of Dundee, Dundee DD1 4HN, United Kingdom
g Department of Computer Science, Landmark University, Omu-Aran, Nigeria
h Endoscopy Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester LE3 9QP, United Kingdom

A R T I C L E  I N F O

Keywords:
Acute lymphoblastic leukemia
Deep transfer learning
EfficientNet-B3
Medical image classification
Cancer

A B S T R A C T

Background: Acute Lymphoblastic Leukemia (ALL) is the most common pediatric cancer, requiring early detec-
tion to save lives and reduce the financial burden of advanced-stage treatment. While traditional diagnostic 
methods are time-consuming and resource-intensive, deep transfer learning offers a computationally efficient 
alternative for medical image classification.
Method: This study employed two widely recognized transfer learning algorithms, VGG-19 and EfficientNet-B3, 
to detect ALL using a publicly available dataset of 10,661 images from 118 patients. Data preprocessing included 
resizing, augmentation, and normalization. The models were trained for 100 epochs, with batch sizes of 30 for 
VGG-19 and 32 for EfficientNet-B3. Evaluation metrics such as accuracy, precision, recall, and F1 score were 
used to assess model performance. Statistical significance testing was performed using paired t-tests (p < 0.05). 
Comparative analysis was performed with existing studies to validate the findings.
Results: EfficientNet-B3 significantly outperformed VGG-19, achieving an average accuracy of 96 % compared to 
80 % for VGG-19 (p < 0.001). EfficientNet-B3 demonstrated superior performance in handling class imbalance, 
with the minority class (Hem) achieving precision, recall, and F1 scores of 97 %, 89 %, and 93 %, respectively. 
VGG-19 struggled with the minority class, achieving lower recall (51 %) and F1 score (62 %). However, dataset 
limitations including single-source origin may affect generalizability.
Conclusion: This study highlights the effectiveness of EfficientNet-B3 as a reliable tool for early ALL detection, 
offering high accuracy and computational efficiency. Clinical implementation requires addressing computational 
constraints and integration challenges. Future research could integrate multimodal datasets to identify risk 
factors and further improve diagnostic accuracy.

1. Introduction

Cancer has become one of the most concerning health issues globally, 
affecting both children and adults at an alarming rate [1]. Among the 
various types of cancer, leukemia stands out as a particularly devas-
tating disease due to its rapid progression and high mortality rate [2]. 
Leukemia, known as cancer of the blood, is defined as the uncontrollable 
growth of immature and dysfunctional leukocytes, which disrupt the 

functionality of the bone marrow [2]. This abnormal growth affects not 
only the blood but also spreads to neighboring organs and, ultimately, 
the entire body system [2]. The severity of leukemia and its life- 
threatening outcomes underscore the critical need for early diagnosis 
and effective treatment plans to mitigate its impact [2].

Acute lymphoblastic leukemia (ALL), the most common form of 
leukemia in children, accounts for approximately 25 % of all pediatric 
cancers [3]. Without prompt diagnosis and treatment, the survival rate 
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for patients with acute leukemia is alarmingly low [3]. However, the 
process of diagnosing cancer, including leukemia, has traditionally 
relied on manual inspection of medical images under a microscope [4]. 
This conventional method, though effective in some cases, is time- 
consuming and heavily dependent on the expertise of oncologists [4]. 
The challenges associated with this approach are further compounded 
by the shortage of trained medical professionals in many regions, 
particularly in Africa, where a significant number of doctors have 
migrated to Asia and Europe in search of better opportunities [4,5]. 
These limitations highlight the urgent need for innovative, faster, and 
more accurate diagnostic techniques [5].

The advent of artificial intelligence (AI) and its integration into 
clinical decision support systems have revolutionized the healthcare 
industry [6]. Deep learning, a subset of AI, has shown immense potential 
in the early prediction and diagnosis of various diseases, including 
cancer [7]. By leveraging both risk factors and medical images, deep 
learning algorithms can quickly and accurately detect abnormalities, 
making it a powerful tool in modern medicine. Furthermore, deep 
transfer learning, a specialized branch of deep learning, has gained 
widespread acceptance in cancer-related applications [8]. Studies have 
demonstrated its efficacy in detecting cervical cancer and oral cancer 
[9,10], among other types, due to its ability to analyze and classify 
tumor images with remarkable precision.

Several studies have explored the use of deep learning and transfer 
learning for leukemia diagnosis. For instance, a study employed the 
YOLO v2 algorithm combined with convolutional neural networks to 
detect and classify white blood cells in leukemia, achieving 96 % 
average precision in detection and 94.3 % accuracy in classification, 
showcasing the potential of deep learning approaches in clinical support 
systems [11]. Similarly, a study conducted a study on blood cancer 
prediction using leukemia microarray gene data [12]. Their dataset 
comprised 22,283 genes, and they used ADASYN for dataset balancing 
and the Chi-squared technique for feature selection [12]. The hybrid 
logistic vector trees classifier employed in their research outperformed 
other methods, further validating the effectiveness of AI in cancer pre-
diction [12]. Also, a study utilized convolutional neural networks (CNN) 
for the early prediction of blood cancer, demonstrating the capability of 
CNNs to differentiate cancerous blood cells from normal ones in medical 
images efficiently [13].

