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SUMMARY

Background: Endoscopy remains the gold standard for gastrointestinal (GI) diagnostics, enabling direct
visualization and intervention within the GI tract. However, diagnostic accuracy and procedural outcomes
vary significantly depending on the endoscopist’s skill and experience, leading to potential missed lesions
and inconsistent patient care. The integration of artificial intelligence (Al) into endoscopic practice offers a
promising solution to address these limitations and enhance diagnostic precision. This review explores the
current applications of Al in endoscopy, focusing on image analysis, lesion detection, classification, and
workflow optimization, while evaluating the impact on clinical practice and identifying implementation
challenges.
Methods: A literature search was conducted using PubMed, Google Scholar, and IEEE Xplore databases for
studies published between January 2010 and December 2024. Keywords included “Artificial Intelligence,”
“Endoscopy,” “Gastrointestinal Diseases,” “Image Analysis,” and “Lesion Detection.” Studies were selected
based on their focus on Al applications in endoscopy with quantitative or qualitative data on performance
and clinical impact.
Results: Al demonstrates exceptional capabilities in polyp detection, achieving detection rates that often
surpass those of human practitioners, with systems such as GI Genius showing high sensitivity and spe-
cificity. Convolutional neural networks excel in real-time lesion identification and classification, differ-
entiating between benign and malignant growths with remarkable precision. Al also optimizes endoscopic
workflows through automated reporting and advanced training tools.
Conclusion: Although Al integration shows promise for enhancing endoscopic diagnostic accuracy and
procedural efficiency, successful implementation requires careful consideration of current limitations, in-
cluding reliance on industry-sponsored studies, and addressing challenges in data quality, clinical workflow
integration, and regulatory considerations. Future developments in advanced algorithms, personalized
medicine, and telemedicine may further advance endoscopic practice and improve patient outcomes.
© 2025 The Author(s). Published by Elsevier Inc. on behalf of Society for Surgery of the Alimentary Tract.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.

E-mail addresses: aanuclement23@gmail.com (A. Clement David-Olawade),
Nicholasoluwaseyi6@gmail.com (N. Aderinto),

eghosaseregabriel@gmail.com (E. Egbon),

gbolahanolatunji153@gmail.com (G. Olatunji),
emmanuelkokori@gmail.com (E. Kokori), d.olawade@uel.ac.uk (D. Olawade).

https://doi.org/10.1016/j.gassur.2025.102195

Introduction

Endoscopy, which involves the insertion of a flexible tube equipped
with a light and camera into the digestive tract, is an indispensable tool
in modern medicine [1]. It allows for direct visualization and inter-
vention within the gastrointestinal (GI) tract, playing a crucial role in
diagnosing and treating a wide range of conditions, including GI
bleeding, inflammatory diseases, infections, and cancers [2]. By
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providing a direct view of the mucosal lining of the GI tract, endoscopy
facilitates the detection of lesions, polyps, and other abnormalities that
might not be visible through noninvasive imaging techniques [3]. This
ability to directly visualize and, if necessary, biopsy suspicious areas
makes endoscopy a cornerstone of GI diagnostics.

Despite its efficacy, the success of endoscopic procedures largely
depends on the skill and experience of the endoscopist [4]. This de-
pendency introduces a significant degree of variability in diagnostic
accuracy and procedural outcomes [5]. An experienced endoscopist
may detect subtle lesions or early-stage abnormalities that a less ex-
perienced practitioner might overlook [6]. Furthermore, the physical
and cognitive demands of endoscopic procedures can lead to fatigue,
potentially affecting performance and increasing the risk of missed
lesions [7]. This inherent variability underscores the need for ad-
vancements that can support endoscopists, reduce the burden of pro-
cedural demands, and enhance the consistency of diagnostic outcomes.

