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A B S T R A C T

Background: Neglected Tropical Diseases (NTDs), particularly Lassa fever, remain a significant public health 
challenge in Nigeria, often presenting with symptoms similar to malaria. These similarities contribute to mis
diagnoses, delayed treatments, and increased mortality. The need for rapid and accurate disease differentiation 
has created an opportunity for machine learning applications in medical diagnostics.
Method: This study developed an ensemble machine learning model to detect Lassa fever and distinguish it from 
malaria using clinical datasets collected from the Infectious Disease Hospital, Akure, and the Benue State Uni
versity Teaching Hospital, Makurdi. The dataset, comprising confirmed Lassa fever and malaria cases, underwent 
preprocessing steps including data cleaning, handling missing values, balancing via SMOTE, and feature selec
tion using ANOVA. Three base classifiers: Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and 
Multi-Layer Perceptron (MLP), were combined using a hard voting ensemble technique. Model performance was 
evaluated using accuracy, precision, recall, and F1-score.
Results: The ensemble model outperformed the individual classifiers, achieving an accuracy of 98.7 %, precision 
of 98.3 %, recall of 100 %, an F1-score of 99.1 %, and ROC-AUC of 96.88 %. These results represent a significant 
improvement over existing approaches, with the ensemble model demonstrating 8.7 % higher accuracy 
compared to the best individual classifier (KNN at 90 %) and substantially outperforming traditional diagnostic 
methods that typically achieve 60–70 % accuracy in differentiating Lassa fever from malaria in resource-limited 
settings. These results indicate a robust capacity for differentiating Lassa fever from malaria based on 
symptomatology.
Conclusion: The ensemble learning approach demonstrated high effectiveness in improving disease detection 
accuracy, making it a practical tool for early diagnosis and clinical decision support in resource-limited 
healthcare settings. Its deployment could significantly reduce misdiagnosis and enhance NTD surveillance in 
Nigeria.

1. Introduction

In an era defined by rapid technological advancements, healthcare 
has emerged as a critical frontier with profound implications for global 
well-being. Among the most pressing challenges in modern medicine is 
the prevention, prediction, and management of tropical diseases, which 
disproportionately afflict populations in low-resource settings (World 
Health Organization [WHO], 2020). The WHO has identified Neglected 

Tropical Diseases (NTDs) as a priority, emphasizing their devastating 
impact on public health and socioeconomic development in regions 
marked by poverty and limited access to quality medical services (World 
Health Organization, 2020). Nigeria, Africa’s most populous nation, 
exemplifies this burden, grappling with a high prevalence of tropical 
illnesses including cholera, dengue fever, yellow fever, malaria, and 
Lassa fever (World Health Organization, 2020). These diseases not only 
claim numerous lives annually but also perpetuate cycles of poverty by 
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straining healthcare systems and reducing workforce productivity 
(Hotez and Kamath, 2009). Among these, Lassa fever, a viral hemor
rhagic illness endemic to West Africa, stands out due to its high mortality 
rate, potential for nosocomial transmission, and diagnostic complexity, 
making it a significant public health concern in Nigeria (Asogun et al., 
2025).

The urgency to address tropical diseases has spurred innovative 
technological interventions, with recent studies demonstrating their 
transformative potential. For instance, Wang et al. (2023) investigated 
the control of Guinea worm disease (dracunculiasis) in Chad, a zoonotic 
NTD with implications for human health. Using an agent-based simu
lation model, they evaluated strategies such as tethering infected dogs 
during peak infectivity periods and treating water sources with Abate, a 
larvicide that reduces transmission (Wang et al., 2023). Their findings 
revealed that achieving 95 % compliance with tethering and 90 % with 
Abate treatment could eradicate the disease within five years, while an 
optimization model further reduced infection rates by identifying 
cost-effective intervention thresholds (Wang et al., 2023). Similarly, 
Tuan (2024) explored machine learning’s role in predicting dengue 
fever outbreaks in Vietnam, comparing models like Convolutional 
Neural Networks (CNN), Transformers, Long Short-Term Memory 
(LSTM), and Attention-based LSTM (LSTM-ATT). These examples un
derscore how predictive modeling and machine learning can enhance 
proactive disease management, offering valuable lessons for tackling 
other NTDs like Lassa fever.

