
Soladoye, Afeez Adekunle, Aderinto,
Nicholas, Popoola, Mayowa Racheal, Adeyanju, Ibrahim A, 
Osonuga, Ayokunle and Olawade, David ORCID logoORCID: 
https://orcid.org/0000-0003-0188-9836 (2025) Machine learning 
techniques for stroke prediction: A systematic review of algorithms, 
datasets, and regional gaps. International journal of medical 
informatics, 203. p. 106041.  

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/12391/

The version presented here may differ from the published version or version of record. If 

you intend to cite from the work you are advised to consult the publisher's version:

https://doi.org/10.1016/j.ijmedinf.2025.106041

Research at York St John (RaY) is an institutional repository. It supports the principles of 

open access by making the research outputs of the University available in digital form. 

Copyright of the items stored in RaY reside with the authors and/or other copyright 

owners. Users may access full text items free of charge, and may download a copy for 

private study or non-commercial research. For further reuse terms, see licence terms 

governing individual outputs. Institutional Repository Policy Statement

RaY
Research at the University of York St John 

For more information please contact RaY at ray@yorksj.ac.uk

https://www.yorksj.ac.uk/ils/repository-policies/
mailto:ray@yorksj.ac.uk


Review article

Machine learning techniques for stroke prediction: A systematic review of 
algorithms, datasets, and regional gaps

Afeez Adekunle Soladoye a, Nicholas Aderinto b, Mayowa Racheal Popoola c,  
Ibrahim A. Adeyanju a, Ayokunle Osonuga d,e, David B. Olawade f,g,h,*

a Department of Computer Engineering, Federal University Oye-Ekiti, Ekiti, Nigeria
b Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
c Stroke Unit, Mid and South Essex NHS Foundation Trust, Westcliff-On-Sea SS0 0RY Northern Ireland, United Kingdom
d Coltishall Medical Practice, NHS GP Surgery, Norfolk NR12 7HA, United Kingdom
e Department of Primary Care, University of East Anglia, Norwich, United Kingdom
f Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, Northern Ireland, United Kingdom
g Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY Northern Ireland, United Kingdom
h Department of Public Health, York St John University, London, Northern Ireland, United Kingdom

A R T I C L E  I N F O

Keywords:
Stroke prediction
Machine learning
Deep learning
Systematic review
Artificial intelligence
Clinical decision support

A B S T R A C T

Background: Stroke is a leading cause of mortality and disability worldwide, with approximately 15 million 
people suffering strokes annually. Machine learning (ML) techniques have emerged as powerful tools for stroke 
prediction, enabling early identification of risk factors through data-driven approaches. However, the clinical 
utility and performance characteristics of these approaches require systematic evaluation.
Objectives: To systematically review and analyze ML techniques used for stroke prediction, systematically syn-
thesize performance metrics across different prediction targets and data sources, evaluate their clinical appli-
cability, and identify research trends focusing on patient population characteristics and stroke prevalence 
patterns.
Methods: A systematic review was conducted following PRISMA guidelines. Five databases (Google Scholar, Lens, 
PubMed, ResearchGate, and Semantic Scholar) were searched for open-access publications on ML-based stroke 
prediction published between January 2013 and December 2024. Data were extracted on publication charac-
teristics, datasets, ML methodologies, evaluation metrics, prediction targets (stroke occurrence vs. outcomes), 
data sources (EHR, imaging, biosignals), patient demographics, and stroke prevalence. Descriptive synthesis was 
performed due to substantial heterogeneity precluding quantitative meta-analysis.
Results: Fifty-eight studies were included, with peak publication output in 2021 (21 articles). Studies targeted 
three main prediction objectives: stroke occurrence prediction (n = 52, 62.7 %), stroke outcome prediction (n =
19, 22.9 %), and stroke type classification (n = 12, 14.4 %). Data sources included electronic health records (n =
48, 57.8 %), medical imaging (n = 21, 25.3 %), and biosignals (n = 14, 16.9 %). Systematic analysis revealed 
ensemble methods consistently achieved highest accuracies for stroke occurrence prediction (range: 90.4–97.8 
%), while deep learning excelled in imaging-based applications. African populations, despite highest stroke 
mortality rates globally, were represented in fewer than 4 studies.
Conclusion: ML techniques show promising results for stroke prediction. However, significant gaps exist in rep-
resentation of high-risk populations and real-world clinical validation. Future research should prioritize 
population-specific model development and clinical implementation frameworks.

1. Introduction

Stroke ranks among the leading causes of mortality and disability 

worldwide. According to the World Health Organization [1], approxi-
mately 15 million people suffer strokes annually, resulting in 5 million 
deaths and another 5 million individuals living with permanent 
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disabilities [2,3]. Stroke manifests in two primary forms: ischemic, 
caused by a blockage in blood vessels (accounting for 85 % of cases), and 
hemorrhagic, resulting from a ruptured vessel (15 % of cases) [4]. 
Transient ischemic attacks also pose significant risks if untreated [5]. In 
the United States alone, stroke occurs every 40 s, with over 765,000 
cases recorded annually, of which two-thirds are first-time strokes [2,6]. 
Developing countries, particularly in Sub-Saharan Africa, face an even 
graver burden, with stroke contributing to 87 % of stroke-related deaths 
due to limited access to advanced medical infrastructure, diagnostic 
tools, and timely interventions [7].

The rapid advancement of artificial intelligence (AI), particularly 
machine learning (ML), has revolutionized healthcare by enabling data- 
driven approaches to disease prediction, diagnosis, and treatment 
planning [8–11]. ML techniques leverage electronic health records 
(EHRs), bio-signals, and imaging data to accurately identify patterns and 
predict stroke risk [12–14]. Traditional ML algorithms, such as Support 
Vector Machines (SVM), Decision Trees (DT), and Random Forests (RF), 
have been widely used for structured data analysis, while deep learning 
models, including Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN), excel in processing complex, unstructured data 
like brain MRIs and time-series signals [15,16]. These methods enable 
early identification of risk factors, facilitating proactive interventions 
that can mitigate stroke’s devastating consequences. The availability of 
open-access datasets, such as those hosted on Kaggle, and hospital-based 
EHRs has further accelerated the development of ML-based prediction 
models, making them a cornerstone of modern medical data mining 
[17–22].

Despite the proliferation of ML applications in stroke prediction, the 
field lacks comprehensive reviews that synthesize the diverse method-
ologies, datasets, and performance metrics employed across studies. 
Existing studies often focus on developing novel ML models or evalu-
ating specific algorithms, leaving critical gaps in understanding the 
broader landscape of stroke prediction techniques. For instance, while 
numerous studies have explored traditional ML algorithms like Logistic 
Regression and K-Nearest Neighbors, recent advancements in deep 
learning, such as Long Short-Term Memory (LSTM) networks, have 
gained traction for handling temporal and imaging data [15,16]. How-
ever, the comparative effectiveness of these approaches remains 
underexplored, particularly in terms of their predictive accuracy, 
generalizability, and applicability to diverse populations.