The advent of artificial intelligence (AI) in medical imaging presents
a promising solution to these challenges [8]. Al, particularly through
machine learning and deep learning techniques, has shown exceptional
capabilities in analyzing medical images with high precision [9]. In the
context of endoscopy, Al algorithms can be trained to recognize and
highlight abnormalities in real time, providing a second set of eyes to
assist the endoscopist [ 10]. These systems can analyze vast amounts of
data quickly, identifying patterns and features that might be missed by
human observation alone. Thus, the integration of Al into endoscopy
aims to enhance image analysis, improve lesion detection, and support
decision-making processes, ultimately aiming to standardize and ele-
vate the quality of care [11].

One of the most significant applications of Al in endoscopy is in the
detection of polyps during colonoscopy [12]. Colorectal cancer preven-
tion relies heavily on the early detection and removal of adenomatous
polyps, which are precancerous lesions [13]. Al systems have been de-
veloped to assist endoscopists in identifying these polyps, often
achieving detection rates that surpass those of human practitioners. By
providing real-time alerts and highlighting suspicious areas, Al can help
ensure that polyps are not overlooked, thereby reducing the incidence of
interval cancers, cancers that develop between regular screening inter-
vals owing to missed lesions.

Beyond polyp detection, Al is also being used to classify and
characterize detected lesions [14]. This includes differentiating be-
tween benign and malignant growths and identifying specific types of
polyps that may require different management strategies [15]. For
instance, Al algorithms can be trained to recognize the morphological
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features of various types of polyps, aiding in the immediate in-pro-
cedure decision-making process [14]. This capability not only im-
proves diagnostic accuracy but also facilitates more tailored and
effective patient management.

The integration of Al into endoscopic practice is not limited to
lesion detection and classification but also to image analysis, as
shown in Fig. 1, which illustrates the use of Al in GI endoscopy. Al
systems are also being developed to optimize the entire workflow of
endoscopic procedures [16]. This includes preprocedure planning, in
which Al can analyze patient history and suggest optimal ex-
amination strategies, and postprocedure documentation, in which
automated systems can generate detailed reports of findings and
interventions [17]. In addition, Al-powered training tools are pro-
viding new opportunities for educating novice endoscopists, offering
simulations that mimic real-life procedures and allow for skill de-
velopment in a controlled, risk-free environment [18].

The rationale for integrating Al into endoscopy lies in the pursuit of
enhanced diagnostic accuracy and procedural efficiency. Traditional
endoscopic techniques, although effective, are prone to human error
and subjectivity [19, 20]. Al can mitigate these issues by providing
consistent, objective analysis and support. The novelty of Al applica-
tions in endoscopy is evident in its transformative potential, leveraging
advanced computational techniques to achieve levels of precision and
reliability that were previously unattainable [21]. This review aimed to
comprehensively examine the current applications of Al in endoscopy,
evaluate its impact on clinical practice, and identify the challenges and
limitations associated with its adoption. By exploring these aspects,
this review seeks to highlight the benefits of Al integration, discuss
areas needing further research, and outline future directions for this
burgeoning field. Ultimately, our objective is to provide a thorough
understanding of how Al can advance endoscopic practice, while ac-
knowledging current limitations and the need for more robust, real-
world evidence to support widespread clinical implementation.

Methods
Literature search strategy

To conduct this narrative review on the application of Al in en-
doscopy, a comprehensive literature search was performed using
several electronic databases, including PubMed, Google Scholar, and

IEEE Xplore. The search aimed to identify relevant studies, reviews,
and articles published between January 2010 and December 2024.
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Figure 1. A diagram that illustrates the use of Al in gastrointestinal endoscopy. Al, artificial intelligence.
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Keywords used in the search included “Artificial Intelligence,”
“Endoscopy,” “Gastrointestinal Diseases,” “Image Analysis,” “Lesion
Detection,” “Machine Learning,” “Deep Learning,” “Diagnostic
Accuracy,” and “Workflow Optimization.” This broad search strategy
ensured the inclusion of a wide range of studies related to Al ap-
plications in endoscopy.