Despite such advancements, accurately diagnosing and differenti
ating NTDs remains a formidable challenge, particularly in Nigeria’s 
overstretched healthcare system. Lassa fever, caused by the Lassa virus 
and transmitted primarily via contact with infected rodents or bodily 
fluids, presents symptoms, fever, fatigue, headache, and cough, that 
closely mimic those of malaria, a far more common tropical illness in the 
region (Raabe and Koehler, 2017). This symptomatic overlap, docu
mented by Raabe and Koehler (2017), frequently leads to misdiagnosis, 
delaying antiviral treatments like ribavirin that are most effective within 
the first six days of symptom onset. Compounding this issue, Lassa fe
ver’s case fatality rate can exceed 15 % in hospitalized patients, and its 
potential for human-to-human transmission, especially in healthcare 
settings, amplifies its public health threat (Asogun et al., 2025). Tradi
tional diagnostic methods, relying on manual reporting, epidemiological 
tracking, and basic laboratory tests like polymerase chain reaction 
(PCR), are often slow, costly, and inaccessible in rural areas where Lassa 
fever is most prevalent (Asogun et al., 2012). Moreover, these ap
proaches struggle to capture the dynamic, nonlinear progression of 
NTDs, particularly in distinguishing them from co-endemic diseases like 
malaria based solely on clinical presentation (Inyang and Ogunleye, 
2021).

The diagnostic confusion between Lassa fever and malaria has dire 
consequences: delayed treatment increases mortality, while mis
allocated resources hinder effective outbreak containment (Al-Mustapha 
et al., 2024). In Nigeria, where an estimated 300,000–500,000 Lassa 
fever cases occur annually, with thousands of deaths, the limitations of 
conventional epidemiology are starkly evident (Asogun et al., 2025). 
This crisis underscores the need for innovative, precise, and scalable 
diagnostic tools tailored to Nigeria’s unique healthcare landscape, 
characterized by rural-urban disparities, limited laboratory infrastruc
ture, and a high burden of infectious diseases (Hotez and Kamath, 2009). 
Artificial intelligence (AI), particularly machine learning, offers a 
promising solution by analyzing complex clinical data patterns to 
improve diagnostic accuracy and speed (Topol, 2019). Previous appli
cations of AI in healthcare, such as detecting diabetic retinopathy or 
predicting sepsis, highlight its capacity to outperform human clinicians 
in specific tasks when trained on robust datasets (Gulshan et al., 2016).

This study addresses the diagnostic gap in Lassa fever management 
by introducing an ensemble machine learning model designed to 
differentiate Lassa fever from malaria using clinical symptomatology. 
Unlike single-algorithm approaches, the ensemble model integrates 

multiple machine learning techniques, potentially including decision 
trees, support vector machines, and neural networks, to enhance pre
dictive power and robustness (Rokach, 2010). The primary objective of 
this study is to design, implement, and validate this model as a reliable 
diagnostic tool, enabling healthcare providers to distinguish Lassa fever 
from malaria swiftly and accurately.

Based on our comprehensive literature review, a significant research 
gap has been identified concerning the classification of Lassa fever and 
Malaria. Specifically, none of the reviewed studies utilized a Nigeria- 
centric dataset, which is crucial for developing contextually relevant 
and effective classification models in a region where these diseases pose 
a substantial public health burden. Furthermore, while machine 
learning and deep learning models have been applied, there has been 
limited concentration on ensemble learning approaches, particularly 
those employing hard voting mechanisms. This notable absence un
derscores a critical need for further research in this domain, advocating 
for the exploration and application of voting ensembles with Nigeria- 
centric datasets to enhance the efficiency and accuracy of Lassa fever 
and Malaria classification.

The key novelties and contributions of this research include: 

• Development of the first ensemble machine learning model specif
ically trained on indigenous Nigerian clinical datasets for Lassa fever 
and malaria differentiation, ensuring contextual relevance and local 
applicability

• Integration of three complementary machine learning algorithms 
(SVM, KNN, and MLP) through hard voting ensemble methodology, 
leveraging the strengths of each individual classifier while mitigating 
their respective weaknesses

• Implementation of a comprehensive data preprocessing pipeline 
including SMOTE for class balancing and ANOVA for feature selec
tion, optimally tailored for the clinical characteristics and data 
quality typical of Nigerian healthcare settings

• Achievement of superior diagnostic performance (98.7 % accuracy) 
compared to existing single-model approaches and traditional diag
nostic methods, representing a significant advancement in NTD 
detection capability

• Creation of a practical, deployable solution that addresses the critical 
diagnostic gap in resource-limited healthcare environments where 
Lassa fever and malaria co-exist, with potential for real-world 
implementation in Nigerian hospitals and clinics

• Provision of a scalable framework that can be extended to other 
NTDs with similar diagnostic challenges, offering broader implica
tions for tropical disease management across sub-Saharan Africa.

