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Abstract: The COVID-19 pandemic has especially exacerbated the issues faced by the
healthcare field, regarding how to ensure rapid and correct infection diagnoses. This study
evaluates how Convolutional Neural Networks (CNNs) can be used to automate the diagnosis of
COVID-19 using chest X-ray images. The CNN model, as proposed, received training using a
publicly available dataset and assessed according to important performance metrics that included
accuracy, sensitivity, and specificity. The model accomplished an overall accuracy of 96%, along
with a sensitivity of 89% and a specificity of 969, which points to its strong performance in
recognizing COVID-19 cases. The results reveal that diagnostics built on CNN can significantly
enhance the use of traditional methods such as PCR tests, supplying quick, reliable, and scalable
diagnostic capabilities. Through the addition of Al-enhanced diagnostic capabilities in healthcare
processes, the stress on healthcare professionals is lessened by automating image interpretation
and quickening patient management. The investigation points out the promise of CNN models
n raising diagnostic precision and efficiency in emergent situations, particularly during pandemic
outbreaks, and stresses the importance of future research on model generalizability and ethical
factors.

Keywords: COVID-19 diagnosis, Convolutional Neural Networks (CNNs), Chest X-ray
imaging, Automated diagnostics, Deep learning, Al in Healthcare.

1. Introduction

The COVID-19 pandemic has created a serious global health emergency, requiring
prompt access to fast and precise diagnostic means. Due to the highly contagious nature of the
disease, early detection 1s essential for effective patient management and reducing the strain on
healthcare facilities [1]. Polymerase Chain Reaction (PCR) tests are widely regarded as the gold
standard for COVID-19 diagnosis. However, they are time-intensive and require sophisticated
laboratory infrastructure, which may not be readily available in resource-constrained settings.
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Chest X-rays are now a fundamental part of diagnosing respiratory conditions including
COVID-19. These images provide real-time insights into lung abnormalities such as ground-glass
opacities and consolidations. However, manual interpretation is often slow and prone to human
error, especially during peak demand periods. This has led to increasing interest in automated
diagnostic solutions that can enhance accuracy and speed.

Convolutional Neural Networks (CNNs), a class of deep learning algorithms, have
already shown success in 1mage classification and are currently being analyzed for medical
imaging uses. They can efliciently analyze complex patterns in X-ray, CT, and MRI images,
outperforming traditional diagnostic methods. By automatically extracting relevant features from
medical images, CNNs eliminate the need for manual feature engineering, making them 1deal
candidates for assisting in the diagnosis of diseases like COVID-19.

This work investigates the use of CNNs to identify COVID-19 automatically from chest
X-ray mmages. While numerous CNN models exist for this purpose, our study introduces
mmprovements in feature extraction, training efficiency, and model generalization. Techniques
such as transfer learning, hyperparameter tuning, and lightweight architectures are utilized to
achieve enhanced diagnostic accuracy and real-time chnical applicability. In rather advanced ways
like transfer learning and fine-tuned hyperparameters combined with hightweight architectures,
this model aims at achieving better diagnostic accuracy while carrying real-time applicability in
clinical settings. Such definitions of contribution as with respect to the status of previous works
will enhance the impact and originality of this research.

The research objective includes optimizing convolutional neural networks (CNN) for
automatic COVID-19 detection from chest X-ray images. The intent of such research 1s to
enhance the extraction and training of features such that it will have an accurate diagnosis yet
minimize the computational complexity. Another important objective 1s testing the
generalizability of the model on diverse datasets to ensure that it can be deployed efficiently into
the real-world clinical environment without performance degradation. The ethical and practical
considerations of Al diagnostics are also addressed, including issues of model interpretability,
bias i the dataset, and regulatory compliance. It would develop a solid basis for designing
methodology, results, and conclusions of the study by characterizing study objectives.

In this study, it is hypothesized that the automated detection of COVID-19 through a
CNN will be much more efficient and accurate than the traditional means of diagnosis. The
developed model 1s hypothesized to give better accuracy, sensitivity and specificity when it comes
to identifying COVID-19 from chest X-ray mmages compared to PCR testing and manual
radiological interpretation. It further postulates that optimizations such as transfer learning, data
augmentation, and hyperparameter tuning would enhance the generalized performance of the
models, ensuring their consistent performance even across different datasets and environments
clinical. Another assumption of the same nature relates to the belief that the CNN model would
significantly reduce the time for diagnosis thus relieving health professionals from this burden
and allowing fast, accurate decision-making. Moreover, it is also assumed that the explanation
methods like Grad-CAM (Gradient-Weighted Class Activation mapping) and saliency maps will
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mcorporate such modelling features in the model that could improve its interpretability and
consequently trust and acceptance by the medical practitioners. Al-driven automated diagnosis
can provide a scalable and cost-effective solution to other resource-poor health care provisions
where sophisticated diagnostic tools are not available. These assumptions clearly lay the
groundwork for a comparative evaluative baseline with which research findings could be
compared agamst expectations thus enhancing the study's contribution to Al-driven medical

diagnosis.