Inclusion and exclusion criteria

Studies were included in the review if they were published in
English and focused on the application of Al in endoscopy, particu-
larly in image analysis, lesion detection, classification, character-
ization, workflow optimization, and clinical decision support.
Studies providing quantitative or qualitative data on the perfor-
mance, accuracy, or impact of Al technologies in endoscopic prac-
tices were also considered. Conversely, studies not related to Al
applications in endoscopy, those focusing solely on theoretical as-
pects without practical applications or empirical data, and opinion
pieces, editorials, or non-peer-reviewed articles were excluded. This
ensured that the review focused on high-quality, relevant research.

Data extraction and synthesis

From the selected articles, relevant data were extracted, in-
cluding the type of Al model or tool used, the specific application in
endoscopy, key features, performance metrics (such as sensitivity,
specificity, and accuracy), and impact on clinical practice. The ex-
tracted data were organized into tables and thematic categories to
facilitate comparison and synthesis. This methodical approach al-
lowed for a structured analysis of the various Al applications and
their effectiveness in enhancing endoscopic procedures.

Evaluation of Al models and tools

The Al models and tools identified in the literature were eval-
uated based on several criteria. Technical performance was assessed
using metrics such as sensitivity, specificity, accuracy, and the area
under the receiver operating characteristic curve. These metrics
provided insights into the effectiveness of Al in detecting and clas-
sifying lesions. Clinical impact was examined by evaluating the in-
fluence of Al on diagnostic accuracy, workflow efficiency, and patient
outcomes, with particular emphasis on studies providing compara-
tive data between Al-assisted and traditional endoscopic procedures.

Implementation feasibility was also a critical evaluation cri-
terion, considering factors such as ease of integration into existing
clinical workflows, user-friendliness, and compatibility with endo-
scopic equipment. This aspect of the evaluation focused on the
practicality of Al systems in real-world clinical settings. Finally,
regulatory and ethical considerations were assessed, including
compliance with data protection regulations, obtaining necessary
regulatory approvals, and addressing ethical concerns related to the
use of Al in medical procedures. This comprehensive evaluation
framework ensured a thorough understanding of the potential and
limitations of Al applications in endoscopy.

Al in image analysis and lesion detection

Al has brought significant advancements to the field of endoscopy,
particularly in the areas of image analysis and lesion detection [22]. The
application of Al in these areas aims to address the limitations of tra-
ditional endoscopic practices, which rely heavily on the endoscopist’s
expertise and experience. Variability in diagnostic accuracy and the
potential for missed lesions are significant challenges that can affect
patient outcomes [23]. Al algorithms, especially those based on deep
learning, offer the potential to standardize and enhance the diagnostic
process [24]. These algorithms can analyze endoscopic images with
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remarkable precision, providing real-time assistance and significantly
improving the detection and classification of lesions [25]. The integration
of Al into endoscopic procedures not only enhances diagnostic accuracy
but also optimizes workflow efficiency, reducing the cognitive load on
endoscopists and ensuring more consistent and reliable outcomes [26].

Automated image analysis

Al algorithms, particularly deep learning models, have demonstrated
remarkable capabilities in analyzing endoscopic images, fundamentally
transforming the landscape of GI diagnostics [27]. Convolutional neural
networks (CNNs) are at the forefront of these advancements owing to
their proficiency in recognizing patterns and features in visual data [28].
CNNs consist of multiple layers that process and learn from vast
amounts of data, allowing them to identify complex structures and ab-
normalities with high accuracy. This capability is particularly beneficial
in endoscopy, in which the identification of subtle lesions can sig-
nificantly affect patient outcomes |28, 29].