2. Methods

This research developed an ensemble learning model for detecting 
Neglected Tropical Diseases (NTDs) in Nigeria, focusing specifically on 
distinguishing Lassa fever from diseases with similar symptomatology 
such as malaria. Approximately 400 confirmed Lassa fever cases and 100 
suspected cases, alongside malaria patient data, were analyzed. The 
datasets were sourced from the Infectious Disease Center in Akure, Ondo 
State, and the Benue State University Teaching Hospital Lassa Fever 
Isolation Center. Data preprocessing, feature engineering, data classifi
cation, and model evaluation were systematically conducted. The 
dataset was split into training and testing subsets and implemented 
using three individual machine learning algorithms: Support Vector 
Machine (SVM), Multi-Layer Perceptron (MLP), and K-Nearest Neighbor 
(KNN). The performance of the ensemble model was evaluated using 
accuracy, precision, recall, and F1-score metrics, and subsequently 
compared to individual base models. Fig. 1 provides a detailed meth
odological flowchart from ethical clearance to model evaluation.
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2.1. Data acquisition

Clinical datasets containing demographic information, patient vitals, 
localities, and disease prevalence were obtained from two primary 
sources: the Infectious Disease Hospital in Akure and Benue State Uni
versity Teaching Hospital, Makurdi. These records provided detailed 
insights into confirmed and suspected cases of Lassa fever and malaria, 
facilitating robust model development.

2.2. Data preprocessing

Datasets were cleaned by removing duplicate entries and outliers, 
ensuring data integrity and quality for accurate model training and 
testing. Datasets were rigorously inspected to identify missing data, 
commonly marked as NA (Not Available) in the pandas library. Missing 
data were appropriately addressed to prevent potential biases or inac
curacies in model outcomes. Due to an imbalance in collected data 
(greater incidence of Lassa fever cases compared to malaria), Synthetic 
Minority Oversampling Technique (SMOTE) was applied to generate 
synthetic samples for the minority class (malaria). SMOTE was applied 
only to the training set after the initial train-test split (80 %-20 %) to 
prevent data leakage and ensure unbiased evaluation on the test set. This 
approach maintained the integrity of the testing data by ensuring it 
contained only original, non-synthetic patient records. SMOTE operates 
by selecting a minority-class instance, determining its nearest neighbors, 
and generating synthetic data along the connecting segments, thus 
balancing the dataset. This approach ensured approximately 900 
balanced samples for effective model training and evaluation.

2.3. Development of base models

Three base machine learning algorithms: Support Vector Machine 
(SVM), K-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP), 
were initially selected for disease classification. Historical datasets un
derwent preprocessing and feature extraction using techniques like 
Analysis of Variance (ANOVA) to determine statistically significant 
predictors. The datasets were split into training and testing subsets, and 
the models were trained using the training set. Subsequent testing 
ensured the models’ generalization and capability to accurately differ
entiate Lassa fever from malaria.

2.4. Ensemble model development

An ensemble learning method was employed by combining pre
dictions from SVM, KNN, and MLP through a Voting Classifier (hard 
voting), thereby leveraging individual strengths for improved predictive 
accuracy. The mathematical representation of the ensemble model is 
shown below: 

Ensemble←VotingClassifier(estimators

= [(’svm’, SVM), (’knn’,KNN), (’mlp’,MLP)], voting = ’hard’) (1) 

Equations for Base Models are as follows: 

MLP = a1 = g
(

w(1)x+ b(1)
)

andŷ = g
(
w(2)a(1) + b(2) ) (2) 

Where:
a: Activation from the hidden layer.
g: Activation function, which introduces non-linearity into the model 

(e.g., sigmoid, ReLU).
w: Weight matrix for the respective layer.
b: Bias term for the respective layer.
x: Input feature vector.
ŷ: Predicted output. 

SVM = minw,b
1
2
‖ w ‖2 (3) 

Where:
w: Weight vector that defines the decision boundary.
b: Bias term.
||w||: Norm of the weight vector, representing the margin maximi

zation criterion. 

KNN = argmaxj
∑k

i=1
I(yi = j) (4) 

Where:
argmax: Function that returns the argument (class label) that max

imizes the given expression.
j: Class label.
k: Number of nearest neighbors considered.
I(yi = j): Indicator function.
From Eq. 1, [voting = h́ard́ ] “hard” indicates Majority voting, 

Therefore, assume each model’s output is as follows: 

Fig. 1. Block diagram of an ensemble-based model for the detection of Neglected Tropical Diseases (NTDs) in Nigeria.
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ŷMLP : Prediction from the MLP model (5) 

ŷSVM : Prediction from the SVM model (6) 

ŷKNN : Prediction from the KNN model (7) 

Where ŷEnsemble : Prediction from theEnsemble model is obtained by 
combining the individual predictions. Common ensemble methods 
include “majority voting” for classification problems. The ensemble 
model predicts the class that the majority of the base classifiers predict.