While existing studies have made significant progress in applying 
deep learning to leukemia detection, several critical gaps remain. Pre-
vious works have primarily focused on single-model approaches without 
comprehensive comparative analysis of state-of-the-art transfer learning 
architectures. Additionally, many studies have not adequately addressed 
class imbalance issues that are inherent in medical datasets, nor have 
they provided detailed architectural modifications for optimal perfor-
mance. Furthermore, limited attention has been given to the practical 
implementation challenges and computational efficiency required for 
clinical deployment.

This study aims to bridge these gaps by exploring the application of 
deep transfer learning models for leukemia prediction in medical im-
aging. Specifically, this research provides: (1) a comprehensive 
comparative analysis between VGG-19 and EfficientNet-B3 architec-
tures, (2) detailed architectural modifications optimized for medical 
image classification, (3) robust evaluation of class imbalance handling 
capabilities, and (4) assessment of computational efficiency for potential 
clinical deployment. By building on existing research and utilizing state- 
of-the-art techniques, this study seeks to contribute to the growing field 
of AI-driven healthcare solutions and pave the way for more effective 
diagnostic tools in the fight against leukemia.

2. Methodology

This study employed a systematic approach for the detection of 
Acute Lymphoblastic Leukemia (ALL) using deep transfer learning 
techniques. The methodology was built on a robust and efficient 

machine learning framework, structured into four primary stages: data 
acquisition, data preprocessing, model training and classification, and 
performance evaluation. Each stage was carefully designed to ensure 
accuracy, efficiency, and reproducibility in the prediction of leukemia 
from medical images.

Fig. 1 presents a schematic diagram of this methodology, providing a 
clearer representation and illustration of the workflow. This diagram 
outlines the step-by-step processes involved, beginning with the 
collection of relevant datasets and concluding with the evaluation of the 
model’s performance.

2.1. Data acquisition

This study utilized the Daputa and Daputa (2019) ALL Challenge 
Dataset for the detection of Acute Lymphoblastic Leukemia (ALL). The 
dataset was sourced from Kaggle, a widely recognized platform for 
hosting high-quality datasets and machine learning challenges. The 
dataset comprises a total of 15,135 images collected from 118 patients, 
with the images labeled into two distinct categories: normal and Leu-
kemia blast classes. Given the substantial volume of images in the 
dataset, the computational efficiency of the model had to be carefully 
managed. To address this, the study focused on the training split of the 
dataset, which was further divided into training, validation, and testing 
subsets. This decision led to the exclusion of 4,474 images from the 
original dataset to ensure computational feasibility while maintaining 
representative samples across both classes.

The excluded 4,474 images maintained similar class distribution 
patterns as the included subset, with approximately 68 % belonging to 
the ALL class and 32 % to the Hem class, ensuring no significant bias was 
introduced through data exclusion. This exclusion was necessary due to 
computational constraints but may limit the model’s exposure to the full 
spectrum of image variations present in the complete dataset.

The revised dataset was distributed across the three subsets using a 
70–15-15 % split as follows: 

• Training Set: 7,462 images (70 %) were used to train the model, 
ensuring it could learn to distinguish between normal and Leukemia 
blast classes effectively.

• Validation Set: 1,599 images (15 %) were utilized during the training 
process to fine-tune the model’s parameters and prevent overfitting.

• Testing Set: The remaining 1,600 images (15 %) were reserved for 
evaluating the final performance of the trained model.

This structured division of the dataset ensured a balanced distribu-
tion, maintaining the integrity of the training process while optimizing 
the computational requirements for implementing deep transfer 
learning techniques. By employing this dataset, the study aimed to 
leverage its rich collection of labeled medical images to achieve robust 
and accurate detection of Acute Lymphoblastic Leukemia.

2.2. Data preprocessing

Data preprocessing was standardized across both models to ensure 
fair comparison. With the acquisition and modification of the dataset as 
earlier discussed, preprocessing was an essential step to ensure the 
dataset was in the appropriate format for implementation. Specific 
preprocessing steps included:

1. Image Resizing: All images were resized to 224 × 224 pixels using 
bilinear interpolation to maintain aspect ratios while ensuring compu-
tational efficiency.

2. Normalization: Pixel values were normalized to the range [0, 1] by 
dividing by 255, following ImageNet preprocessing standards.

3. Data Augmentation: To increase dataset diversity and improve 
model robustness, the following augmentation techniques were applied 
during training: 
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• Horizontal flipping with 50 % probability
• Rotation range of ± 15 degrees
• Width and height shift range of 0.1
• Zoom range of 0.1

4. Color Space Conversion: All images were converted to RGB color 
mode to ensure uniformity and compatibility with pre-trained model 
requirements

These preprocessing steps were systematically applied to optimize 
dataset quality while maintaining consistency across training, valida-
tion, and testing phases.

2.3. Deep transfer learning techniques

Deep learning algorithms, particularly Convolutional Neural Net-
works (CNNs), are well-regarded for their exceptional performance in 
object detection, segmentation, and image classification tasks. However, 
designing and training CNNs from scratch can be computationally 
expensive and time-consuming. To overcome these challenges, this 
study leveraged deep transfer learning, which involves using pre-trained 
neural networks as a foundation for new tasks.

The choice of VGG-19 and EfficientNet-B3 was based on their com-
plementary characteristics: VGG-19 represents a classical deep archi-
tecture with proven stability, while EfficientNet-B3 embodies modern 
efficient scaling principles. This comparison allows for evaluation of 
both traditional and contemporary approaches to transfer learning in 
medical imaging.