2. Literature Study

Previous studies have shown the potential of Al, particularly CNNs, in medical image
analysis. For instance, [2] developed a CNN-based model that utilized chest X-rays to diagnose
COVID-19 with high accuracy, while [3] explored various deep learning architectures for the
same purpose. The study [4] develops machine learning models to predict risk levels by analyzing
patient demographics, medical history, lifestyle factors, and clinical indicators. Accurate
predictions enable early identification of high-risk individuals, facilitating personalized
mterventions and improving healthcare outcomes. However, these studies often lacked real-
world integration or failed to generalize well across diverse datasets. Our study addresses these
limitations by using a more robust dataset and focusing on clinical relevance and generalizability

thereby maintaining the integrity of the specifications.

2.1 Convolutional Neural Networks in Medical Imaging

Convolutional Neural Networks (CNNs) have made significant contribution to medical
imaging, especially in Medical Imaging diagnostics. These models learn spatial hierarchies from
mmage data through convolutional, pooling, and fully connected layers. Their ability to process
large datasets rapidly makes them particularly useful during pandemics. Applications in diseases
such as cancer, cardiovascular problems, and neurological disorders have increased the accuracy
of CNNgs, especially over traditional diagnostic methods [5]. Despite these advantages, challenges
such as dataset diversity, model interpretability, and regulatory compliance remain. This study
focuses on overcoming these limitations by enhancing model robustness and exploring
explainability techniques such as Grad-CAM for imcreased transparency.

For example, CNNs are famously good at processing a lot of data fast (and as accurately
as possible), which is incredibly useful with high demand, like the current COVID-19 pandemic.
Not only do CNNs learn the features in an image automatically, but they also recognize the
features well in advance of the human eye, thereby increasing diagnostic accuracy and speed.
Additionally, CNNs enable transfer learning where pre-tramed models can be fine-tuned on
different datasets without prior labeled data required [6].

2.2 Role of Chest X-Rays in COVID-19 Diagnosis
In resource limited settings, COVID-19 has become a case of waiting for the PCR test
while the chest x ray has become a critical diagnostic tool given its speed compared to PCR,
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which may be delayed or simply unavailable. X-rays are inexpensive, available practically
everywhere, and are noninvasive — they are a good first line diagnostic test to look at in COVID-
19. COVID-19 appears to predominantly affect the lungs and lead to abnormalities, including
ground-glass pacities, consolidations, and interstitial infiltrates, visible in chest X-rays. Such
indicators are specially appropriate to indicate the development of the disease in symptomatic
patients [7].

The speed and noninvasive nature of the chest X-ray is important during the COVID
19 pandemic for rapid triage, disease progression tracking and severity of infection. Chest X-rays
can be said to provide immediate mnsights into lung pathology, especially in places where more
advance imaging techniques like the CT scans are not available as per the study [5]. However,
the interpretation of X-rays is not without some difliculty [8]. Diagnostic errors result from subtle
findings in the images, overlap with other pulmonary diseases, and variability of manifestations
among different patient populations. Interest in using Al based tools like CNN to automate and
mmprove the diagnostic process has been spurred by this, with less dependence on subjective
human interpretation [9].

2.3 CNNs for COVID-19 Diagnosis from Chest X-Rays

There have been several studies covering the use of CNNs on COVID-19 diagnosis
using chest X-ray images. The author in [10] used early research of their CNN model capable of
distinguishing between COVID-19 and other types of pneumonia in chest X-rays. Using transfer
learning with pre trained models such as ResNet and DenseNet, the study successfully achieved
high accuracy in COVIDI19 detection. The results showed that CNNs can accelerate diagnosis,
diminish human error and provide viable solutions that scale in resource constrained
environments.

The research [9] also crafted COVIDX-Net, a deep learning framework consists of
seven different CNN models. Trained and tested the models on publicly available COVID-19
chest X-ray datasets. The fact that CNNs were proven to be reliable for automating COVID-19
diagnosis was proved when the best performing model in the framework achieved significant
accuracy. Similarly, [11] suggests that COVID Net is a CNN architecture specifically designed
for COVID-19 diagnosis from chest X-rays. It developed the model using data augmentation
and transfer learning techniques, via which the model generalizes well across different datasets.

However, these studies have shown promising results, but there are challenges. The first
thing 1s, that the quality and the diversity of datasets you have for training are very important. In
most models, training on few datasets can result in overfitting, where the model performs well
on the training data, yet poorly on unseen data [12]. Furthermore, CNNs are commonly
considered black boxes when using them to classily patient images, which means clinicians
cannot easily understand how the model made its decision regarding a patient's image
classification. In hine [13], the model transparency and interpretability must be improved in order
to be adopted in wider clinical context. To improve understanding of how CNNs make

Int. J. Comput. Commun. Inf., 45-60 / 48



Vol. 6 Iss. 2 Year 2024 Qudus Muritala et al, /2024

diagnostic decisions, visualization methods such as saliency maps, gradient weighted class

activation mapping (Grad-CAM), and attention mechanisms have been used [14].