Polyp detection

One of the most significant applications of Al in endoscopy is the
early and accurate detection of polyps during colonoscopy, a critical
factor in preventing colorectal cancer [30]. Colorectal cancer is one
of the leading causes of cancer-related deaths worldwide, and early
detection through polyp identification is essential for effective pre-
vention and treatment [31]. Al models trained on large datasets of
annotated endoscopic images have shown exceptional performance
in detecting polyps [27]. These models can identify polyps with high
sensitivity and specificity, often surpassing the detection rates of
human endoscopists [32]. For instance, Al systems such as GI Genius
can detect polyps with high sensitivity and specificity, significantly
reducing the miss rate during colonoscopy. These systems increase
the adenoma detection rate, highlighting the potential of Al to en-
hance the efficacy of colorectal cancer screening programs [33].
These findings underscore the potential of Al to serve as a powerful
tool in improving early detection and, consequently, patient out-
comes in colorectal cancer prevention [34].

Tumor identification

Beyond polyp detection, Al can significantly aid in the detection
and classification of tumors in various parts of the GI tract [35].
Accurate differentiation between benign and malignant lesions is
crucial for appropriate clinical management and treatment planning
[36]. Al systems can analyze endoscopic images to identify tumors
and classify them based on their visual characteristics, such as tex-
ture, morphology, and color patterns. Al algorithms have demon-
strated high accuracy in differentiating between benign and
malignant lesions [37]. For example, Al systems can achieve high
accuracy in identifying early gastric cancer and esophageal squa-
mous cell carcinoma, providing critical support for endoscopists in
making timely and accurate diagnoses [38]. These results highlight
the potential of Al to enhance the accuracy of cancer diagnoses,
enabling more timely and appropriate interventions.

Real-time assistance

Al's role in endoscopy extends beyond postprocedural analysis to
providing real-time assistance during endoscopic procedures [39].
Real-time Al systems can analyze live endoscopic video feeds,
alerting endoscopists to potential abnormalities that might be
missed during manual inspection [40]. This real-time feedback is
invaluable in enhancing diagnostic accuracy and reducing the like-
lihood of missed lesions [41]. For instance, a real-time Al system can
continuously monitor the endoscopic video, identifying suspicious
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Figure 2. An overview of the application of Al in endoscopy. Al, artificial intelligence.

areas and flagging them for closer inspection by the endoscopist
[42]. This functionality is particularly beneficial in detecting small or
flat lesions that are easily overlooked. Real-time Al assistance can
significantly improve lesion detection rates, demonstrating the im-
pact of Al on enhancing the thoroughness of endoscopic examina-
tions [43]. Moreover, real-time Al systems can provide consistent
performance throughout the procedure, unaffected by the fatigue or
cognitive load that can affect human endoscopists [44]. This con-
sistency ensures that the quality of the examination remains high,
potentially leading to better patient outcomes. In summary, the in-
tegration of Al into endoscopy, particularly through advanced image
analysis and real-time assistance, holds great promise for improving
diagnostic accuracy and efficiency, as shown in Fig. 2 below.

By leveraging the capabilities of deep learning models such as
CNNs, Al can enhance the detection and classification of polyps and
tumors, providing invaluable support to endoscopists. These ad-
vancements not only improve the quality of endoscopic procedures
but also have the potential to significantly affect patient outcomes,
particularly in the early detection and treatment of GI cancers.

A comprehensive overview of specific Al models and tools used
in image analysis and lesion detection in endoscopy, along with their
descriptions, key features, and impact on diagnostic accuracy, is
presented in Table 1 [45-50].

Al in classification and characterization

Al not only detects abnormalities but also classifies and characterizes
them, providing a deeper level of analysis that is crucial for appropriate
clinical decision making. This involves differentiating among various
types of lesions, such as adenomas, hyperplastic polyps, and invasive
carcinomas [51]. Advanced Al models can analyze the texture, mor-
phology, and other features of lesions with remarkable precision, en-
abling more accurate and reliable classifications [52]. The differentiation
of various types of lesions is a critical component of endoscopic diag-
nostics [53]. For example, distinguishing between adenomatous polyps,

which have a higher risk of progressing to colorectal cancer, and hy-
perplastic polyps, which are typically benign, is essential for determining
the appropriate clinical management and follow-up strategies [54]. Al
systems can be trained using large datasets of labeled images to re-
cognize the subtle differences in appearance that differentiate these le-
sions. By analyzing features such as size, shape, color, and surface
patterns, Al models can provide accurate classifications that inform
treatment decisions [55].