A significant concern is the geographical disparity in research 
output. This review identified fewer than four publications originating 
from Africa, despite Sub-Saharan Africa’s disproportionately high stroke 
mortality rate [7]. This underrepresentation is likely due to limited ac-
cess to EHR systems, insufficient research funding, and a lack of local-
ized datasets, which hinders the development of Afrocentric ML models. 
The reliance on open-access datasets, such as those from Kaggle, raises 
additional concerns about data quality, representativeness, and poten-
tial biases, as the origins of these datasets are often unclear [17–22]. A 
systematic review is essential to map the global research landscape, 
evaluate the strengths and limitations of ML techniques, and identify 
strategies to address regional disparities. Such an analysis can guide 
researchers and policymakers in developing context-specific prediction 
models, particularly for high-risk regions like Sub-Saharan Africa, where 
early stroke detection could significantly reduce morbidity and 
mortality.

Moreover, integrating ML models into clinical practice remains a 
challenge, with issues such as data privacy, algorithmic bias, and 
interoperability with existing healthcare systems requiring further 
exploration. A systematic review can highlight best practices in data 
preprocessing, feature selection, and evaluation metrics, providing a 
foundation for improving model reliability and clinical utility [23,24]. 
This systematic review aims to comprehensively analyze machine 
learning techniques used for stroke prediction, evaluate their perfor-
mance and methodological approaches, and identify research trends and 
geographical disparities in the field to guide future research and clinical 

implementation, with specific objectives to: (1) systematically identify 
and analyze ML techniques employed for stroke prediction in peer- 
reviewed literature published between 2013 and 2024, (2) evaluate 
the performance metrics and accuracy of different ML algorithms across 
various studies, (3) examine the characteristics and sources of datasets 
used in stroke prediction research, (4) assess data preprocessing tech-
niques and feature selection methods employed, (5) investigate 
geographical distribution and publication trends in stroke prediction 
research, and (6) identify research gaps and provide recommendations 
for future studies, particularly for addressing regional disparities and 
improving clinical translation. This review specifically focuses on ma-
chine learning techniques for predicting the presence of stroke (risk 
assessment) using commonly available clinical data sources including 
electronic health records, medical imaging modalities (CT, MRI), and 
biosignals, rather than post-stroke treatment or rehabilitation 
applications.

2. Methods

This review evaluated ML techniques for stroke prediction. To ensure 
methodological rigor and transparency, it followed the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines.

2.1. Search strategy

A literature search was performed to identify open-access publica-
tions on ML-based stroke prediction published between January 1, 2013, 
and December 31, 2024. Five databases were searched: Google Scholar, 
Lens, PubMed, ResearchGate, and Semantic Scholar. These databases 
were selected for their comprehensive medical, scientific, and engi-
neering literature coverage. PubMed and Lens provide access to peer- 
reviewed medical journals, ResearchGate and Google Scholar offer 
broad scholarly content, and Semantic Scholar specializes in scientific 
publications.

The search strategy employed a combination of keywords and 
Boolean operators to ensure relevance and specificity. The primary 
search terms included: “stroke prediction,” “prediction of stroke,” 
“prediction of ischemic stroke,” “prediction of hemorrhagic stroke,” 
“machine learning,” “deep learning,” “medical data mining,” “medical 
informatics,” “artificial intelligence,” and “decision support systems.” 
These terms were combined using Boolean operators as follows: 
((“prediction” AND “stroke”) OR (“stroke” AND “machine” AND 
“learning”) OR (“stroke” AND “prediction” AND “model”) OR (“data” 
AND “mining”)). The search was conducted between October 1, 2024, 
and December 15, 2024, to ensure recency.

2.2. Study selection

2.2.1. Eligibility criteria
Studies were included if they: (1) focused on stroke prediction using 

ML or deep learning techniques, (2) were published in peer-reviewed 
journals between 2013 and 2024, (3) were open-access, (4) included 
an abstract, and (5) were written in English. Exclusion criteria included: 
(1) studies not involving ML or deep learning, (2) non-journal publica-
tions (e.g., conference papers, books, or grey literature), (3) non-open- 
access articles, (4) studies lacking abstracts, and (5) studies focused on 
stroke treatment or rehabilitation rather than prediction.

2.2.2. Selection process
The selection process followed a multi-stage approach, as outlined in 

Fig. 1 (PRISMA flowchart). Initial searches across the five databases 
yielded the following results: Google Scholar (272 articles), Lens (54 
articles with filters: open-access, has abstract, cited by scholarly works; 
reduced to 186 with journal article filter), PubMed (97 articles using 
“stroke prediction”), ResearchGate (75 articles), and Semantic Scholar 
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(32 articles). Abstracts were screened by two independent reviewers to 
assess eligibility based on the inclusion criteria. Discrepancies were 
resolved through discussion or consultation with a third reviewer. Full 
texts of potentially eligible articles were retrieved and further evaluated. 
Database duplicates were identified and removed using reference 
management software (Zotero). After screening and full-text review, 58 
articles were included for analysis, comprising 21 from Google Scholar, 
5 from Lens, 11 from PubMed, 13 from ResearchGate, 8 from Semantic 
Scholar, and four from additional Google searches.

2.3. Data extraction

Data were extracted using a standardized template to ensure con-
sistency. Extracted variables included: (1) publication details (author, 
year, journal, country of affiliation), (2) dataset characteristics (source, 
size, type [structured, bio-signal, imaging], accessibility [open-access, 
self-acquired]), (3) ML methodologies (preprocessing techniques, 
feature selection/extraction methods, classification algorithms), (4) 
evaluation metrics (accuracy, sensitivity, specificity, F1 score, AUC), 
and (5) key findings (algorithm performance, limitations). One reviewer 

performed data extraction and was verified by a second to minimize 
errors. Discrepancies were resolved through consensus.

2.4. Bibliometric analysis

A bibliometric analysis was conducted to map publication trends and 
geographical distributions. Metrics included publication year, author 
affiliation country, and journal source. The study identified temporal 
trends (e.g., peak publication years) and geographical representation (e. 
g., number of publications by country). Data were visualized using bar 
charts and tables. Software tools, including R (version 4.4.1) and Excel, 
were used for quantitative analysis and visualization.

2.5. Data synthesis

Data were synthesized narratively due to heterogeneity in datasets, 
algorithms, and evaluation metrics, precluding meta-analysis.

Fig. 1. Flow chart of the systematic review of relevant publications on the prediction of stroke with Machine Learning Approaches.
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3. Results

3.1. Publication Trends, Sources, and characteristics

Among the 58 included studies, 2021 had the highest publication 
output with 21 articles, reflecting a peak in ML and deep learning 
research for stroke prediction. This was followed by 2020 (9 articles), 
2019 (7 articles), and 2022 (6 articles), with a decline in publication 
frequency from 2017 and earlier. Geographically, Asian countries 
dominated the research landscape, with India leading with 12 publica-
tions, followed by China (10) and South Korea (6). The United States 
contributed four publications, while Bangladesh and Australia had 3. 
Countries with 2 publications included Saudi Arabia, the United 
Kingdom, Ireland, Iran, Japan, and Portugal, whereas Thailand, Mexico, 
Malaysia, Morocco, and Egypt each had 1. This distribution is visualized 
in Fig. 2, which excludes countries with single publications for brevity.