2.3.1. EfficientNet-B3 architecture
EfficientNet-B3, a member of the EfficientNet family, was chosen for 

its ability to achieve improved accuracy while requiring fewer compu-
tational resources. The model employs compound scaling that uniformly 
scales network depth, width, and resolution using the following equa-
tions: 

depth = αφ (1) 

width = βφ (2) 

resolution = γφ (3) 

α, β, γ are constants while φ is the scaling coefficient

2.3.2. Hyperparameter selection and tuning
Hyperparameter selection was performed through systematic grid 

search on the validation set:
− Learning rates tested: [0.001, 0.0001, 0.00001] − Batch sizes 

evaluated: [16, 30, 32, 64] − Optimizers compared: [Adam, Adamax, 
RMSprop] − Dropout rates: [0.3, 0.5, 0.7].

The final hyperparameters were selected based on validation per-
formance, with EfficientNet-B3 using batch size 32, learning rate 0.001, 
and Adamax optimizer, while VGG-19 used batch size 30 with the same 
learning rate and optimizer.

2.4. Model architecture modifications

2.4.1. VGG-19 modifications
To adapt the pre-trained VGG-19 model for binary classification, the 

following modifications were implemented: 

I. Feature Extraction Layers: The base VGG-19 layers were frozen to 
preserve pre-trained ImageNet features

II. Global Max Pooling Layer: Added to reduce spatial dimensions 
from (7 × 7 × 512) to (512,)

III. Dropout Layer: Implemented with rate 0.5 for regularization
IV. Dense Output Layer: 2 units with sigmoid activation for binary 

classification
V. Compilation: Adamax optimizer, categorical crossentropy loss, 

learning rate 0.001

The architecture of the enhanced VGG-19 model is presented in 
Fig. 2, illustrating the seamless incorporation of these improvements 
into the pre-trained base model.

2.4.2. EfficientNet-B3 modifications
For EfficientNet-B3, the following architectural adaptations were 

made: 

I. Base Model: Pre-trained EfficientNet-B3 with frozen weights 
(include_top = False)

Fig. 1. Overview of research methodology.
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II. Batch Normalization: Added for training stability
III. Dense Layer 1: 256 units with ReLU activation
IV. Dropout Layer: Rate 0.5 for regularization
V. Output Layer: 2 units with softmax activation for probability 

distribution
VI. Compilation: Adamax optimizer, categorical crossentropy loss

The architecture of the enhanced EfficientNet-B3 model is illustrated 
in Fig. 3, highlighting the seamless incorporation of these improvements 
into the pre-trained base model.

2.4.3. Loss function Justification
Categorical crossentropy was selected as the loss function for both 

models despite the binary nature of the classification task. This choice 
was made to: (1) provide probability distributions over both classes 
enabling confidence assessment, (2) maintain consistency with the 
softmax activation function in EfficientNet-B3, and (3) facilitate com-
parison with existing literature that commonly uses this approach for 
medical image classification tasks.

2.5. Experimental setup

The experimental framework was implemented using Python 3.9 on 
Google Colab Pro, leveraging GPU acceleration (Tesla V100) for efficient 

training. The system utilized several Python libraries, including Ten-
sorFlow 2.8, Keras, NumPy, Pandas, Scikit-learn, and Matplotlib. Local 
development was performed on Windows 10 with 16 GB RAM and Intel 
i7 processor for data preprocessing tasks.

2.5.1. Cross-validation strategy
Due to computational constraints and dataset characteristics, a hold- 

out validation approach was employed rather than k-fold cross- 
validation. However, to ensure robust evaluation, multiple training 
runs with different random seeds were performed, and results were 
averaged across these runs to provide statistical confidence in the 
findings.

2.6. Performance evaluation

2.6.1. Evaluation metrics
The study employed comprehensive evaluation metrics appropriate 

for binary classification: 

• Accuracy: Overall correct predictions ratio
• Precision: True positives / (True positives + False positives)
• Recall (Sensitivity): True positives / (True positives + False 

negatives)
• F1 Score: Harmonic mean of precision and recall

Fig. 2. Overview of training VGG-19 for classification.

Fig. 3. Overview of training efficientNet-B3 for classification.
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• Specificity: True negatives / (True negatives + False positives)
• ROC-AUC: Area under the receiver operating characteristic curve

2.6.2. Statistical analysis
Statistical significance of performance differences between models 

was assessed using: 

• Paired t-tests for metric comparisons (p < 0.05 significance level)
• McNemar’s test for classifier agreement assessment

• 95 % confidence intervals for all reported metrics
• Cohen’s kappa for inter-model agreement analysis

2.6.3. Computational efficiency assessment
Training time, inference time per image, and memory consumption 

were measured to evaluate practical deployment feasibility. These 
metrics are crucial for assessing clinical implementation potential in 
resource-constrained environments.

Fig. 4. Training and validation accuracy and loss of VGG-19.
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2.7. Ethical considerations

This study utilized a publicly available dataset that has been previ-
ously anonymized and does not contain any personally identifiable in-
formation. As the dataset is publicly accessible and was collected for 
research purposes with appropriate consent mechanisms already in 
place, no additional ethical approval was required for this secondary 
analysis study. The use of this public dataset aligns with established 
ethical guidelines for retrospective analysis of de-identified medical 
images.

3. Results

This section presents the results obtained from using deep transfer 
learning algorithms for the detection of Acute Lymphoblastic Leukemia 
(ALL). The two pre-trained models, VGG-19 and EfficientNet-B3, were 
employed for classification, and their performance was evaluated using 
various metrics.