This is mathematically expressed as: 

ŷEnsemble = argmaxj

(∑N

i=1
I(ŷModeli = j)

)
(8) 

Here, N represents the number of individual models in the ensemble, 
I(ŷModeli ) is the indicator function (returns 1 if the condition is true, 
equations ŷModeli is the predicted class label by the i-th individual model, 
and j iterates over all possible class labels. Subtitling Eqs. 5,6,7 into 8. 

ŷEnsemble = argmaxj

(
∑N

i=1
I(ŷMLP, i = j)+

∑N

i=1
I(ŷSVM, i

= j)+
∑N

i=1
I(ŷKNN, i = j)

)

(9) 

This formulation calculates the class that receives the maximum 
number of votes across all individual models (MLP, SVM, KNN).

2.5. Model evaluation

The developed ensemble model was evaluated comprehensively 
using accuracy, precision, recall, and F1-score to determine its effec
tiveness in accurately differentiating Lassa fever from malaria. Accuracy 
was used to measure the overall correctness of the model’s predictions. 
Precision assessed the model’s capability to correctly predict positive 
cases, thereby minimizing the occurrence of false positives. Recall was 
employed to evaluate the model’s sensitivity, specifically its effective
ness at identifying actual positive cases, thus reducing false negatives. 
Lastly, the F1-score provided a balanced evaluation by considering both 
precision and recall, offering a robust metric particularly valuable in 
scenarios involving imbalanced datasets. These metrics collectively 
ensured a thorough and reliable performance assessment of the pro
posed model.

2.6. Ethical considerations

This study received ethical approval from the Health Research Ethics 
Committee of Benue State University Teaching Hospital (approval 
number- BSUTH/MKD/HREC/2023/032) prior to data collection and 
analysis. All clinical datasets were obtained following strict ethical 
protocols, with appropriate institutional permissions secured from both 
the Infectious Disease Hospital, Akure, and Benue State University 
Teaching Hospital, Makurdi. Patient consent requirements were waived 
by the ethics committees given the retrospective nature of the study and 
the use of de-identified clinical records. All patient data were thoroughly 
anonymized prior to analysis, with personal identifiers removed and 
replaced with unique study codes to ensure complete patient confiden
tiality. Data handling and storage procedures adhered to institutional 
guidelines and national healthcare data protection standards. The 
research was conducted in accordance with the Declaration of Helsinki 
and local regulatory requirements for medical research involving human 
subjects.

3. Results

3.1. Dataset characteristics and quality assessment

The final dataset comprised clinical records from 500 confirmed 
cases (approximately 400 Lassa fever and 100 malaria cases) obtained 
from both healthcare institutions. Data quality assessment revealed 
complete records with no missing values across all clinical variables, as 
illustrated in Fig. 2. The datasets demonstrated high data integrity with 
comprehensive clinical documentation across all measured parameters. 
This dataset comprise of comprehensive relevant features such as Age, 
Fever, Headache, Vomiting, Diarrhea, body temperature, swelling, 
coughing, Polymerase Chain Reaction (PCR) and Body pain among 
others as shown in Fig. 2.

3.2. Data preprocessing outcomes

The class imbalance analysis revealed a significant disparity in the 
original dataset (approximately 400 Lassa fever and 100 malaria cases), 
with Lassa fever cases substantially outnumbering malaria cases, mak
ing the malaria case instances, the minority class. Using such dataset 
would highly affect the efficiency of the model as many malaria fever 
patients might be wrongly classified as Lassa fever, due to low repre
sentation of Malaria fever instance in the dataset, limiting the ability of 
the model to effectively learn the pattern. After SMOTE application to 
the training set only, both classes were evenly represented with 
approximately 900 balanced samples in the training data, while the test 
set maintained original class distributions to ensure unbiased evalua
tion, as shown in Fig. 3.

ANOVA feature selection identified the most statistically significant 
clinical variables for disease differentiation. Fig. 4 illustrates the relative 
importance of various symptoms in distinguishing between these dis
eases, with fever duration, muscle pain severity, and vomiting frequency 
emerging as the most discriminatory features. The analysis revealed that 
symptom progression patterns and intensity levels were more predictive 
than simple presence/absence indicators.

The binary classification encoding successfully categorized cases 
with ’1’ representing Lassa fever cases and ’0’ indicating malaria, as 
depicted in Fig. 5. The final training set consisted of 720 samples (80 %) 
while the testing set contained 180 samples (20 %).

Model’s Hyperparamter optimization is an important aspect in 
designing a model for optimal performance. Table 1 presents the specific 
hyperparameters for different models used in this study namely: SVM, 
KNN and MLP. These hyperparameters were empirically selected to 
obtain the optimal hyperparameters, needed to train the models for 
optimal performance.