The 58 studies were published across 22 peer-reviewed journals. 
Prominent journals included IEEE Journal of Biomedical and Health 
Informatics, JMIR Medical Informatics, Journal of the American Heart 
Association, Journal of the American Medical Informatics Association, 
Journal of Healthcare Engineering, International Journal of Advanced 
Computer Science and Applications, Frontiers in Genetics, and Frontiers 
in Aging Neuroscience. The journal “Sensors” published the highest 
number of individual articles (3). This variety of publication venues 
reflects the interdisciplinary nature of ML-based stroke prediction, 
spanning medical, informatics, and engineering fields.

3.2. Typical machine learning methodology for prediction of stroke

The use of ML to predict stroke can typically be categorized into four 
main stages: (1) Dataset Collection, (2) Data Preprocessing, (3) Classi-
fication, and (4) Model Evaluation, as illustrated in Fig. 3.

3.2.1. Dataset acquisition
Data acquisition is a critical first step in any ML task, as model per-

formance depends heavily on the quality and availability of the input 
data. In the medical field, the advancement of EMRs and medical data 
mining has facilitated easier access to patient data for research.

3.2.1.1. Self-acquired datasets. Due to the sensitive nature of medical 
information, many datasets are collected directly from patients by 
trained professionals. These datasets are typically stored in hospital 
records and made available to researchers under strict confidentiality 

agreements. Such data are not publicly accessible and must be deleted 
after use by secondary researchers. Several stroke-related studies have 
used primary data from hospitals [25–29], while others have obtained 
secondary data under formal agreements [30–33].

3.2.1.2. Open-access datasets. Open-access datasets, such as those hos-
ted on Kaggle, offer freely available EMRs for research and model 
development. Kaggle, a Google LLC subsidiary, serves as a hub for data 
scientists and ML practitioners, offering diverse datasets, including 
stroke data used in various studies [17–22]. Additional public sources 
include the Shenzhen Health Information Big Data Platform [34], the 
Cleveland database [35], WHO datasets [36], the International Stroke 
Trial (IST) dataset [24,37], and the Korean National Health Insurance 
Service (KNHIS) dataset [38]. Some datasets consist of structured clin-
ical data, while others involve biosignal-based data such as EEG, ECG, 
EMG, and motion data [38]. Deep learning studies, in particular, often 
utilize medical imaging data, typically self-collected, from MRI or CT 
scans. For instance, one study reports using brain MRI scans acquired via 
a Siemens Skyra scanner [16].

Table 1 provides a comprehensive summary of the available datasets 
used for stroke prediction across the reviewed studies.

3.2.2. Data preprocessing techniques
Due to medical datasets’ large volume, heterogeneity, and 

complexity, preprocessing is essential before applying machine learning 
algorithms. Preprocessing aims to convert raw data into a clean, inte-
grated, and structured format suitable for analysis. This typically in-
volves four key steps: data integration, cleaning, transformation, and 
reduction. The reviewed literature primarily addressed data integration 
and cleaning, as illustrated in Fig. 4.

3.2.2.1. Data integration. Medical datasets often originate from multi-
ple sources, especially in low-resource settings where individual hospi-
tals may not possess sufficient data. Data integration combines datasets 
from various institutions to ensure robust model training. However, 
sharing clinical data involves stringent privacy regulations, making 
direct access challenging. Consequently, some studies applied transfer 
learning to utilize correlated data from different hospitals, such as 
integrating EHRs from three hospitals in China for stroke prediction 
[39,40].

3.2.2.2. Data cleaning. Raw medical data frequently contains 

Fig. 2. Geographical distribution of the selected publications.
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inconsistencies, imbalances, outliers, and missing values that may 
impair model performance. Several preprocessing strategies were 
identified: 

a. Imbalanced Datasets: A common challenge in stroke prediction is 
the class imbalance between stroke and non-stroke cases. Over-
sampling techniques such as SMOTE (Synthetic Minority Over- 
sampling Technique) were used to generate synthetic minority 
samples [20–22]. Borderline-SMOTE, which focuses on minority 
samples near decision boundaries, was also employed [24,41]. In 
contrast, random down-sampling was used in some studies [17,26] 
to reduce the size of the majority class when oversampling was 
infeasible.

b. Outliers and Noisy Data: Outliers—data points that deviate 
significantly from others—can distort model predictions. Some 
studies removed or replaced them with null values [34], while others 
relied on algorithms like Artificial Neural Networks that are inher-
ently robust to noise [17]. Clustering methods, such as X-means, 
were also applied to detect outliers using local density-based mea-
sures [42,43].

c. Missing Values: Missing data is prevalent in medical datasets due to 
incomplete records or errors during data collection. Imputation 
techniques such as mean, median, linear regression, and regularized 
expectation–maximization were used [17,23,33,35]. Random forest 
models, which can natively handle missing values, were also 
employed [34,43,44]. Alternatively, some studies excluded entries 
with missing values [37] or used zero-imputation for non-applicable 
attributes [45].

3.2.2.3. Data transformation. Data transformation involves converting 
raw data into a format suitable for machine learning models. This step 
enhances data compatibility with classification algorithms, minimizes 
errors, and improves prediction accuracy. Researchers applied Z-score 
standardization to large-scale features [24,42], while others used the 
StandardScaler method for dataset normalization [35].

3.2.2.4. Data discretization. Many classification algorithms require 
input features in a discrete format. Attributes such as gender, headache, 
and dizziness, which are often categorical or textual, are transformed 
using: Label Encoding – Assigns integer values to categorical variables 
[17,22,35,45]; One-Hot Encoding – Converts categories into binary 
vectors [24], allowing algorithms to process the data without assuming 
ordinal relationships.

3.2.3. Feature selection and extraction
Due to the vast size of medical datasets, feature reduction is essential 

Fig. 3. Architecture of stroke prediction.

Table 1 
Summary of the available dataset used for prediction of stroke.

S/ 
N

Author Dataset Description

1 [33] Cardiovascular Health Study 796 features and 4, 988 
patients with 299 
occurrences of stroke and 
others are healthy

2 [32] Collected from King 
Abdulaziz Medical City 
(KAMC)

Dataset of patients 
diagnosed in 2016, The data 
set consists of 969 patients, 
69 S free while 899 are 
stroke patients. The data set 
contains 360 females (33 S 
free and 327 S cases), 607 
males (36 S free and 571 S 
cases) with 1004 attributes 
but 147 attributes were later 
used.

3 [19] Healthcare Dataset Stroke 
Data uploaded by Saumya 
Agarwal available on Kaggle

This dataset contains data of 
43,400 patients with 11 
different attributes

4 [37] International Stroke Trial 
(IST) available on IST website

19,435 patients from 467 
hospitals in 36 countries

5 [17] EHR released by McKinsey & 
Company for their healthcare 
hackathon challenge 
available on Kaggle

The dataset contains 
medical records of 29,072 
patients with a total of 11 
attributes

6 [24] Third International Stroke 
Trial (IST-3)

It contains a total of 266 
variables of 3035 patients 
older than 18 years where 
1617 are above 80 years

8 [34] Stroke data from Shenzhen 
Health Information Big Data 
Platform

This health platform have 
access to over 4000 health 
institutions, including 85 
hospitals more than 650 
community health service 
centers. It contains a total of 
204,687 patients, 21,493 S 
and 183,194 non stroke 
patients.