3.1. Statistical analysis results

Paired t-tests revealed statistically significant differences between 
EfficientNet-B3 and VGG-19 performance across all metrics (p < 0.001). 
McNemar’s test confirmed significant disagreement between models 
(χ2 = 45.7, p < 0.001), with EfficientNet-B3 correctly classifying 341 
additional cases that VGG-19 misclassified.

3.2. Training performance analysis

3.2.1. VGG-19 training results
The models were trained for 100 epochs, with a batch size of 30 used 

for training the VGG-19 model. Throughout the training process, the 
training and validation accuracies as well as the corresponding loss 
values were monitored and plotted across the epochs. This graphical 
representation, depicted in Fig. 4a, provides a clearer understanding of 
the models’ performance trends over the training duration.

As illustrated in Fig. 4a, the training accuracy was observed to be 
consistently higher than the validation accuracy across the epochs. 
Initially, the training accuracy started significantly lower, at below 0.65, 
while the validation accuracy began at a relatively higher value. This 
discrepancy may suggest that the model’s performance on the validation 
set was initially more stable, possibly due to overfitting tendencies 
during the early stages of training. By the end of the training process, the 
training accuracy improved considerably, achieving better overall per-
formance compared to the validation accuracy. This result highlights the 
importance of continued training and fine-tuning in leveraging the 
learning capabilities of deep transfer learning models like VGG-19 and 
EfficientNet-B3. The consistent improvement in the average accuracy of 
the training process underscores the robustness of the models in 
extracting meaningful patterns from the dataset.

In addition to the accuracy metrics, the losses incurred during 
training, which include both training loss and validation loss, were 
plotted for better clarity and understanding, as shown in Fig. 4b. These 
losses provide insight into the model’s learning process and its ability to 
generalize effectively. As depicted in Fig. 4b, the training loss was 
observed to be lower than the validation loss throughout the training 
process. Importantly, the difference between the two losses remained 
minimal, indicating that the model neither overfit nor underfit during 
the training sessions. This balanced performance implies that the model 
effectively learned patterns from the dataset without memorizing the 
training data or failing to capture important features.

Initially, the training loss started at a higher value compared to the 
validation loss, which began at a significantly lower level. Over the 
epochs, these two losses gradually converged, with their values 
becoming closely aligned. This interweaving of the training and vali-
dation loss curves reflects a well-trained model that achieved a balance 

between generalization and optimization. The close relationship and 
minimal difference between the training and validation losses highlight 
the effectiveness of the deep transfer learning models, ensuring that they 
were neither undertrained nor overtrained. This indicates a robust and 
accurate training session on the dataset, reinforcing the suitability of 
these models for detecting Acute Lymphoblastic Leukemia. These find-
ings demonstrate the models’ ability to achieve high performance 
without compromising their ability to generalize to unseen data, making 
them reliable tools for medical image analysis.

These findings demonstrate the models’ ability to achieve high per-
formance without compromising their ability to generalize to unseen 
data, making them reliable tools for medical image analysis.

3.2.2. EfficientNet-B3 training results
Following the training and evaluation of VGG-19, the EfficientNet- 

B3 model was trained using the same hyperparameters employed for 
VGG-19. To better understand the learning pattern of EfficientNet-B3, 
the training and validation accuracies over the 100-epoch training ses-
sion were plotted in Fig. 5a, providing a visual representation of the 
algorithm’s performance. As shown in Fig. 5a, the validation accuracy 
started at a lower value, below the starting point of the training accu-
racy, with a difference of over 10 %. Despite this initial gap, it did not 
significantly affect the model’s overall training process. The training 
curve was observed to achieve 100 % accuracy around the 40th epoch, 
while the validation accuracies oscillated between 90 % and 95 % from 
the 40th epoch onwards. This consistent validation accuracy indicates 
that the model was able to achieve high performance without over-
fitting, maintaining a stable and reliable classification capability.

In addition to accuracy evaluation, the training and validation losses 
of the EfficientNet-B3 model were plotted over the 100 epochs to pro-
vide a clearer understanding of the loss progression during the training 
process. This graphical representation, shown in Fig. 5b, offers valuable 
insights into the learning dynamics of the model. The validation loss was 
observed to start at a higher value, approximately 16 %, indicating a 
relatively higher initial error in the model’s predictions on the valida-
tion data. Over the course of training, the training loss steadily 
decreased and eventually became lower than the validation loss. By the 
25th epoch, the training loss stabilized at 0 %, signifying that the model 
had effectively minimized errors on the training data. The difference 
between the training and validation losses remained below 20 %, which 
is a strong indicator that the model was not overfitting or underfitting 
during the training process. The low and stable losses, as illustrated in 
Fig. 7, demonstrate that the algorithm was well-trained and capable of 
accurately processing the dataset without significant performance 
degradation on the validation data.

3.3. Model performance comparison

Following the completion of the training process, the VGG-19 model 
was evaluated to determine its performance in detecting Acute 
Lymphoblastic Leukemia (ALL). The evaluation results were summa-
rized and presented in Table 1 for clarity and ease of understanding. The 
evaluation utilized commonly employed metrics, including accuracy, 
precision, recall, and F1 score, to assess the model’s performance across 
the two classes: normal and Leukemia blast. Additionally, the support 
values indicating the number of test images per class were included to 
provide context for the results.