In addition to differentiating between benign and malignant le-
sions, Al can characterize the specific type and stage of tumors [56].
For instance, in the case of gastric and esophageal cancers, Al models
can assess features such as the depth of invasion and the presence of
lymphovascular invasion, which are critical for staging the disease
and planning treatment [57]. These characterizations are based on
the detailed analysis of image data, leveraging machine learning
techniques to identify patterns and markers that may be invisible to
the human eye [48]. By providing precise classifications and char-
acterizations, Al enhances clinical decision support in endoscopy. For
instance, Al can help determine whether a lesion should be biopsied,
resected, or simply monitored [58]. This capability reduces un-
certainty and variability in clinical practice, ensuring that patients
receive the most appropriate care based on the specific character-
istics of their lesions.

A comprehensive overview of specific Al models and tools used
in classification and characterization in endoscopy, along with their
descriptions, key features, and impact on clinical decision making, is
presented in Table 2 [45,46,59-62].

Implementation challenges and technical considerations

Although Al holds great promise for enhancing endoscopic pro-
cedures, several implementation challenges and technical con-
siderations must be overcome. By addressing issues related to data
quality and quantity, ensuring seamless integration into clinical
practice, and navigating regulatory and ethical considerations, the
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Figure 3. Integration of Al in endoscopy and its applications in a broader perspective.
Al artificial intelligence.

healthcare industry can harness the potential of Al to improve pa-
tient outcomes and the efficiency of endoscopic procedures [G3].

Data quality and quantity

One of the primary challenges in developing effective Al models
for endoscopy is the availability of high-quality, annotated datasets
[64]. Training Al algorithms requires large amounts of data that ac-
curately represent the variations seen in clinical practice [65].
However, acquiring such datasets is often difficult owing to several
factors. Creating annotated datasets involves extensive manual work
by expert endoscopists to label images and videos, which is time
consuming and costly. The lack of sufficient annotated data limits
the ability to train robust Al models [66]. In addition, endoscopic
images can vary significantly in quality owing to differences in
equipment, lighting, and operator technique [67]. These variations
can affect the performance of Al models, given that algorithms
trained on high-quality images may not perform well on lower-
quality images commonly encountered in practice [68]. Addressing
these data-related challenges requires collaborative efforts to create
large, standardized, and annotated datasets [69]. Initiatives to share
data across institutions and the development of sophisticated data
augmentation techniques can help mitigate these issues.

Integration with clinical practice

Integrating Al systems into existing clinical workflows without
disrupting standard practices is another significant challenge [70].
Several factors contribute to this difficulty. Al tools must be intuitive
and easy to use for endoscopists, who may have varying levels of
comfort and experience with new technologies. Complex interfaces
or workflows can hinder adoption and reduce the perceived value of
Al tools [71]. Furthermore, Al systems need to be compatible with a
wide range of endoscopic equipment used in different healthcare
settings [14]. Ensuring seamless integration with various hardware
and software platforms is essential for widespread use. Endoscopists
and other healthcare professionals require training to effectively use
Al tools [72]. Ongoing technical support is also crucial to address any
issues that arise and ensure that Al systems are used to their full
potential. Successful integration of Al into clinical practice involves
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designing user-friendly interfaces, ensuring compatibility with ex-
isting equipment, and providing comprehensive training and sup-
port to healthcare providers [16].