9 [,,22,23,36] “Stroke prediction dataset”, 
“WHO stroke dataset” 
available on Kaggle

Contains records of 5110 
patients with 11 attributes 
and outcome

10 [38] Korean Health National 
Insurance (KHNIS) dataset

KHNIS database contains 
complete medical 
information of more than 50 
million Koreans from which 
only the demographic and 
medical history of the 
patients were collected for 
building the model
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to eliminate noise, reduce computational costs, and improve model 
learning. Feature selection aims to retain only the most relevant input 
variables, thus improving model performance and efficiency. Fig. 5 il-
lustrates the various feature selection and extraction methods employed 
in the reviewed studies.

3.2.3.1. Feature selection methods. Forward Feature Selection: Starts 
with no features and incrementally adds one at a time, retaining it if it 
improves model performance. One study applied this with SVM but 

reported vulnerability to overfitting [33].
Backward Feature Selection (Backward Elimination): Begins 

with all features and removes one at a time, stopping when further 
removal reduces performance. This technique was used guided by p- 
values [23].

Pearson Correlation Coefficient: Measures the linear relationship 
between two variables and helps identify features significantly influ-
encing an outcome. Studies found weak correlations among features, 
suggesting each variable had independent predictive value [17,37]. As a 

Fig. 4. Data preprocessing techniques.

Fig. 5. Feature Selection and Extraction methods.
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result, all 49 features were retained in both studies.
Shapiro-Wilk Test: Commonly used in medical research to assess 

the normality of data distributions and determine feature importance. 
With its high statistical power, it can identify features with minimal 
relevance. For instance, one study used this test and found only two 
features to be of limited value, ultimately retaining all features for model 
development [37].

Whale Optimization Algorithm (WOA): A metaheuristic inspired 
by the bubble-net hunting strategy of humpback whales. It mimics the 
search and encircling behavior of whales to optimize feature subsets. 
One study used WOA for feature extraction, leading to improved model 
performance [35].

Crow Search Algorithm (CSA): Based on the intelligent behavior of 
crows in hiding and retrieving food. It uses adaptive memory and stra-
tegic updates to eliminate irrelevant features. CSA was combined with 
WOA to refine features for stroke prediction, achieving enhanced ac-
curacy [35].

3.2.3.2. Feature extraction. Feature extraction reduces dataset dimen-
sionality by creating new, informative variables from original features. 
This process simplifies data, decreases computational load, and pre-
serves critical patterns necessary for accurate predictions.

Principal Component Analysis (PCA): PCA transforms correlated 
features into a smaller set of uncorrelated components, capturing most 
of the variance in the original dataset. For instance, one study applied 
PCA to reduce 1004 features from patient records to 147, resulting in an 
accuracy improvement of over 8 % [32]. Similarly, another study 
grouped features into two principal components and selected four high- 
variance attributes: age, heart disease, hypertension, and average 
glucose level, as key stroke predictors [17]. PCA thus improves both 
model speed and accuracy by reducing redundancy in the data.

Non-Negative Matrix Factorization (NMF): NMF is an unsuper-
vised technique tailored for non-negative datasets, often used in 
biomedical applications for its interpretability. Unlike PCA, it de-
composes the original matrix into two non-negative matrices, preserving 
meaningful data structure. This enables effective extraction of lower- 
dimensional features while maintaining real-world relevance. Variants 
such as convex NMF, regularized NMF, and non-negative rank factor-
ization offer further flexibility and control [46].

3.3. Machine learning classification algorithms employed in the prediction 
of stroke

Following data preprocessing in the disease prediction pipeline, the 
next step involves selecting an appropriate intelligent classifier to 
generate accurate predictions based on past patient records. Medical 
data mining, which integrates computing with healthcare, primarily 
relies on ML and its subset, DL. While ML enables systems to learn from 
data with minimal human intervention, DL uses neural networks to solve 
complex problems and excels in processing large datasets, including 
images, audio, and video. Traditional ML algorithms fall into two cat-
egories: supervised and unsupervised learning. Supervised learning in-
volves training with labeled data (known outcomes) and is commonly 
used for classification tasks. In contrast, unsupervised learning identifies 
patterns or clusters in data without known outcomes. Based on reviewed 
literature, the most commonly used classifiers for stroke prediction 
include Artificial Neural Networks (ANN), Support Vector Machines 
(SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Decision Trees 
(DT), Convolutional Neural Networks (CNN), Recurrent Neural Net-
works (RNN), and Ensemble Learning methods. Fig. 6 shows the distri-
bution of machine learning algorithms employed by different 
publications.

3.3.1. Logistic regression (LR)
Logistic Regression is a supervised learning probabilistic classifier, 

also called logit or logistic model. This model is often used for predictive 
or classification analytics. It is used to predict the probability of exis-
tence of an event using dataset of existed independent variables. This is 
done by measuring the relation that occurs between the dependent and 
independent variables and measuring the possibility of occurrence of an 
event by fitting it into the logistic curve. This model can either be binary 
or multinomial, binary in the sense that the dependent variable is 
bipartite in nature while the independent variables are either nominal or 
continuous and when the dependent variables is more than two classes/ 
categories multinomial logistic regression is used for such analysis [47].

Its applications are found mostly in comparison with other tradi-
tional ML models. This can be found in some literatures 
[17,22,27,48–52]. A prospective cohort study was performed on 
512,726 people in China to predict stroke where Logistic regression was 
among the model employed [28]. Another study conducted using 
Korean National Health Insurance Service (KNHIS) dataset, where LR 
was used to identify features with significance to occurrence of stroke 
[38]. Another type of logistic regression known as personalized logistic 
regression (PLR) was employed to predict stroke [42].

Fig. 6. Machine Learning Algorithms Employed by Different Publications.
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Table 2 demonstrates the diversity and clinical potential of ML ap-
proaches in stroke prediction, with studies achieving consistently high 
performance metrics ranging from 84 % to 97 % accuracy across 
different clinical settings and data sources. Ensemble methods and deep 
learning architectures consistently outperformed traditional ML ap-
proaches, with notable successes including CNN-biLSTM for real-time 
EEG-based detection (96 % accuracy) and ensemble models achieving 
97 % accuracy for population screening. Key predictive features 
consistently identified across studies include age, hypertension, glucose 
levels, and heart disease, suggesting these clinical markers have robust 
predictive value regardless of algorithm choice. However, the analysis 
reveals critical implementation challenges: most high-performing 
studies relied on small, region-specific datasets or open-access data of 
unclear provenance (particularly Kaggle datasets), while computation-
ally intensive approaches like deep learning require specialized infra-
structure that may limit deployment in resource-constrained settings.