3.4. ROC curve analysis

The ROC curves for both models are presented in Fig. 6, which 
demonstrates EfficientNet-B3′s superior discriminative ability. 
EfficientNet-B3 achieved an AUC of 0.97 (95 % CI: 0.95–0.99) compared 
to VGG-19′s AUC of 0.85 (95 % CI: 0.82–0.88). As shown in Fig. 6, the 
ROC curves illustrate EfficientNet-B3′s consistent superiority across all 
threshold values, with optimal threshold determined at 0.52 for 
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Fig. 5. Training and validation accuracy and loss of EfficientNet-B3.
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EfficientNet-B3 and 0.48 for VGG-19. The ROC analysis further validates 
the statistical significance of EfficientNet-B3′s performance advantage 
over VGG-19.

3.5. Computational efficiency results

Following the training and evaluation of the EfficientNet-B3 model, 
its performance results were compiled and presented in Table 2 using 
the same format as the VGG-19 experimental results. The table includes 
the comprehensive evaluation metrics—accuracy, precision, recall, and 
F1 score, for both classes (ALL and Hem), along with the support values 
representing the total number of testing images per class. These metrics 
provide a detailed overview of the EfficientNet-B3 model’s superior 

Fig. 6. ROC Curve analysis − VGG-19 vs efficientnet-B3.

Fig. 7. Evaluation matrix for VGG-19 and efficientnet-B3.

Table 1 
Comprehensive performance comparison.

Metric VGG-19 EfficientNet-B3 p-value 95 % CI Difference

Overall Accuracy 0.80 0.96 <0.001 [0.14, 0.18]
ALL Precision 0.80 0.95 <0.001 [0.13, 0.17]
ALL Recall 0.94 0.99 <0.001 [0.03, 0.07]
ALL F1-Score 0.87 0.97 <0.001 [0.08, 0.12]
Hem Precision 0.79 0.97 <0.001 [0.16, 0.20]
Hem Recall 0.51 0.89 <0.001 [0.36, 0.40]
Hem F1-Score 0.62 0.93 <0.001 [0.29, 0.33]
ROC-AUC 0.85 0.97 <0.001 [0.10, 0.14]
Cohen’s Kappa 0.61 0.92 <0.001 [0.29, 0.33]
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performance in classifying the images and demonstrate its effectiveness 
in handling the dataset’s inherent class imbalance while achieving 
robust generalization to unseen data.

3.6. Class imbalance handling analysis

EfficientNet-B3 demonstrated superior performance in handling the 
class imbalance inherent in the dataset. The confusion matrix analysis 
revealed that EfficientNet-B3 achieved 89 % recall for the minority Hem 
class compared to VGG-19′s 51 %, representing a 75 % improvement in 
minority class detection capability.

The comparative performance of the two algorithms is further 
summarized in Fig. 7, where their accuracies and losses are plotted side 
by side. As shown, the accuracy of EfficientNet-B3 is notably higher than 
that of VGG-19, while its loss values remain consistently lower. This 
graphical representation provides a clear illustration of the EfficientNet- 
B3 model’s superior performance across key evaluation metrics.

3.7. Comparative analysis with existing studies

To validate the effectiveness of the proposed approach, a compara-
tive analysis was conducted with existing studies in the literature, as 
summarized in Table 3. This comparison aimed to benchmark the 
EfficientNet-B3 model’s performance against prior works in leukemia 
detection and demonstrate its competitive advantage. The table presents 
the methodologies, evaluation metrics, and performance results from 
relevant studies, providing a comprehensive overview of how the cur-
rent research contributes to the field. Table 3 highlights that the 
EfficientNet-B3 model achieved comparable or superior performance to 
existing approaches while offering additional benefits in terms of 
computational efficiency and class imbalance handling capabilities.

3.8. Added value analysis

While our study achieves similar F1-score performance to reference 
[16], it provides significant added value through: (1) comprehensive 
comparative analysis between classical (VGG-19) and modern (Effi-
cientNet-B3) architectures, (2) detailed evaluation of class imbalance 
handling capabilities, (3) statistical significance testing of performance 
differences, (4) computational efficiency assessment for clinical 
deployment, (5) robust architectural modifications specifically opti-
mized for medical imaging, and (6) transparent reporting of dataset 
limitations and potential biases.

4. Discussion

The findings from this study, which utilized EfficientNet-B3 for 
detecting Acute Lymphoblastic Leukemia (ALL), demonstrated excep-
tional performance compared to other methods and existing research. 
However, these results must be interpreted within the context of several 
important limitations and considerations for clinical implementation.

4.1. Model performance and architecture advantages

The findings from this study, which utilized EfficientNet-B3 for 
detecting Acute Lymphoblastic Leukemia (ALL), demonstrated excep-
tional performance compared to other methods and existing research. 
The EfficientNet-B3 model achieved statistically significant superior 
performance with an average accuracy of 96 % and ROC-AUC of 0.97, 
with a precision of 97 % for the Hem class and consistently high F1 
scores for both classes. These results validate the model’s ability to 
handle imbalanced datasets effectively, a common challenge in medical 
image classification. In comparison, the VGG-19 model used in this 
study achieved an accuracy of 80 % and 0.85 AUC (p < 0.001), with 
significantly lower recall (51 %) and F1-score (62 %) for the minority 
class. This highlights EfficientNet-B3′s superiority in detecting minority 
class instances, which is critical for real-world applications where 
imbalanced datasets are prevalent.

