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Abstract—Electroencephalogram (EEG) monitoring enables 

the capture of brain activity and provides insights into motor 

tasks with applications in rehabilitation, prosthetic control, and 

Brain-Computer Interfaces (BCI). Traditional classification 

approaches often rely on complex architectures, limiting 

usability in resource-constrained settings. This study introduces 

a 1-dimensional Convolutional Neural Network (1D CNN) 

optimised using Gaussian-based Bayesian optimisation for 

classifying single-channel EEG signals. While existing models 

are deep, requiring extensive pre-and post-processing, the 

proposed model achieves a trade-off between computational 

efficiency and classification accuracy. Trained exclusively on a 

private dataset of 27 individuals performing motor tasks, the 

model achieved a promising accuracy of 81.82%, demonstrating 

its potential for practical deployment. The proposed model also 

outperformed complex pre-trained architectures such as VGG-

16 and GoogLeNet by achieving significantly fewer parameters 

and lower computational demand, making it particularly 

suitable for resource-limited environments. As an early 

investigation, this work explores the feasibility of single-channel 

approaches using lightweight architectures for real-time EEG 

classification in resource-constrained environments. 

Keywords— EEG, Signal Classification, Motor Imagery, 1D 

CNN, Bayesian Optimisation, Assistive Technologies, Single-

Channel, Resource-Constrained Environments. 

I. INTRODUCTION  

Electroencephalogram (EEG) signal monitoring offers 
significant potential in rehabilitation, prosthetic control, 
Brain-Computer Interface (BCI) research, and accessibility 
for individuals with disabilities. EEG signals such as 
frequency bands and artefacts are essential for understanding 
brain function and assisting with neurological conditions 
diagnosis. However, existing single-channel deep learning 
(DL) -based classification methods require extensive data 
processing, making them resource-intensive and time-
consuming [1]. Innovative methods such as Independent 
Component Analysis (ICA) addressed some challenges, but 
issues such as longer training times, high computational 
resources demand, and lack of standardisation persist [2, 3, 4, 
5]. Recent advances in machine learning (ML) and DL have 
introduced more efficient solutions, with 1-dimensional 
Convolutional Neural Networks (1D CNNs) notable for their 
capability to capture temporal relationships while reducing 

computational complexity and address signal variability and 
low amplitude [6, 7, 8]. These models have been utilised 
effectively in epileptic seizure detection [9], heart sound 
classification [10], and emotion recognition [11], though they 
still encounter some challenges related to data variability and 
computational demands [9, 10, 11, 12]. To address these 
issues, this study investigates using a lightweight 1D CNN 
optimised via Gaussian Process-based Bayesian Optimisation 
(GP-BO) for single-channel EEG signal classification. With 
reduced computational requirements and good classification 
accuracy, the paper seeks to provide further insights for 
resource-efficient EEG classification models. 

II. RELATED WORKS 

 Existing techniques for EEG signal classification have 
been explored, focusing on feature extraction and classifiers. 
Ref [13] used the wavelet-transform-based feature extraction, 
getting an accuracy of 98.00% with classifiers like SVM, 
MLP, and KNN. However, this approach faces challenges 
such as the wavelet basis function sensitivity, high 
computational cost, and overfitting. Ref [14] proposed pe-
trained with VGG-16 on Short-Time-Fourier-Transformed 
(STFT) EEG signals to address these limitations, achieving 
74.20% accuracy. Generalisation, edge effects, and high 
resource requirements were observed in [14]. Similarly, Ref 
[15] applied GoogLeNet but faced limited model 
expressiveness and detection of out-of-distribution data, 
which negatively impacted practical use. Ref [16, 17, 18] used 
complex pre-processing with MATLAB toolboxes, limiting 
their applicability in real-time scenarios. Long Short-Term 
Memory (LSTM) networks [19, 20] showed improvements in 
capturing temporal dependencies but did not solve the issues 
of high computational complexity, long training times, and 
overfitting. Single-channel EEG studies, Ref [21] transformed 
signals into a 2D frequency representation, thereby increasing 
computational demands and interpretability challenges. Ref 
[22] employed template matching for finger movement 
classification, while Ref [23] used MLP with 
backpropagation. Both approaches were limited by 
dependency on representative templates, scalability issues, 
and local minima problems [39]. These works highlight the 
necessity for efficient solutions to solve computational 
resource demand and long training time challenges. This study 
proposes a low-resource-demanding 1D CNN capable of 
processing raw EEG signals without extensive pre-processing. 
The approach aims to simplify single-channel EEG signal 
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classification while maintaining accuracy and efficiency, 
validated through experiments on a private dataset. 

III. CONTRIBUTIONS 

This study presents a novel approach for classifying 
single-channel EEG signals related to finger movements to 
reduce computational complexity, minimise training time, and 
simplify pre-processing. The proposed 1D CNN optimised 
using Gaussian Process-based Bayesian Optimisation, 
balances efficiency and performance in resource-constrained 
environments [24, 25]. With significantly fewer parameters 
than pre-trained architectures like VGG-16 and GoogLeNet 
[14, 15], the model achieves 81.82% accuracy on a private 
dataset of 27 participants performing four limb movement 
tasks without relying on complex feature extraction. 