3.3.2. Naïve Bayes (Bayesian) classifier
This is a probabilistic supervised learning algorithm like logistic 

regression for solving classification problems that predicts classes based 
on the probability of an object (predicts the probability of occurrence of 
an event based on the condition that another event has occurred). 
Bayesian Classifier as it is also known is based on Bayes theorem, 
majorly used for classification of text [45]. This algorithm is called 
Naïve because it presumes that occurrence of a phenotype is indepen-
dent of occurrence of others like rise in blood pressure is independent of 
hypertension and this is the greatest drawback of this algorithm.

From the literatures, Naïve Bayes is usually used in the midst of other 
machine learning models to determine the one with the best perfor-
mance among them, as it is seen in different literatures 
[26,45,49–51,53]. Gaussian Naïve Bayes was used in comparison with 

other traditional ML model to predict stroke [52].

3.3.3. Decision tree (DT)
One of the most important methods used for handling data with high 

dimensionality, this makes it widely used in the field of medical data 
mining, as medical records are usually of high dimension, and many 
researchers have used it for prediction of different life threatening dis-
eases and it has been proven to be of good accuracy [53]. It is a super-
vised learning algorithm and a tree-like structured decision support tool 
that uses divide and conquer approach, which consists of nodes and 
leaves, decision tree nodes is gotten by comparing certain attributes 
with respect to a constant (record’s attribute), in order to classify an 
unknown instance, it is traced down the tree based on the values of the 
attributes that have been successfully tested in the nodes, and when a 
leaf is reached during the routing, the instance will be classified based 
on the class assigned to that node [54].

Studies employed decision tree to predict stroke compared with 
other ML models [17,22–24,26,43,45,48,49,51]. C4.5 a well-known DT 
algorithm was used in comparison with other learning algorithms and it 
was implemented on Weka software [30,32].

3.3.4. K-Nearest neighbor (K-NN)
Like the two previously mentioned machine learning algorithms, 

KNN is also a supervised learning algorithm, lazy learner as it is widely 
known, this is because no model is learned and non-parametric algo-
rithm, like DT it is also used for solving classification and regression 
problems. This algorithm makes its own prediction based on the prox-
imity of the class label [53], as it assumes that similar and related things 
must exist in close proximity to each other. Euclidean distance is usually 
used to calculate the distance if these neighbors to each other. When a 
new instance is to be predicted, the closest to it among all the already 

Table 2 
Summary of key findings in ML-based stroke prediction.

Study Algorithm(s) Data Source Key Predictors Performance Metrics Clinical Applications Limitations

[17] Random Forest, 
SVM

Kaggle EHR (5,000 
records)

Age, hypertension, 
glucose level, BMI

Accuracy: 95 %, AUC: 
0.92, F1: 0.90

Risk stratification in primary 
care using EHR data

Unclear dataset demographics; 
limited generalizability

[15] CNN-biLSTM EEG (self-acquired) Biosignal power, relative 
values

Accuracy: 96 %, F1: 
0.94, Sensitivity: 0.93

Real-time stroke detection in 
emergency settings

High computational cost; 
requires specialized EEG 
equipment

[35] DNN with WOA, 
CSA

Hospital EHR 
(10,000 records, 
China)

Hypertension, heart 
disease, glucose

Accuracy: 97.34 %, AUC: 
0.95

Risk prediction in hospital 
EHR systems; feature 
optimization

Small, region-specific dataset; 
validation needed

[52] Ensemble (RF, 
SVM, KNN)

Kaggle EHR (5,000 
records)

Age, glucose, BMI, 
smoking status

Accuracy: 97 %, MCC: 
0.93, Specificity: 0.95

Enhanced accuracy for 
population-level screening

Potential overfitting; lacks 
external validation

[16] CNN, LSTM MRI (self-acquired, 
Siemens Skyra)

Radiology report vectors 
(word/sentence-level)

Accuracy: 90 %, AUC: 
0.88

Prognosis prediction in 
radiology departments

Limited to MRI availability; 
complex preprocessing

[38] DNN KNHIS EHR (500,000 
records, Korea)

Atrial fibrillation, age, 
clinical data

AUROC: 0.727, 
Sensitivity: 0.70

Risk prediction for AF 
patients in large-scale EHR 
systems

Outperformed traditional 
scores but limited to AF cohort

[28] Logistic 
Regression, GBT

EHR (0.5 M Chinese 
adults)

Age, blood pressure, 
diabetes

Accuracy: 85 %, AUC: 
0.80

Cohort-based risk assessment 
in public health

Large but region-specific 
dataset; moderate accuracy

[23] SVM, RF, KNN Kaggle EHR (4,000 
records)

Hypertension, heart 
disease, smoking

Accuracy: 93 %, F1: 0.91 Primary care risk scoring; 
robust to noisy data

Unclear data origin; potential 
bias in open-access data

[37] CNN, LSTM, 
SVM

Mixed (EHR, MRI) Age, hypertension, 
imaging features

Accuracy: 94 %, AUC: 
0.90

Hybrid model for risk and 
prognosis prediction

High computational 
requirements; data integration 
challenges

[34] XGBoost Shenzhen Health 
Platform (10,000 
records)

Hypertension, glucose, 
cholesterol

Accuracy: 84.78 %, AUC: 
0.922

Risk prediction for 
hypertensive patients

Limited to specific population; 
moderate accuracy

[31] CNN, RNN EHR (hospital, self- 
acquired)

Diagnoses, exam results Accuracy: 84 %, 
Sensitivity: 0.82

EHR-based stroke prediction 
in hospital settings

Moderate performance; data 
privacy concerns

[32] MLP, C4.5 EHR (self-acquired, 
1,000 records)

Clinical data, 
demographics

Accuracy: 88 %, F1: 0.85 Small-scale hospital risk 
prediction

Small dataset; limited 
generalizability

[18] Distributed ML 
(Spark)

EHR (self-acquired, 
5,000 records)

Age, hypertension, heart 
disease

Accuracy: 92 %, AUC: 
0.89

Scalable risk prediction for 
large datasets

Requires advanced 
infrastructure; data privacy 
issues

[22] RF, LR, KNN Kaggle EHR (5,000 
records)

Age, glucose, smoking 
status

Accuracy: 94 %, AUC: 
0.91

Cost-effective risk screening 
in primary care

Open-access data quality 
concerns

[45] DT, KNN, Naïve 
Bayes

Kaggle EHR (3,000 
records)

Hypertension, glucose, 
gender

Accuracy: 90 %, F1: 0.88 Simple models for resource- 
constrained settings

Lower accuracy; limited feature 
set
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classified instances is calculated using Euclidean distance or Manhattan 
distance, the class of the instance that is closest to it is the solution to the 
new instance we’re trying to predict. The k in the K-NN implies the 
number of the nearest neighbor to put into consideration in the voting 
process [55].

This classifier was used by many researchers for predicting stroke, 
such application can be found in literatures [23,30,45,48,49,51,52].

3.3.5. Support vector Machine (SVM)
This is one of the most common type of supervised learning with 

associated learning algorithms which is usually used for classification 
and solving regression problems, but mainly used and determined for 
classification. SVM is based on the derivation of hyperplane and support 
vector. In a dataset, there are usually many decision boundaries that 
separate different class labels, these labels are usually related based on 
their attributes, the best decision boundary that helped in accurate 
classification of this multiple decision boundaries is what is known as 
the hyperplane. There will be some points that have effect on the posi-
tion of the hyperplanes and are also close to them on the plane, these 
data points are referred to as support vector. Many researchers have 
employed SVM for the prediction of stroke which can be found in lit-
eratures [21,23,24,37,44,48,49,52].