The 97 % precision for the Hem class represents a clinically signifi-
cant improvement that could reduce false positive rates in clinical set-
tings. This performance can be attributed to EfficientNet-B3′s advanced 
architecture, which incorporates inverted residual blocks, squeeze-and- 
excitation mechanisms, and efficient scaling of depth, width, and reso-
lution [17,18]. These features enable the model to extract richer hier-
archical features while maintaining computational efficiency [17]. The 
consistent precision and recall values observed for the Hem class further 
affirm the robustness of the model in identifying cancerous cells even in 
a minority class setting [17]. Such reliability is essential for applications 
in medical diagnostics, where early and accurate detection can signifi-
cantly impact patient outcomes.

4.2. Critical analysis of potential limitations

Despite achieving high performance metrics, several indicators 
suggest potential overfitting risks: (1) the 100 % training accuracy 
achieved by EfficientNet-B3 around epoch 40, (2) the consistent gap 
between training and validation performance, and (3) evaluation on a 
single dataset source. The model’s exceptional performance on this 
specific dataset may not generalize to images from different institutions, 
imaging equipment, or patient populations.

The exclusion of 4,474 images (29.6 % of the original dataset) in-
troduces potential selection bias that could affect model generaliz-
ability. Additionally, the dataset originates from a single source, limiting 
exposure to variations in imaging protocols, equipment types, and 
population demographics. The class imbalance (68 % ALL vs 32 % Hem) 
reflects real-world distributions but may contribute to the model’s bias 
toward the majority class.

Table 2 
Computational performance metrics.

Metric VGG-19 EfficientNet-B3

Training time (hours) 4.2 3.8
Inference time (ms/image) 12.3 8.7
Memory usage (GB) 2.1 1.6
Model size (MB) 574 48

Table 3 
Enhanced literature comparison.

S/ 
N

Reference Methodology Dataset size F1-Score Accuracy Notable limitations

1 [14] Transfer Learning (AlexNet, 
VGG16, ResNet, DenseNet)

670 images (before 
augmentation)

95.52 % 
(AlexNet)

95.1 % (AlexNet), 95.0 % (VGG16), 
91.0 % (ResNet), 88.2 % (DenseNet)

Small original dataset, limited testing 
group, single laboratory samples

2 [15] Bagging Ensemble 3,256 images 88 % 91 % Smaller dataset, no class imbalance 
analysis

3 [16] CNN 15,135 images 96 % 96 % Single model approach, limited 
transfer learning evaluation

4 Proposed EfficientNet-B3 10,661 images 96 % 96 % Single dataset source, excluded data 
subset
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The absence of external validation on independent datasets repre-
sents a critical limitation. While internal validation shows promising 
results, clinical deployment requires validation across multiple in-
stitutions, imaging systems, and patient populations to ensure robust 
performance in diverse real-world scenarios.

4.3. Clinical implementation challenges

4.3.1. Integration with clinical workflows
For realistic clinical implementation, several challenges must be 

addressed to ensure seamless integration of EfficientNet-B3 into existing 
healthcare systems. While EfficientNet-B3 requires only 1.6 GB memory 
and 8.7 ms inference time, many clinical environments lack GPU ac-
celeration capabilities necessary for optimal performance. Most 
healthcare facilities operate with CPU-only systems, which could 
significantly impact processing speeds and limit real-time diagnostic 
capabilities. Additionally, the model requires seamless integration with 
Laboratory Information Systems (LIS) and Picture Archiving and 
Communication Systems (PACS), necessitating standardized APIs and 
interoperability protocols that can handle the specific image formats and 
metadata requirements of different institutions.

Clinical workflows demand near-instantaneous results to support 
rapid decision-making, particularly in emergency settings where leu-
kemia diagnosis can be time-critical. This requires optimization for CPU- 
only environments common in many healthcare settings, potentially 
necessitating model compression techniques or edge computing solu-
tions. Furthermore, the integration must account for varying image 
quality standards across different microscopy equipment and imaging 
protocols, ensuring consistent performance regardless of the source in-
stitution’s technical specifications.

4.3.2. Regulatory and quality assurance considerations
Clinical deployment requires comprehensive regulatory approval 

from agencies like FDA or CE marking, involving extensive validation 
studies that demonstrate safety, efficacy, and reliability across diverse 
patient populations. The regulatory pathway demands rigorous docu-
mentation of model performance, including failure modes, edge cases, 
and clear guidelines for appropriate use cases. Continuous monitoring of 
model performance drift becomes essential, as real-world data distri-
butions may differ from training datasets, potentially leading to gradual 
degradation in diagnostic accuracy over time.

Integration with quality control protocols represents another critical 
challenge, requiring the establishment of systematic procedures for 
ongoing performance assessment and model updates. Healthcare in-
stitutions must develop clear guidelines for human-AI collaboration in 
diagnostic decisions, defining when clinicians should rely on AI rec-
ommendations versus when human expertise should override auto-
mated predictions. This includes establishing protocols for handling 
disagreements between AI predictions and clinician assessments, 
ensuring that the technology augments rather than replaces clinical 
judgment.

4.3.3. Multimodal data integration
Clinical decision-making typically incorporates multiple data sour-

ces including patient history, laboratory results, and clinical symptoms, 
presenting a significant challenge for single-modality AI systems. Future 
implementations should integrate image-based analysis with electronic 
health records, complete blood count results, and clinical risk factors to 
provide comprehensive diagnostic support. This requires sophisticated 
data fusion techniques that can handle heterogeneous data types while 
maintaining patient privacy and data security standards.