Regulatory and ethical considerations

The use of Al in medical procedures raises several regulatory and
ethical concerns that must be addressed to ensure safe and effective
implementation. Protecting patient privacy and ensuring the se-
curity of medical data are paramount |[73]. Al systems must comply
with strict data protection regulations, such as the General Data
Protection Regulation in Europe and the Health Insurance Portability
and Accountability Act in the United States. Robust measures must
be in place to prevent data breaches and unauthorized access [74]. Al
tools for medical use must obtain regulatory approvals from relevant
authorities, such as the U.S. Food and Drug Administration or the
European Medicines Agency [75]. The approval process can be
lengthy and complex, involving rigorous testing and validation to
demonstrate safety and efficacy. Ensuring that Al is used ethically in
endoscopy involves addressing potential biases in Al algorithms,
maintaining transparency in Al decision-making processes, and
safeguarding against the misuse of Al [76]. It is crucial to develop
guidelines and frameworks to govern the ethical use of Al in
healthcare [77]. To address these regulatory and ethical challenges,
continuous dialogue among developers, clinicians, regulatory bodies,
and ethicists is necessary. Establishing clear regulations and ethical
standards will help build trust in Al technologies and facilitate their
adoption in clinical practice.

Future directions

The future of Al in endoscopy shows considerable promise, with
significant advancements in algorithms, personalized medicine, and
telemedicine on the horizon [78]. These developments may enhance
endoscopic practice, making it more accurate, efficient (see Fig. 3 for
better illustration), and accessible [10]. As Al continues to evolve, it
could play an increasingly important role in improving patient
outcomes and advancing the field of gastroenterology [79]. The
ongoing collaboration among clinicians, researchers, and technolo-
gists will be essential to fully harness the potential of Al and bring
these future directions to fruition.

An overview of the integration of Al in endoscopy and its appli-
cations in a broader perspective is shown in Fig. 3. Al in endoscopy
leverages advanced algorithms to enhance diagnostic capabilities
and is connected to applications in telemedicine and personalized
medicine. This combination aims to improve patient outcomes and
streamline healthcare delivery.

Advanced algorithms

Continued advancements in Al algorithms, particularly in areas
such as reinforcement learning and unsupervised learning, could
further enhance the capabilities of Al in endoscopy. Reinforcement
learning, which involves training algorithms through trial and error
to optimize decision making, could improve the precision of endo-
scopic procedures by continuously learning from new data and
adapting to complex clinical scenarios [80]. Unsupervised learning,
which identifies patterns in data without prelabeled outcomes,
could be instrumental in discovering new biomarkers and under-
standing disease mechanisms, thus aiding in early detection and
diagnosis [81]. These advanced algorithms could lead to more ac-
curate, efficient, and adaptable Al systems, capable of providing even
greater support to endoscopists in real time.
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Personalized medicine

Al could play a significant role in personalized medicine by tai-
loring endoscopic procedures and treatments to individual patient
profiles based on genetic, phenotypic, and clinical data. By in-
tegrating Al with genomic data and electronic health records, it is
possible to develop highly personalized diagnostic and therapeutic
strategies [82]. For example, Al can analyze a patient’s genetic pre-
disposition to certain GI diseases and suggest targeted surveillance
and intervention protocols. Personalized Al models could also pre-
dict patient-specific responses to treatments, enabling more precise
and effective management of conditions such as inflammatory bowel
disease or colorectal cancer. This move toward personalized medi-
cine promises to enhance patient outcomes by providing customized
care that addresses the unique needs of each individual.

Telemedicine and remote diagnosis

Al-powered endoscopic systems could enable remote diagnosis
and consultations, expanding access to specialized care, especially in
underserved regions [83]. Telemedicine, supported by Al, can facil-
itate real-time analysis of endoscopic images and videos from re-
mote locations, allowing expert endoscopists to provide guidance
and second opinions without the need for a physical presence [84].
This capability is particularly valuable in rural or low-resource set-
tings in which access to specialized medical care is limited. Al-driven
remote diagnosis can also play a critical role in global health by
providing scalable solutions to address disparities in healthcare ac-
cess [85]. By leveraging Al and telemedicine, healthcare providers
can ensure that patients receive timely and accurate diagnoses, re-
gardless of their geographical location.