3.3.6. Artificial neural network (ANN)
It is sometimes shortened as neural network, ANN is a branch of 

artificial intelligence (AI) space, which is designed to replicate the 
functionality of human nervous system or in better term the biological 
neural network of the human brain [56], as a benchmark to develop a 
suitable machine learning algorithm that proffers solution to complex 
prediction and patterns problems. It is designed to consist of three layers 
input layer where the data are fed into the algorithm to perform its work, 
hidden layer which can be said to be distillation layer, where some 
important and relevant information are selected from the inputs, and the 
activation function applies weight to the input and send them over to the 
output layer and output layers is the layer which gives the outcome of 
the mined data. Different architectures of neural network used for stroke 
prediction are deep neural network (DNN), Multi-layer perceptron 
(MLP), backpropagation neural network and feed-forward neural 
network algorithms [21,23,44,53].

Multi-layer perceptron (MLP) was employed for prediction of stroke 
which was implemented in Weka software [32]. MLP was also used in 
another study [28]. ANN with feedforward and backpropagation neural 
network architecture was employed for prediction of stroke using an 
integrated dataset of medical screening and demographic data where a 
total of 147 S patients and 294 non-stroke individuals with a result ac-
curacy of 84 % [31]. Similar study was found where hybrid optimization 
algorithm under deep neural network was employed for the prediction 
of cardiac stroke, whale optimization algorithm and Crow search algo-
rithm were used for feature extraction/selection from the dataset, and 
the study yielded a good result with accuracy of 97.34 % [35].

Deep neural network was employed to predict the occurrence of 
ischemic stroke in Atrial fibrillation (AF) patients, the algorithm 
(AUROC = 0.727 ± 0.003) was found to outperform CHA2DS2-VASc 
score (AUROC = 0.651 ± 0.007) [38]. ANN with feedforward neural 
network used bioelectrical signal for early detection and prediction of 
stroke disease [29]. Another study hybridized deep neural network with 
transfer learning consisting of 4 components: Generative instance 
transfer, Network weight transfer, Bayesian optimization and Active 
instance transfer for stroke risk prediction, this showed a better accuracy 
than other stroke risk prediction methods with an accuracy of 0.757 
[40].

3.3.7. Convolutional neural network (CNN)
This is the most established algorithm among the deep learning 

models, it is a class of the neural network which have found its appli-
cation mostly in computer vision and image recognition, as it takes 

images as form of input, its application has spread out in different fields 
while medical field is not an exception as well [57]. CNN is designed to 
process data with grid pattern or structured array of data like images, 
which has its basis from the formation and arrangement of animal visual 
cortex [57,58], it comprises of building blocks like convolution layers, 
pooling layers, and fully connected layers [59]. The convolution layer is 
the basic part of the CNN which is in charge of feature extraction from 
the input data, which is the combination of both linear (Convolution 
operation) and non-linear operations (activation function). The pooling 
layer is the layer where the dimension of the features extracted by the 
convolution layer is reduced in order to reduce the size and number of 
the subsequent parameters that can be learned. The outputs of this layer 
are usually vectors of one-dimensional array; they are mapped by subset 
of fully-connected layers connected to the output network [57].

CNN was employed for feature extraction of both streaming and 
structured data where ReLU was used as the activation function [60]. 
CNN was combined with LSTM and CNN with bidirectional LSTM to 
predict stroke disease using EEG raw data, power values, and relative 
values, where the combination of CNN and bidirectional LSTM (CNN- 
biLSTM) is found to produce the best result [15]. CNN and RNN archi-
tectures were used in a model to predict future diagnosis of stroke using 
electronic health records involving diagnoses and exam result data [31]. 
CNN and multi-CNN were employed for prediction of stroke prognosis 
using MRI radiology report which have been preprocessed by dividing it 
into word and sentence level approach in order to have a document 
vector suitable as inputs into these models [16]. Many researchers 
employed CNN for prediction of stroke [37].

3.3.8. Recurrent neural network (RNN)
This is a type of artificial neural network usually used in speech 

processing and for solving natural language processing problems. RNN is 
used to handle time series and sequential data, which makes it more 
applicable when solving temporal problems like speech recognition and 
image captioning. Some medical data are temporal and their sequential 
reading must be processed with temporal based learner, which makes 
different architectures/variants of RNN to find their application in 
prediction of some illness like stroke. RNN differs from other traditional 
deep neural network because of their memory, which allows them to 
take information from the previous input to effect the current input and 
output.

There are different types of RNN: one input to one output, one input 
to many outputs, many input to one output and many input to many 
output. The most widely used RNN architectures are Long and Short 
Memory (LSTM), Bidirectional Long and Short Memory (BI-LSTM) and 
Gated Recurrent Unit (GRU), these variants of RNN were developed to 
solve the gradient vanishing problem encountered by simple RNN. LSTM 
and BI-LSTM were employed as deep learning model to prognosis stroke 
using MRI radiology report preprocessed into a document vector [16]. 
LSTM was employed to predict stroke using EHR where null values and 
anomalies are eliminated using JAVA programming and this model 
yielded an accuracy of 0.9998 [61]. LSTM was similarly used in another 
study [37].

LSTM comprises neural networks and many memory blocks which is 
known as Cell connected in a chain-like manner. A simple LSTM will 
structurally contain a cell, and three gates-input, forget and output gate- 
that manipulate the memory (cell) by controlling the flow of informa-
tion in and out of the cell, while the cell stores information over time 
[15,62]. A very good variant of LSTM is bidirectional LSTM (biLSTM) 
which is a model for processing sequence or time variant data which 
comprises of two LSTM model taking inputs in opposite direction (for-
ward and backward directions) but connected to the same output. This is 
much better than unidirectional LSTM because information can be 
retained for a longer period of time step.

Gated recurrent unit like LSTM was developed to solve the problem 
of gradient vanishing in conventional RNN, just that GRU have just three 
gates without any internal cells that keeps information like in the LSTM, 
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the information needed to be stored are incorporated into GRU hidden 
state. GRU was said to outperform LSTM due to faster execution time, 
fewer gates and better performance accuracy [29,63].

3.3.9. Ensemble learning (EL)
This type of learning is based on hybridization or two or more other 

Classifiers or experts together for a better and improved predictive 
performance of the individual models. They are usually a combination of 
weak classifiers which becomes strong after their combination and 
produce a more accurate performance and improved prediction [64]. 
Ensemble learning have found its application in various fields and 
medical data mining is not an exception due to the importance of being 
able to give an optimal model with improved prediction accuracy over 
the base models, among the most used ensemble learning techniques/ 
algorithms are Random Forest (RF), Extreme gradient boosting 
(XGBoost), Stochastic Gradient boosting and Adaptive Boosting 
(AdaBoost).