IV. PROPOSED METHOD 

A. Data Collection 

  This study collected EEG signals from 27 healthy 
volunteers performing four limb movement tasks: finger open, 
finger close, wrist clockwise, and wrist counterclockwise. 
Each participant executed movements in a relaxed state, with 
recordings lasting 60 seconds per movement. Signals were 
collected using the 10-20 electrode placement system, 
explicitly targeting motor-relevant channels (C3, C4, CZ, FZ, 
and PZ). Among these, the C4 channel, exhibiting the highest 
signal variation, was selected for further analysis due to its 
strong relevance to limb motor tasks. Data was acquired using 
an RMS kit with a 100-foot transmission range and a signal 
sampling rate of 8–13 Hz, corresponding to alpha band 
frequencies. Artefacts were carefully removed during 
preprocessing, and participants adhered to standardised 
protocols to ensure consistent and high-quality recordings. 
Using a relatively small private dataset allowed for a focused 
exploration of lightweight single-channel EEG classification. 
The dataset enables efficient model development and 
optimisation by ensuring high-quality signals and task 
relevance. Though larger datasets may have improved 
generalisability, this initial investigation prioritises iterative 
refinement, intending to establish a foundation for future 
validation and broader applications. This approach supports 
the in-depth exploration of computational tradeoffs and 
accuracy, making it highly suitable for real-world 
deployments in resource-constrained environments. 

B. Gaussian process model-based Bayesian optimisation 

for hyperparameters  

This study employs Bayesian Optimisation (BO) to 
efficiently optimise a base 1D CNN model for EEG signal 
classification by searching for the optimal hyperparameters in 
a pre-determined search space. Using a Gaussian Process (GP) 
as a surrogate function and an acquisition function, BO 
systematically explores the hyperparameter space, reducing 
computational costs associated with tuning [24, 25]. The 
process, implemented via the Optuna library, included 200 
exploratory trials to identify hyperparameter importance and 
2000 trials to optimise the 1D CNN architecture [24]. Key 
parameters such as layer depth, kernel size, number of filters, 
activation functions, learning rate, and dropout rates were 
evaluated. The optimisation identified a network depth that 
balanced feature extraction and overfitting prevention while a 
carefully chosen kernel size captured critical temporal EEG 

patterns. Efficient use of computational resources was 
achieved through optimised filter numbers, stable learning 
rates ensured convergence and dropout regularisation 
enhanced generalisability. These refinements resulted in a 
lightweight, high-performing model suitable for resource-
constrained environments. See Fig. 1 for the BO flowchart. 

 

Fig 1. Flow chart of the optimisation process 

C. 1D CNN Network architecture  

The proposed 1D CNN model sequentially combines 

convolutional and dense layers to classify EEG signals 

efficiently. The first convolutional layer applies filters of size 

3 to extract salient feature maps; the next is a max-pooling 

layer to reduce dimensionality. Two convolutional layers 

process higher-level features are added, with their output 

further refined by another max-pooling layer.  The input is 

shaped into a 1D vector, passing through dense layers to 

enhance representation learning for discriminative features 

[27]. Dropout is applied to prevent overfitting, and the final 

dense layer outputs multi-class predictions based on a 

Softmax function. ReLU activation functions are used in 

hidden layers to allow backpropagation [28]. Compared to 

pre-trained models like VGG-16 and GoogLeNet [14, 15], the 

proposed architecture addresses challenges such as excess 

computational resource needs, information loss and excessive 

dimensionality reduction due to network depth. The design 

includes a kernel size of 3, a pooling size of 2, and a dropout 

rate of 0.4. Table 1 shows a detailed layerwise summary of 

our ID CNN model. N is the batch size dimension. The 

pooling size is 2.  

TABLE 1: LAYERWISE SUMMARY OF THE PROPOSED MODEL 

Layer (Type) Output Shape Learnable 
Parameters 

conv1d_6(Conv1D) 
max_pooling1d_4(MaxPooling1D)   
conv1d_7 (Conv1D)   
conv1d_8 (Conv1D)    
max_pooling1d_5 (MaxPooling1D) 
reshape_1 (Reshape)   
flatten_2 (Flatten)      
dense_4 (Dense)   
dropout_2 (Dropout)  
dense_5 (Dense)     

(N, 1022, 32)   
(N, 511, 32)  
(N, 509, 16) 
(N, 507, 16)   
(N, 253, 16) 
(N, 4048)    
(N, 4048)    
(N, 128)    
(N, 128)  
(N, 4)    
 

128 
0 

1552 
784 

0 
0 
0 

518272 
0 

516 

Total Parameters 521,252 

 

Table 1 shows a detailed layerwise breakdown of the 

proposed model’s architecture, including the total number of 

learnable parameters. There are 521,252 parameters, ensuring 
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a lightweight design suitable for resource-constrained 

environments. 