For the Support Vector Machine (SVM), a linear kernel was selected 
with a fixed random state of 42 to ensure reproducibility. The K-Nearest 
Neighbors (KNN) classifier was configured with 5 neighbors, which 
defines the number of closest data points considered for classification. 
The Multi-Layer Perceptron (MLP) was designed with a single hidden 

Fig. 2. Treating missing values.
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layer of 10 neurons, a maximum of 1000 training iterations, and a 
random state of 42 for consistency across runs. These hyperparameter 
settings aim to optimize the performance of each base model while 

maintaining comparability and stability.

Fig. 3. Data balancing.

Fig. 4. Lassa fever and malaria symptoms importance.

Fig. 5. Data classification.
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3.3. Model performance evaluation

The performance evaluation revealed significant differences between 
individual classifiers and the ensemble approach. The ensemble model 
achieved superior performance across all evaluation metrics compared 
to individual base models. The Ensemble model notably outperformed 
individual models, achieving an accuracy of 98.7 %, precision of 
98.3 %, recall of 100 %, an F1-score of 99.1 %, and ROC-AUC of 
96.88 % as detailed in Table 2. Among individual classifiers, KNN 
demonstrated the highest performance (90 % accuracy), while MLP 
showed the lowest performance (79 % accuracy). SVM achieved inter
mediate performance with 86 % accuracy.

The ROC-AUC analysis revealed substantial differences in discrimi
native ability between models, with the ensemble model (96.88 %) 
significantly outperforming individual classifiers, particularly MLP 
which achieved only 50 % AUC, indicating poor discriminative capa
bility. The ensemble model, which combines predictions from SVM, 
KNN, and MLP, significantly outperformed its individual constituent 
models as evidenced by its superior metrics across the board, including 
98.7% accuracy, 98.3% precision, 100% recall, 99.1% F1-score, and 
96.88% ROC-AUC. This enhanced performance stems from the ensem
ble’s ability to leverage the diverse strengths of each base model, miti
gating their individual weaknesses and reducing the overall variance in 
predictions. By aggregating multiple perspectives through hard voting, 
the ensemble effectively corrects errors made by individual models, 
leading to a more robust and accurate final classification.

3.4. Performance comparison analysis

The comparative analysis demonstrated the ensemble model’s 
consistent superiority across all performance metrics. As illustrated in 
Fig. 6, the Ensemble model consistently achieved higher scores across 
accuracy, precision, recall, and F1-score compared to individual base 
models. The improvement was most pronounced in accuracy (8.7 % 
increase over the best individual classifier) and ROC-AUC (21.88 % in
crease over the best individual classifier). The ensemble approach suc
cessfully mitigated the weaknesses observed in individual models, 
particularly addressing MLP’s poor discriminative performance and 
enhancing overall predictive reliability.

The perfect recall achieved by both KNN and the ensemble model 
indicates high sensitivity for Lassa fever detection, while the ensemble 
model’s superior precision (98.3 % vs 88 % for KNN) demonstrates 
better specificity and reduced false positive rates.

4. Discussion

The results of this study highlight the transformative potential of 
ensemble machine learning in diagnosing Neglected Tropical Diseases 

(NTDs), with particular relevance to resource-constrained settings like 
Nigeria. By integrating Support Vector Machine (SVM), K-Nearest 
Neighbours (KNN), and Multi-Layer Perceptron (MLP) via a majority 
voting strategy, the ensemble model achieved an accuracy of 98.7 %, a 
recall of 100 %, and an F1-score of 99.1 %. These metrics affirm that 
combining multiple algorithms significantly enhances predictive per
formance and reliability when distinguishing diseases with overlapping 
clinical presentations, such as Lassa fever and malaria (Mahajan et al., 
2023). This success addresses a persistent diagnostic challenge in 
Nigeria, where Lassa fever’s initial symptoms, fever, headache, fatigue, 
and occasionally cough, closely resemble malaria, often leading to 
misdiagnosis, delayed treatment, and heightened transmission risk 
(Raabe and Koehler, 2017). In regions with limited laboratory infra
structure, where confirmatory tests like PCR or ELISA are scarce, such an 
AI-driven tool becomes not only valuable but essential (Asogun et al., 
2012).

However, it is crucial to acknowledge that these promising results 
must be interpreted with appropriate caution and critical perspective. 
While the 98.7 % accuracy is impressive, it was achieved on a relatively 
small, locally-sourced dataset that may not fully capture the complexity 
and variability of real-world clinical presentations across different 
Nigerian populations and healthcare settings. The perfect 100 % recall, 
though encouraging for patient safety, raises concerns about potential 
overfitting to the specific characteristics of our training data, particu
larly given the limited sample size of approximately 900 balanced 
samples after SMOTE application.