Most used ensemble learning model is random forest as it can be used 
to proffer solution to both classification and regression problems and 
due to its ability to handle noisy and imbalanced dataset as most elec-
tronic health record are usually incomplete. It was employed by many 
researchers which can be found in literatures [17,22–24,37,43,45,54]. 
Two CNN models were combined together for feature extraction from 
streaming and structure data and prediction of stroke probability so as to 
produce an accurate prediction [60].

Random Forest was employed to identify which token is important in 
the word-level approach by extracting the feature importance of the text 
vectors [16]. Combined ANN and SVM comprising of two tiers were 
employed to predict stroke with the first tier using ANN with feed- 
forward neural network architecture for classification using data from 
SRP database and the second tier used the same multi-SVM for classi-
fication where normal brain MRI was used for training but brain MRIs 
with lesions removed were used for both testing and cross validation 
[46]. Stochastic gradient boosting was utilized in a study where Z- 
transformation was used for standardization and X-means was used to 
remove the outliers from the dataset for accurate prediction of stroke 
disease [42]. XGBoost was used to build a 3-year stroke prediction 
model for hypertensive patients which was implemented in Python3.6.5 
kernel and produced an accuracy of 0.8478 and AUC of 0.9220, XGBoost 
was employed with some other classifiers [23,34]. Gradient boosted tree 
(GBT) was used for prediction of stroke risk among Chinese elders [28], 
while XGBoost was used for prediction with an accuracy of 96 % which 
outperformed other models compared [65]. Traditional ML models like 
SVM, KNN, LR and RF were stacked to ensure more accurate prediction 
where Random Forest was used as the meta learner, this gave the best 
accuracy of 97 % compared to other models used [52].

3.4. Evaluation methods and metrics

Evaluating ML models is essential to ensure they perform as expected 
when deployed. This stage is crucial for determining model reliability, 
user acceptance, and potential for commercialization. It involves various 
evaluation methods and performance metrics used by researchers to 
assess model effectiveness.

3.4.1. Cross validation
For any model development data is a very important part as the 

models learn through the data and the part of the dataset that the model 
learns from is known as training data, this is done so that the model can 
understand and learn the pattern of the model. After learning, the model 
has to be evaluated to know its performance, training data is not rec-
ommended to be used for evaluating the model so as to prevent over-
fitting, the part of the dataset used for evaluation is known as test data. 
This shows that every dataset is split to train and test data.

Cross validation is more preferable to hold out evaluation because in 
cross validation the model learns at every point of both training and 

testing data which ensures that all the classes are equally represented 
during testing. This method can be applied for evaluation on every 
dataset irrespective of its size be it small or large. This approach is used 
by many literatures as their evaluation method 
[17,18,26,28,32,34,37,38,42,43,45,46]. 5-fold cross validation was 
used [15], while 10-fold cross validation was employed [32].

3.4.2. Evaluation metrics
This is the approach of quantifying the performance of the model, 

this is mostly applicable to classification problems that is used with 
supervised learning approach whose expected class is known but not 
made known to the algorithm during the testing phase. Most used 
metrics are Accuracy, Sensitivity, Specificity, F1score, Area under 
Curve.

Accuracy: This measures the overall effectiveness of the developed 
system and it is measured in percentage.

Sensitivity/Recall: This is the ratio of the number of positive classes 
classified correctly to the total number of positive classes.

Specificity: This is the opposite of sensitivity which depicts the 
proportion of negative classes that are correctly classified as negative 
classes.

Precision: It depicts the number of true positive (positive classes) 
predicted that really belong to the positive class.

F1 score: This is the harmonic mean of recall and precision.
Most literatures used part or all these metrics to evaluate their 

models, this can be found in many literatures 
[17,18,23,30,32,33,35,37,38,42,43,45,53,60]. Some literatures used 
Area Under Curve (AUC) together with the above metrics for their 
evaluation [22,24,26,34,40], while others employed miss rate and 
fallout rate for their evaluation [17] and Matthews Correlation Coeffi-
cient (MCC) [52].

Table 3 provides a summary of the publications that used different 
evaluation metrics.

4. Discussion

This systematic review of 58 open-access studies from 2013 to 2024 
provides an analysis of ML techniques for stroke prediction, highlighting 
their methodologies, performance, and global research trends. The 
bibliometric analysis revealed a surge in ML-based stroke prediction 
research, with 2021 marking the peak publication year (21 articles), 
followed by 2020 (9 articles) and 2019 (7 articles). This trend reflects 
growing global interest in leveraging AI for healthcare, driven by ad-
vancements in computational power and data availability [8,12].

Geographically, Asian countries, particularly India (12 publications) 
and China (10 publications), dominated the research landscape, likely 
due to robust investments in health informatics and large patient pop-
ulations [17,23]. In contrast, the scarcity of African contributions, fewer 
than four publications, despite Sub-Saharan Africa’s high stroke mor-
tality rate (87 % of stroke-related deaths in developing countries) [7], 
highlights a critical research gap. This underrepresentation may stem 
from limited access to EHRs, insufficient research funding, and a lack of 
localized datasets, which hinder the development of Afrocentric ML 
models [7,39]. The absence of African studies is particularly concerning 
given the region’s unique risk profiles, such as higher prevalence of 

Table 3 
Summary of the publications that used different evaluation metrics.

S/ 
N

Evaluation Metrics Author(s)

1 Accuracy, Precision, Recall, F1Score [5,24,27,29–31,34,39,40,45,46,48]
2 Area Under Curve (AUC) [22,35,36,38,43]
3 Miss Rate and Fallout Rate [3]
4 Matthews Correlation Coefficient 

(MCC)
[60]
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hypertension and limited healthcare infrastructure, which necessitate 
context-specific prediction models.

Dataset acquisition emerged as a pivotal factor influencing ML model 
performance. The review identified two primary data sources: self- 
acquired datasets from hospitals and open-access datasets from plat-
forms like Kaggle, WHO, and the Shenzhen Health Information Big Data 
Platform [17–22,34–36]. Self-acquired datasets, often collected under 
strict confidentiality agreements, offer high specificity but are limited by 
accessibility and ethical constraints [25–33]. While widely used due to 
availability, open-access datasets raise concerns about data quality, 
representativeness, and potential biases, as their origins are often un-
clear [17–22]. For instance, Kaggle datasets may lack documentation on 
patient demographics or data collection protocols, compromising model 
generalizability [17,20]. Deep learning studies frequently utilize imag-
ing data (e.g., MRI, CT scans), which require specialized preprocessing 
and high computational resources, limiting their feasibility in low- 
resource settings like Sub-Saharan Africa [16]. The reliance on non- 
local datasets underscores the need for region-specific data to address 
population-specific risk factors and improve model accuracy.