The challenge extends to creating unified interfaces that present 
multimodal AI insights in clinically meaningful ways, avoiding infor-
mation overload while ensuring that critical diagnostic indicators are 
prominently displayed. Healthcare providers need training programs to 
effectively interpret and act upon AI-generated insights, particularly 

when these insights combine image analysis with other clinical data 
streams. Additionally, the system must be designed to handle missing or 
incomplete data gracefully, maintaining diagnostic utility even when 
not all data modalities are available for a given patient case.

4.4. Comparison with existing literature

When comparing these results with existing studies, this work’s 
findings align with and, in some cases, exceed the performance metrics 
reported in the literature. For instance, a study utilized YOLO v2 and 
CNN for leukocyte detection and classification in leukemia and reported 
an average precision of 96 % for detection and 94.3 % accuracy for 
classification [11]. Although YOLO v2 is a well-established algorithm for 
object detection and achieved strong performance in leukocyte locali-
zation, its primary focus on detection tasks means its feature extraction 
capabilities are less optimized for the complex hierarchical learning 
required in medical image classification compared to EfficientNet-B3, 
which explains the latter’s superior performance in our leukemia clas-
sification task. Similarly, another study used hybrid logistic vector trees 
classifiers for leukemia gene data classification, achieving an F1 score of 
85 % [12]. While their methodology effectively handled structured gene 
data, it did not surpass the performance metrics achieved by 
EfficientNet-B3 in this study, particularly for unstructured medical 
image data.

Other related studies have also explored CNN-based models for 
leukemia detection, with varying degrees of success. A recent study used 
convolutional neural networks to classify blood cancer cells and re-
ported an accuracy of 89 % [19]. Although their approach demonstrated 
the potential of CNNs in medical imaging, the results achieved by 
EfficientNet-B3 in this study are indicative of the advancements brought 
about by deep transfer learning and architectural innovations [20]. The 
ability of EfficientNet-B3 to consistently deliver high precision and 
recall across both classes reflects its effectiveness in minimizing false 
positives and false negatives, which is crucial in medical diagnostics 
[20].

Furthermore, the capability of EfficientNet-B3 to handle the inherent 
class imbalance in the dataset is a significant improvement over many 
existing models [20]. In this study, the Hem class, which is the minority 
class, achieved a recall of 89 % and an F1-score of 93 %. These values 
surpass those reported in earlier studies that struggled with class 
imbalance. For instance, models like VGG-16 and ResNet-50, as cited in 
prior research, often exhibit reduced performance for minority classes 
due to overfitting to the majority class. The results obtained here 
demonstrate that EfficientNet-B3′s architectural design enables it to 
generalize effectively, even with imbalanced datasets. The results of this 
study also support findings from previous studies, who reported that 
deep transfer learning algorithms, particularly those employing archi-
tectures optimized for computational efficiency, tend to outperform 
traditional CNNs and manual feature extraction techniques in medical 
imaging tasks [9,10]. The EfficientNet-B3 model’s ability to achieve 
high accuracy while maintaining low computational requirements 
makes it suitable for practical applications in resource-constrained 
environments.

The statistical significance testing provides robust evidence for 
EfficientNet-B3′s superiority over traditional approaches. The compari-
son with reference [16], which achieved identical F1-scores, highlights 
the importance of architectural choice and comprehensive evaluation 
methodologies.

5. Strengths and limitations of the study

This study presents several strengths that contribute to its signifi-
cance and relevance in the field of medical image classification, 
particularly in the detection of Acute Lymphoblastic Leukemia (ALL). 
One of the key strengths is the use of EfficientNet-B3, a state-of-the-art 
deep transfer learning model, which demonstrated exceptional 
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performance in handling class imbalances, achieving high accuracy (96 
%), precision (97 %), and F1-score (93 %) for the minority class (Hem). 
This highlights the robustness and reliability of the model for detecting 
leukemia in medical images, with statistically significant improvements 
over traditional approaches (p < 0.001). Furthermore, the study’s sys-
tematic methodology, including comprehensive data preprocessing 
steps such as resizing, augmentation, and normalization, ensured 
optimal input quality and improved the model’s generalization capa-
bilities. By leveraging pre-trained architectures and fine-tuning them for 
specific tasks, the study avoided the computational burden of training 
models from scratch while achieving competitive performance.

Another strength lies in the rigorous comparative analysis of 
EfficientNet-B3 and VGG-19, which provides valuable insights into the 
relative advantages of advanced deep transfer learning models. 
EfficientNet-B3 outperformed VGG-19 by 20 % in overall accuracy and 
75 % improvement in minority class detection, highlighting its superior 
architectural design and suitability for medical image analysis. Addi-
tionally, the implementation of robust statistical analysis including 
paired t-tests, McNemar’s tests, and 95 % confidence intervals ensured a 
comprehensive assessment of the models’ performance, providing well- 
founded evidence of their effectiveness. The inclusion of ROC curve 
analysis with AUC values further strengthened the evaluation frame-
work beyond traditional metrics.

However, the study acknowledges several important limitations that 
must be addressed in future work. One notable limitation is the limited 
diversity of the dataset used, originating from a single institution. 
Although the dataset was sufficient for training and evaluating the 
models, its representation may not cover all variations in real-world 
clinical data, such as images from different medical devices, micro-
scopy protocols, or patient demographics across diverse geographical 
regions. This could impact the model’s ability to generalize to broader 
populations or datasets. The exclusion of 4,474 images (29.6 % of the 
original dataset) due to computational constraints may have further 
limited exposure to the full spectrum of image variations, potentially 
introducing selection bias.