The symptomatic overlap between Lassa fever and malaria has long 
confounded healthcare providers, a problem compounded by the ur
gency of early intervention. Lassa fever’s case fatality rate can exceed 
15 % in hospitalized patients, and its potential for nosocomial spread, 
particularly in under-equipped facilities, elevates its public health threat 
(Asogun et al., 2025). A study reported that antiviral treatment (e.g., 
ribavirin) is most effective within six days of symptom onset, yet diag
nostic delays often push patients beyond this window (Salam et al., 
2022). The ensemble model, trained on clinical records from Infectious 
Disease Hospital, Akure, and Benue State University Teaching Hospital, 
Makurdi, excelled at identifying subtle differentiators, such as the pro
gression of fever intensity, presence of sore throat, or early gastroin
testinal distress, that elude routine clinical assessment. However, the 
black-box nature of our ensemble approach presents significant inter
pretability challenges for clinical adoption (Omodunbi et al., 2025). 
Healthcare providers require transparent understanding of why the 
model makes specific predictions (Olawade et al., 2025), yet our current 
implementation lacks explainable AI features such as SHAP values or 
LIME analysis that could provide insights into feature importance and 
decision pathways. This interpretability gap represents a major barrier 
to clinician trust and regulatory approval in medical settings.

Comparative research supports the efficacy of multi-model ap
proaches. Tuan (2024) demonstrated that an Attention-based LSTM 
(LSTM-ATT) model, integrating time-series and climate data, achieved 
superior dengue fever forecasting in Vietnam (MAE 1.95, RMSE 1.60). 
While their study focused on predictive epidemiology rather than clin
ical diagnosis, the underlying principle, combining algorithmic 
strengths, parallels this research. Here, the ensemble model out
performed its components: SVM (86 % accuracy) struggled with noisy 
data, KNN (90 % accuracy) faltered with high-dimensional inputs, and 
MLP, though adept at nonlinear patterns, risked overfitting alone. The 
ensemble’s synergy, leveraging SVM’s margin optimization, KNN’s local 
clustering, and MLP’s deep learning, mitigated these weaknesses, 
aligning with (Mahajan et al., 2023) assertion that ensemble methods 
excel by integrating diverse perspectives. This robustness is critical for 
NTDs, where symptom variability and data quality often challenge 
single-model systems (Hastie et al., 2009). Nevertheless, the superior 
performance of individual models in our study (particularly KNN at 
90 %) suggests that simpler, more interpretable approaches might be 
sufficient for practical deployment, especially considering the 

Table 1 
Hyperparameters for individual base models.

Classifier Hyperparameters

SVM kernel = ’linear’, random_state = 42
KNN n_neighbors = 5
MLP hidden_layer_sizes = (10,), max_iter = 1000, random_state = 42

Table 2 
Experimental result for KNN, MLP and SVM.

S/ 
N

Evaluation 
Metrics

KNN 
(%)

MLP 
(%)

SVM 
(%)

Ensemble Model 
(%)

1 Accuracy 90 79 86 98.7
2 Precision 88 79 88 98.3
3 Recall 100 100 95 100
4 F1-score 94 88 91 99.1
5 ROC-AUC 75 50 72.54 96.88
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computational resources and technical expertise limitations in rural 
Nigerian healthcare facilities.

Feature engineering via Analysis of Variance (ANOVA) was pivotal, 
selecting symptoms with the highest discriminatory power, e.g., fever 
duration, muscle pain severity, and vomiting frequency. This approach 
reduced dimensionality and noise, aligning with the findings of Dhina
karan et al. (2025) that targeted feature selection improves classification 
accuracy in medical datasets. Similarly, Synthetic Minority Over
sampling Technique (SMOTE) addressed class imbalance, Lassa fever 
cases outnumbered malaria in the original dataset, by generating syn
thetic malaria cases, ensuring equitable model training. Chawla et al. 
(2002) validated SMOTE’s effectiveness in imbalanced medical con
texts, noting its ability to improve minority class detection without 
skewing overall performance. These techniques produced a streamlined, 
unbiased model tailored to Nigeria’s often incomplete or inconsistent 
clinical records, a common hurdle in low-resource settings (Inyang and 
Ogunleye, 2021).