Limitations of the review

This narrative review has several limitations that should be ac-
knowledged when interpreting the findings. First, as a narrative ra-
ther than a systematic review, the study selection process was less
rigorous than would be used in a formal systematic review or meta-
analysis. Although a comprehensive search strategy was used across
multiple databases, the absence of a standardized protocol for study
selection and quality assessment may have introduced selection bias
and limited the reproducibility of the findings.

The heterogeneity of Al applications and technologies reviewed
presents another significant limitation. The included studies used
diverse Al models, ranging from CNNs to machine learning algo-
rithms, applied across different endoscopic procedures and patient
populations. This diversity makes direct comparison of results
challenging and limits the ability to draw definitive conclusions
about the overall effectiveness of Al in endoscopy.

The rapidly evolving nature of Al technology means that some
findings may become outdated quickly, particularly given the re-
view’s inclusion of studies from 2010 onward. More recent devel-
opments in Al may not be fully captured, and the technological
landscape continues to advance at an unprecedented pace.

Publication bias represents another potential limitation, given
that studies demonstrating positive outcomes for Al applications are
more likely to be published than those showing neutral or negative
results. This bias may lead to an overly optimistic portrayal of Al's
effectiveness in endoscopic practice.

The review’s focus on English-language publications may have
excluded relevant research published in other languages, potentially
limiting the global perspective on Al applications in endoscopy. In
addition, many of the studies reviewed were conducted in controlled
research environments, and their findings may not translate directly
to real-world clinical settings in which factors such as equipment
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variability, operator experience, and patient complexity can sig-
nificantly affect outcomes.

The lack of standardized outcome measures across studies fur-
ther complicates the interpretation of results. Different studies used
varying metrics for assessing Al performance, making it difficult to
establish consistent benchmarks for success.

Finally, the review did not assess the cost-effectiveness of Al
implementation, which is a crucial consideration for healthcare
systems contemplating the adoption of these technologies.
Economic evaluations would provide valuable insights into the
practical feasibility of widespread Al integration in endoscopic
practice.

Conclusion

Al shows significant potential to enhance endoscopy by im-
proving diagnostic accuracy, procedural efficiency, and patient out-
comes. Through the application of advanced algorithms, Al enhances
the detection and classification of GI lesions, offering real-time as-
sistance that can mitigate the limitations of human observation. This
promising technology not only aids in early and accurate diagnosis
but also optimizes endoscopic workflows, reducing procedure times
and administrative burdens. However, several challenges and lim-
itations must be addressed to fully realize Al's potential in endo-
scopy. High-quality, annotated datasets are crucial for training
robust Al models, and the scarcity of such data remains a significant
hurdle. In addition, seamlessly integrating Al systems into existing
clinical workflows without disrupting standard practices requires
the development of user-friendly interfaces and ensuring compat-
ibility with diverse endoscopic equipment. Regulatory and ethical
considerations, including patient privacy, data security, and ob-
taining necessary approvals, are critical for the safe and effective
implementation of Al in clinical settings.

An important limitation of current evidence is the predominance
of industry-sponsored studies and controlled research environ-
ments, which may not fully represent real-world clinical perfor-
mance. The reliance on “directed studies” rather than independent,
real-world data necessitates cautious interpretation of current
findings and emphasizes the need for more robust, unbiased vali-
dation studies.

Despite these challenges, the future of Al in endoscopy seems
promising. Ongoing research and development in Al technologies,
coupled with efforts to address regulatory and ethical concerns, may
facilitate the successful integration of Al into endoscopic practice.
Advanced algorithms, personalized medicine, and telemedicine re-
present significant future directions that could further enhance the
capabilities and reach of Al in endoscopy. The continued collabora-
tion among clinicians, researchers, and technologists is essential to
harness the potential of Al. By working together, these stakeholders
can ensure that Al technologies are developed, validated, and im-
plemented in ways that maximize their benefits while minimizing
risks. As Al continues to evolve, it may play an increasingly im-
portant role in advancing the field of endoscopy, potentially leading
to improved patient care and outcomes while requiring careful
consideration of current limitations and the need for more com-
prehensive real-world evidence.
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