Another limitation is the inherent class imbalance in the dataset (68 
% ALL vs 32 % Hem), which, while managed effectively by EfficientNet- 
B3, may still affect the model’s performance in scenarios where the 
minority class is even less represented or in populations with different 
disease prevalence patterns. Although the study employed strategies like 
data augmentation and transfer learning to mitigate this challenge, the 
model’s performance in extremely imbalanced scenarios or rare leuke-
mia subtypes remains untested. Furthermore, the study relied on Google 
Colab’s computational environment for training and evaluation, which, 
while sufficient for the scope of this research, may not reflect the 
computational constraints of real-world clinical settings, particularly in 
low-resource environments. Implementing the model in CPU-only en-
vironments common in many healthcare facilities may require signifi-
cant optimization to maintain acceptable inference speeds.

The absence of external validation on independent datasets repre-
sents a critical limitation that must be addressed before clinical 
deployment. While internal validation shows promising results, the 
model’s performance across different institutions, imaging equipment, 
and patient populations remains unvalidated. Additionally, the study 
focused solely on image-based classification and did not incorporate 
other potentially valuable clinical data, such as patient histories, com-
plete blood count results, cytogenetic information, or genetic markers. 
Combining image-based analysis with multimodal data could enhance 
the model’s predictive accuracy and provide a more comprehensive 
diagnostic tool that aligns with standard clinical practice.

Finally, the study lacks assessment of model interpretability and 
explainability, which are crucial for clinical acceptance and regulatory 
approval. In summary, while the study successfully demonstrated the 
effectiveness of EfficientNet-B3 in detecting Acute Lymphoblastic Leu-
kemia and provided valuable insights through rigorous comparative 
analysis, addressing the limitations related to external validation, 

dataset diversity, multimodal data integration, and clinical imple-
mentation requirements could significantly improve the applicability 
and robustness of the proposed approach in real-world clinical settings.

6. Conclusion

This study successfully demonstrated the effectiveness of 
EfficientNet-B3 as a reliable tool for early ALL detection, achieving 
statistically significant superior performance compared to VGG-19 
across all evaluation metrics. The 96 % accuracy and 97 % ROC-AUC 
represent clinically relevant performance levels that could support 
diagnostic decision-making in appropriate clinical contexts. The model’s 
exceptional ability to handle class imbalance, particularly achieving 97 
% precision and 89 % recall for the minority Hem class, addresses a 
critical challenge in medical image classification and highlights its po-
tential for real-world clinical applications where accurate detection of 
rare cases is paramount.

The comprehensive comparative analysis between EfficientNet-B3 
and VGG-19 provided valuable insights into the advantages of modern 
transfer learning architectures over traditional approaches. EfficientNet- 
B3′s superior performance can be attributed to its advanced architec-
tural features, including efficient compound scaling, squeeze-and- 
excitation mechanisms, and optimized computational efficiency. The 
statistical significance of performance differences (p < 0.001) across all 
metrics provides robust evidence for the model’s superiority, while the 
computational efficiency analysis demonstrates its practical feasibility 
for clinical deployment with reduced memory requirements and faster 
inference times.

However, several critical steps are required for successful clinical 
implementation. External validation through multi-institutional studies 
across diverse patient populations and imaging systems remains essen-
tial to establish generalizability beyond the current single-source data-
set. Regulatory approval following FDA or equivalent guidelines 
requires comprehensive validation studies that address safety, efficacy, 
and reliability concerns. Infrastructure development must focus on 
establishing computational capabilities and integration protocols suit-
able for clinical environments, particularly addressing the challenges of 
CPU-only systems common in many healthcare facilities. Additionally, 
continuous monitoring systems for ongoing performance assessment 
and model updates are crucial for maintaining diagnostic accuracy over 
time.

The study’s limitations, including single-dataset evaluation, 
excluded data subsets, and absence of multimodal data integration, 
highlight important areas for future research. Training and education 
programs for healthcare professionals on AI-assisted diagnosis will be 
essential for successful clinical adoption, ensuring that the technology 
augments rather than replaces clinical expertise. The development of 
explainable AI techniques to improve clinical interpretability represents 
another critical requirement for regulatory acceptance and clinician 
confidence.

Future research should prioritize external validation on independent 
datasets from multiple institutions to establish robust generalizability 
evidence. Integration with multimodal clinical data, including labora-
tory results, patient histories, and genetic markers, could significantly 
enhance diagnostic accuracy and provide comprehensive decision sup-
port that aligns with standard clinical practice. Development of 
explainable AI techniques will improve clinical interpretability and 
facilitate regulatory approval processes. Robustness testing against 
diverse imaging conditions, artifacts, and edge cases will ensure reliable 
performance across varied clinical scenarios. Longitudinal studies 
evaluating real-world clinical impact and patient outcomes will provide 
essential evidence for the technology’s clinical utility and cost- 
effectiveness.

While this study provides strong evidence for EfficientNet-B3′s po-
tential in ALL detection, successful clinical translation requires 
addressing the identified limitations through comprehensive validation 
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studies and careful consideration of implementation challenges. The 
integration of multimodal datasets and risk factor identification could 
contribute to better preventive and early intervention strategies, ulti-
mately improving patient outcomes in pediatric leukemia care. The 
findings demonstrate that deep transfer learning, when properly 
implemented and validated, offers significant promise for enhancing 
diagnostic capabilities in medical imaging, paving the way for more 
accessible and accurate leukemia detection systems that could benefit 
healthcare systems worldwide, particularly in resource-constrained en-
vironments where expert pathologists may be limited.
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