The model’s 100 % recall is a standout feature, ensuring all Lassa 
fever cases in the test set were identified, a vital outcome given the 
disease’s lethality and contagiousness (Asogun et al., 2025). False neg
atives in this context could lead to untreated cases fueling outbreaks, a 
risk amplified in densely populated or healthcare-stressed areas. The 
98.3 % precision complements this, minimizing false positives that 
could overburden limited resources with unnecessary testing or treat
ment. However, from a practical deployment perspective, several crit
ical challenges remain unaddressed. The model’s binary classification 
approach (Lassa fever vs. malaria) oversimplifies the complex diagnostic 
landscape where patients may present with other co-endemic diseases 
such as dengue fever, yellow fever, or typhoid. Additionally, the 
computational requirements for running ensemble models may exceed 
the capabilities of many rural healthcare facilities lacking reliable 
electricity and internet connectivity. The integration of such AI systems 
into existing hospital information systems would require substantial 
infrastructure investments, staff training, and ongoing technical support 
that may not be feasible in resource-constrained settings.

The impressive performance of the ensemble model, achieving 
98.7% accuracy, 98.3% precision, 100% recall, 99.1% F1-score, and 
96.88% ROC-AUC for Lassa fever and Malaria classification, holds 

significant clinical implications. Primarily, the exceptionally high recall 
of 100% means that no actual cases of Lassa fever or Malaria were 
missed by the model. This is paramount in a clinical setting, as false 
negatives for these diseases can lead to severe patient outcomes, delayed 
treatment, and uncontrolled disease transmission. Coupled with high 
precision, the model minimizes false alarms, preventing unnecessary 
patient anxiety, misallocation of scarce medical resources, and inap
propriate interventions. This robust and balanced performance across all 
metrics suggests the model’s strong potential as a reliable diagnostic aid 
for clinicians. This outcome significantly contributes to the body of 
knowledge by demonstrating the superior effectiveness of ensemble 
learning, specifically using hard voting, for classifying complex tropical 
diseases compared to individual machine learning models. The sub
stantial performance improvement over individual KNN, MLP, and SVM 
models highlights the power of combining diverse algorithms to 
enhance predictive accuracy and generalizability, particularly in medi
cal diagnostics where high stakes are involved. The study underscores 
the value of moving beyond conventional single-model approaches and 
encourages further research into optimized ensemble techniques for 
infectious disease prediction, especially in resource-limited settings 
where rapid and accurate diagnosis is critical for public health.

Furthermore, the study’s focus on two specific healthcare institutions 
may limit the generalizability of findings across Nigeria’s diverse 
healthcare landscape, where clinical practices, patient populations, and 
data quality vary significantly. The model’s performance in settings with 
different disease prevalence patterns, varying levels of clinical expertise, 
or alternative diagnostic protocols remains unknown. Real-world 
deployment would also require addressing regulatory compliance, 
data privacy concerns, liability issues, and the potential for algorithm 
bias that could disproportionately affect certain patient populations.

This balance is crucial in Nigeria, where diagnostic capacity is 
stretched, and misallocation can delay care for other conditions 
(Al-Mustapha et al., 2024). Compared to individual models, the en
semble’s comprehensive performance underscores Thomas’s (2000)
argument that ensemble classifiers outperform single systems by 
exploiting complementary strengths. However, the translation from 
laboratory success to clinical impact requires careful consideration of 
implementation barriers, ongoing validation requirements, and the need 

Fig. 6. Comparison of metrics result for MLP, KNN, SVM and ensemble model.
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for continuous model updates as disease patterns and clinical practices 
evolve. While this study demonstrates the technical feasibility of 
AI-assisted diagnosis for tropical diseases, the path to widespread clin
ical adoption will require addressing these practical challenges through 
interdisciplinary collaboration, stakeholder engagement, and iterative 
improvement based on real-world feedback.

5. Strengths and limitations of the study

This study presents several notable strengths that enhance its rele
vance, practical value, and contribution to the field of disease detection 
using machine learning. One major strength is the use of real-world, 
indigenous clinical data obtained from two reputable Nigerian health
care institutions, Infectious Disease Hospital, Akure, and Benue State 
University Teaching Hospital, Makurdi. By training and validating the 
model on locally sourced data, the study ensures contextual accuracy 
and increases the likelihood of successful implementation within the 
Nigerian healthcare system. Another key strength lies in the application 
of ensemble learning, which combined three well-established models 
(SVM, KNN, and MLP) to enhance prediction performance. The 
ensemble model effectively minimized the weaknesses of the individual 
base models, resulting in superior accuracy, precision, recall, and F1- 
score. Furthermore, the study implemented robust data preprocessing 
steps, including the use of SMOTE for data balancing and ANOVA for 
feature selection, ensuring that only statistically significant variables 
were used in training. This careful preprocessing contributed signifi
cantly to the model’s high reliability and performance. The study also 
employed widely accepted evaluation metrics, accuracy, precision, 
recall, and F1-score, which provide a comprehensive understanding of 
the model’s effectiveness and facilitate comparison with other studies.