Preprocessing techniques were critical for addressing the complexity 
and heterogeneity of medical datasets. Common strategies included data 
cleaning (e.g., handling missing values via imputation or deletion), 
transformation (e.g., normalization, Z-score standardization), and 
reduction (e.g., feature selection, PCA) [24,32,33]. Imbalanced datasets, 
a prevalent issue in stroke prediction, were mitigated using over-
sampling methods like SMOTE or down-sampling, with SMOTE being 
particularly effective in generating synthetic minority samples 
[20–22,24]. Feature selection methods, such as Pearson Correlation 
Coefficient, Whale Optimization Algorithm (WOA), and Crow Search 
Algorithm (CSA), enhanced model efficiency by identifying relevant 
predictors like age, hypertension, and glucose levels [17,35,37]. PCA 
and Non-Negative Matrix Factorization (NMF) further reduced dimen-
sionality, improving computational efficiency and model performance 
[32,46]. However, the variability in preprocessing approaches across 
studies highlights the need for standardized protocols to ensure repro-
ducibility and comparability.

The review identified a diverse range of ML algorithms, with tradi-
tional methods (e.g., Logistic Regression, SVM, Random Forest, Decision 
Trees, Naïve Bayes, KNN) and deep learning models (e.g., CNN, RNN, 
LSTM) being widely employed [15,16,23,53]. Random Forest and SVM 
were frequently used for their robustness to noisy and imbalanced 
datasets, achieving high accuracy in structured data analysis [23,24,45]. 
Deep learning models, particularly CNN and LSTM, excelled in pro-
cessing unstructured data like EEG signals and MRI scans, with CNN- 
biLSTM combinations yielding superior results for temporal data 
[15,16]. Ensemble learning methods, such as XGBoost and Random 
Forest, demonstrated enhanced predictive performance by combining 
multiple weak classifiers, with some studies reporting accuracies 
exceeding 95 % [35,52,65]. However, the lack of a meta-analysis due to 
methodological heterogeneity precluded definitive comparisons of al-
gorithm performance. Evaluation metrics (accuracy, sensitivity, speci-
ficity, F1 score, AUC) were consistently reported, with cross-validation 
(e.g., 5-fold, 10-fold) ensuring robust model assessment [15,32,37]. 
Notably, deep learning models often outperformed traditional algo-
rithms in large-scale datasets but required significant computational 
resources, posing challenges for resource-constrained settings.

Integrating ML models into clinical practice remains a significant 
challenge. Issues such as data privacy, algorithmic bias, and interoper-
ability with existing healthcare systems were underexplored in the 
reviewed studies [8,39]. For example, models trained on biased datasets 
(e.g., predominantly non-African populations) may perform poorly in 
diverse settings, exacerbating health disparities [7,17]. Data privacy 
concerns, particularly with self-acquired datasets, necessitate compli-
ance with stringent regulations (e.g., GDPR, HIPAA), which were rarely 
addressed in the literature [25–33]. Furthermore, the computational 
complexity of deep learning models limits their deployment in low- 

resource hospitals, particularly in Sub-Saharan Africa, where EHR sys-
tems are often absent [7]. Ethical considerations, such as ensuring 
equitable access to ML-based diagnostics, are critical for global imple-
mentation but require stakeholder collaboration to resolve.

5. Limitations of the review

This systematic review has several important limitations that should 
be acknowledged. First, the focus on open-access publications may have 
excluded high-quality studies, potentially introducing publication bias 
and limiting the comprehensiveness of findings. Second, the substantial 
heterogeneity in study designs, outcome definitions, data sources, and 
performance measurement approaches precluded quantitative meta- 
analysis, limiting our ability to provide definitive comparative assess-
ments of algorithm performance. Instead, we conducted descriptive 
synthesis which, while comprehensive, cannot provide the statistical 
rigor of pooled estimates.

Third, while our emphasis on geographical distribution of research 
provides important insights into global research disparities, we 
acknowledge that race, ethnicity, and population-specific stroke prev-
alence may be more clinically relevant parameters for understanding 
model performance and generalizability. However, many reviewed 
studies, particularly those using open-access datasets like Kaggle, lacked 
detailed demographic metadata including race and ethnicity informa-
tion, limiting our ability to systematically analyze these factors. Future 
reviews should prioritize these demographic parameters as data quality 
and reporting standards improve.

Fourth, the underrepresentation of studies from high-burden regions, 
particularly Sub-Saharan Africa and Latin America, limits the external 
validity of findings for global health applications and may not reflect the 
true performance of ML models in these critical populations. Fifth, the 
variability in performance metric reporting and validation methodolo-
gies across studies made direct comparisons challenging and may have 
affected the reliability of observed performance patterns.

Sixth, while we have provided a comprehensive synthesis of ML 
techniques and their performance, the clinical utility of these findings 
may be limited by the lack of real-world validation studies and imple-
mentation frameworks. Most studies remained at the research stage 
without consideration of clinical workflow integration, regulatory re-
quirements, or cost-effectiveness analyses necessary for practical 
deployment.

Seventh, the restriction to English-language publications may have 
excluded relevant research from non-Anglophone countries, potentially 
missing important regional insights and culturally specific approaches. 
Eighth, the classification of clinical implementation readiness was based 
on reported study characteristics rather than formal regulatory or clin-
ical validation criteria, which may not accurately reflect true deploy-
ment readiness.

Finally, the rapid evolution of ML techniques means that some recent 
methodological advances may not have been fully captured within the 
review period. The absence of standardized reporting guidelines for ML 
research in healthcare also limited our ability to conduct more rigorous 
quality assessments of individual studies, particularly regarding data 
quality, model validation, and clinical applicability.

6. Conclusion

The rise of AI, particularly ML, has advanced medical practice, from 
enabling autonomous surgeries to developing predictive models for 
various diseases. Stroke, a leading cause of death worldwide, has 
attracted considerable research attention, especially in early prediction 
and risk assessment using medical data mining techniques. This review 
highlights the extensive use of machine learning in stroke prediction, 
showcasing a variety of approaches, tools, and algorithms applied in 
recent studies.

We examined the full pipeline of stroke prediction, including data 
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acquisition, preprocessing (e.g., cleaning, transformation, and reduc-
tion), and the use of both traditional machine learning algorithms (e.g., 
SVM, Decision Trees, Random Forest, Logistic Regression, Naïve Bayes, 
and Neural Networks) and deep learning methods (e.g., CNNs and 
RNNs). As medical datasets grow in size and complexity, deep learning is 
increasingly favoured for its capacity to handle large-scale, high- 
dimensional data. Commonly used implementation platforms include 
Weka, MATLAB, and Python environments such as Anaconda. Chal-
lenges such as noisy or imbalanced datasets, missing values, and data 
incompleteness were also addressed, with researchers applying various 
strategies to mitigate their impact on model performance.

However, a significant gap exists in contributions from African re-
searchers. Despite higher stroke mortality rates in Africa, fewer than 
four related publications from the continent were found during this re-
view. Additionally, many studies rely on publicly available datasets 
from platforms like Kaggle, where data origin and quality are often 
unclear, potentially compromising accuracy and generalizability.

Future research should prioritise the use of real-world clinical data 
obtained directly from hospitals and patients. The lack of functional 
EHR systems in many African healthcare institutions is a major limita-
tion that needs urgent attention. Furthermore, greater involvement from 
African researchers is crucial to developing context-specific models that 
address regional health challenges. Integrating machine learning models 
into clinical systems holds great promise, but more work is needed to 
translate research findings into practical, deployable tools.
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