V. RESULT AND ANALYSIS  

A.  Results 

The experiment used a Python 3 Google Compute GPU 
Engine on Google Colab. The dataset was split into 80% 
training and 20% testing to ensure unbiased evaluation. A 5-
fold cross-validation was implemented to enhance 
robustness, and online data augmentation techniques, such as 
random scaling and shuffling, were applied to improve 
generalisation [29]. Training checkpoints were utilised. 

TABLE 2: COMPARISON OF PROPOSED MODELS AND RECENT 
WORKS ON THE EEG SIGNAL CLASSIFICATION 

 

Model Accuracy 

(%) 

(Testing) 

Memory Usage / 

Training Time 

(s) 

No. of 

Parameters 

Proposed 1D CNN 81.82 ± 0.08 413.44 KB / 

31.11s 

521,252 

VGG-16 [14] 

 

69.65 ± 0.06 2249.43 MB / 

283.74s 

17,926,596 

 

GoogLeNet [15] 57.56 ± 0.02 

 

3441.68 MB / 

214.57s 

28,322,596 

Linear Discriminant 

Analysis (LDA) 

75.56 ± 0.07 

 

2285.87 MB / 

2.47s 

602,116 

 

This is further visualised in Fig 2.  

 

Fig 2. Performance Comparison Chart 

B.  Result Comparison 

Our proposed 1D CNN model achieves a balanced 
tradeoff between accuracy, computational efficiency, and 
memory usage, specially designed for single-channel EEG 
classification. It achieved an average accuracy of 81.82% ± 
0.08, effectively demonstrating its ability to discriminate EEG 
signal classes while maintaining a lightweight design. In 
contrast, while requiring less training time, the statistical 
model, Linear Discriminant Analysis (LDA), lacked the 
scalability and robustness necessary for intricate EEG signal 
patterns. Our proposed model significantly reduced 
computational resource demands compared to commonly 
used pre-trained architectures such as VGG-16 and 
GoogLeNet, which contain millions of parameters and exhibit 
higher memory usage. With trainable 521,252 parameters, it 
showed minimal memory usage (413.44 KB) during training 
and efficient training times (31.11 seconds). This lightweight 
design makes the proposed 1D CNN highly effective when 
deployed in resource-limited environments, where a balance 

of accuracy and efficiency is a priority. These results reinforce 
the adaptability of the 1D CNN in handling single-channel 
EEG classification, offering a practical solution for real-time 
applications while overcoming the limitations of 
computationally intensive models.  

C.  Biomedical Engineering and Clinical Significance 

 DL-based methods offer faster, more consistent, cost-
effective, and more accurate EEG signal evaluations than 
human interpretation, transforming applications within the 
biomedical industry. For single-channel EEG classification, 
advances in hardware, such as optimised electrodes, improve 
noise management and user comfort for DL algorithms [33]. 
Furthermore, multi-modal sensors enhance EEG signal 
classification accuracy by fusing supplementary physiological 
data [34], while standardised quality metrics support device 
performance reliability in noisy environments [35]. The 
proposed Bayesian-optimized 1D CNN is a significant step 
forward in single-channel EEG signal classification. Its 
lightweight architecture, combined with the computational 
resource and accuracy trade-off, makes it suitable for real-time 
applications in rehabilitation, prosthetic control, and assistive 
technologies. This capability is beneficial for individuals with 
severe motor impairments, including those affected by spinal 
cord injuries or strokes. By directly communicating with 
prosthetics or wearable devices, these individuals can 
significantly improve their quality of life and regain autonomy  
[36]. 

VI. CONCLUSION 

 This study highlights the potential of an efficient, low-
resource DL model for single-channel EEG classification, 
showcasing its ability to enhance biomedical device reliability 
and patient outcomes. The proposed Bayesian-optimized 1D 
CNN refined using a Gaussian process model estimator, 
achieves a balance between computational efficiency and 
performance. While the use of a small private dataset provided 
a focused and controlled environment for model optimisation, 
it represents a limitation in terms of generalisability. The 
proposed 1D CNN model is optimized for sequential data, 
offering computational efficiency and performance trade-off 
tailored to the dataset. Comparisons with VGG and 
GoogleLeNet focus on evaluating their pre-trained feature 
extraction capabilities rather than fine-tuned performance, 
providing insights into their baseline effectiveness. 
Additionally, the 600K parameter count for LDA reflects the 
complexity of projecting high-dimensional features while 
preserving class separability, an aspect clarified in our 
revision. Support Vector Machines (SVM) and other 
traditional ML methods were not used due to their limitations 
in handling high-dimensional feature spaces and sequential 
data. Future work should include larger, more diverse datasets 
to validate the model and enhance its applicability across 
broader conditions and populations. Despite these limitations, 
the study demonstrates the feasibility of deploying lightweight 
models for real-time applications in rehabilitation, prosthetic 
control, and assistive technologies, particularly in resource-
constrained environments.  
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