Despite these strengths, the study has certain limitations that should 
be acknowledged. Firstly, while the dataset was locally sourced and 
clinically relevant, the sample size was relatively small compared to the 
volume typically required to train and validate machine learning models 
for large-scale deployment. A larger dataset drawn from multiple re
gions across Nigeria or West Africa could improve the model’s gener
alizability and robustness. Secondly, despite achieving high training 
accuracy (98.7 %), we did not evaluate the model’s generalization 
capability using independent datasets from external healthcare in
stitutions, which represents a significant limitation in assessing true 
model performance and potential overfitting. Future studies should 
prioritize multi-site validation using completely separate datasets to 
establish robust generalizability and cross-institutional applicability. 
Additionally, this study did not include comparative analysis with recent 
advanced computational models such as pACPs-DNN (Akbar et al., 
2024), DeepAIPs-Pred (Akbar et al., 2024), pNPs-CapsNet (Ullah et al., 
2024), pACP-HybDeep (Shahid et al., 2025), and TargetCLP (Ullah et al., 
2025), which have demonstrated superior performance in various 
biomedical prediction tasks. The pACPs-DNN model achieved remark
able training accuracy of 96.91 % with an AUC of 0.98 for anticancer 
peptide prediction using attention-based deep learning (Akbar et al., 
2024). Similarly, DeepAIPs-Pred demonstrated impressive predictive 
accuracy of 94.92 % and an AUC of 0.97 for anti-inflammatory peptide 
identification using self-normalized bidirectional temporal convolu
tional networks (Akbar et al., 2024). The pNPs-CapsNet model achieved 
exceptional performance with 98.10 % accuracy and 0.98 AUC for 
neuropeptide prediction using capsule neural networks (Akbar et al., 
2025), while pACP-HybDeep reported 95.33 % training accuracy with 
0.97 AUC for anticancer peptide prediction using hybrid deep learning 
approaches (Shahid et al., 2025). Furthermore, TargetCLP demonstrated 
robust performance in clathrin protein prediction using multi-view 
feature integration and evolutionary scale modeling (Ullah et al., 
2025). This limitation restricts our ability to position our ensemble 
approach within the broader landscape of state-of-the-art machine 
learning methodologies. Future research should incorporate compre
hensive comparative studies with these advanced models to establish 

relative performance benchmarks and identify optimal approaches for 
tropical disease classification. Furthermore, the study lacks compre
hensive model interpretation and visualization components, as we did 
not implement explainable AI techniques such as SHAP (SHapley Ad
ditive exPlanations) values, LIME (Local Interpretable Model-agnostic 
Explanations), or detailed feature importance visualizations to illumi
nate the decision-making processes of our ensemble model. This absence 
of interpretability tools represents a critical limitation for clinical 
adoption, as healthcare providers require transparent understanding of 
diagnostic reasoning. Future studies should integrate robust model 
interpretation frameworks and develop comprehensive visualization 
tools to enhance clinical trust and facilitate widespread adoption. 
Finally, real-world deployment of the model would require integration 
into healthcare systems, staff training, and consideration of data privacy 
and ethical issues, which were beyond the scope of this study but are 
crucial for practical implementation.

6. Conclusion

This study successfully developed and evaluated an ensemble ma
chine learning model for the detection of Neglected Tropical Diseases 
(NTDs), with a specific focus on distinguishing Lassa fever from malaria 
based on clinical symptomatology. By integrating Support Vector Ma
chine (SVM), K-Nearest Neighbours (KNN), and Multi-Layer Perceptron 
(MLP) into a single ensemble framework using hard voting, the model 
achieved superior performance compared to individual classifiers. The 
use of indigenous clinical datasets, robust preprocessing techniques, and 
careful feature selection significantly contributed to the model’s high 
accuracy, precision, recall, and F1-score.

The results demonstrate that ensemble models offer a reliable, scal
able, and context-appropriate solution for disease detection in resource- 
limited settings, where diagnostic tools are often inadequate and dis
eases with overlapping symptoms are common. The findings also rein
force the growing importance of artificial intelligence in healthcare, 
particularly for early detection, accurate diagnosis, and improved 
decision-making in endemic regions. Overall, this study provides a 
practical foundation for the use of machine learning in supporting 
clinical diagnosis of NTDs in Nigeria. Future work should focus on 
expanding the dataset, incorporating additional features such as labo
ratory results, and deploying explainable AI techniques to enhance 
model transparency and clinician trust. With continued research and 
real-world implementation, AI-powered models like the one developed 
in this study can play a transformative role in strengthening public 
health systems and reducing the burden of neglected tropical diseases.
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