2.4 Performance Metrics for CNNs in COVID-19 Diagnosis

In medical imaging CNNs performance evaluation is based on different metrics like,
accuracy, sensitivity, specificity, precision and F1 score accuracy. In particular for COVID-19
diagnosis, sensitivity, or true positive rate, is very critical to make sure infected people are
detected rather than being missed. Also important to prevent false positives (false positive rate)
1s specificity which means the true negative rate, leading to unnecessary treatment or quarantine
measures [1)5].

CNN models applied to COVID-19 diagnosis have turned up in a couple of studies with
impressive performance metrics. In fact, the author in [16] systematically compared CNN based
diagnostics with standard techniques such as PCR. But CNNs, they found, were quicker and
achieved similar levels of accuracy, with near mstantaneous diagnosis. In particular, this proves
very useful during pandemics where large volumes of data need to be analyzed quickly. Though
CNN model generalization to novel populations and imaging conditions are still an 1ssue. CNN
based diagnostic tools must be robust and reliable, and this requires external validation across
multiple healthcare settings [17].

2.5 Challenges and Limitations of CNNs in COVID-19 Diagnosis

CNNs promise significant gains in automating COVID-19 diagnosis, but challenges
limiting this adoption by clinical practice exist. Dataset diversity is one of the main challenges.
The quality and variability of the data CNNSs are trained on are much more critical in determining
their effectiveness. Most existing datasets are small, and in most cases the datasets come from
similar populations and clinical settings. Thus, this lack of diversity hinders using CNN models
to different demographic patients, geographic regions, and healthcare infrastructures [18].

The other limitation is model mnterpretability. While highly accurate, CNNs are
frequently maligned as being black box models. To be taken seriously, a model's output has to
be fully trusted and clinicians have to know what a model believed led to a particular diagnosis.
While explanation tools, such as heatmaps, etc., are being developed to make CNN models on
medical imaging more interpretable [12], these tools are not yet perfect.

Barriers to the adoption of CNN-based diagnostics include ethical and regulatory
concerns. For healthcare Al deployment, it is sensitive data and must maintain the privacy of the
data and regulations like GDPR (General Data Protection Regulation). The second concern is
algorithmic bias: if CNN models are trained with biased datasets, they can perpetuate existing
healthcare disparities [14]. In addition, the clinical validation and safety assessment needed for
regulatory approval of Al-based diagnostic tools 1s a long process [15].
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3. Methodology
3.1 Dataset

The dataset consists of 284 chest X-ray images classified into COVID-19 positive and
negative cases. The images were sourced from publicly available databases to ensure diversity
and quality. Data preprocessing steps, including resizing, normalisation, and data augmentation
(rotation, shear, and zoom), were applied to improve model generalisation. The images in the
dataset are classified into two categories: COVID-19 cases as well as normal (non-COVID) cases.
The data set 1s further distributed into a training category of 224 images (112 COVID-19, 112
Normal) and validation category of 60 images (30 COVID-19, 30 Normal). This dataset is useful
for deep learning models to differentiate between COVID-19 on chest X-rays and normal cases.
Although the dataset 1s small and balanced against normal cases of COVID-19 positives, it
necessitates the introduction of data augmentation techniques for capability improvement of

models toward generalization.

3.2 Model Architecture

The proposed CNN model includes:

e Convolutional Layers: Increasing filters from 32 to 128.

e MaxPooling Layers: 2x2 pooling windows.

e Dense Layers: A fully connected layer with 512 neurons, followed by a dropout of

0.5 to prevent overfitting.

o  Qutput Layer: A single neuron with sigmoid activation for binary classification.

The model was compiled using the bmary cross-entropy loss function and the Adam
optimizer, with accuracy as the evaluation metric.

The proposed model is lightweight, computationally efficient, and possible for real-time
application in low-resource settings, unlike deeper models such as ResNet50 and DenseNet,
which require high computational power and larger datasets. It comprises optimized feature
extraction, data augmentation, and dropout techniques for preventing overfitting, thus, ensuring
a better generalization performance even with insufficient training samples. The proposed model
uses optimized feature extraction, data augmentation, and dropout techniques for preventing
overfitting, thus, ensuring a better generalization performance even under an insufficient amount

of training samples.

3.3 Data Collection and Analysis Procedures

The strategy for data acquisition and enlargement presently strengthens its robustness to
the CNN model by superconducting rescaling, rotating, shifting, shearing, zooming, and flipping
for better feature extraction and overfiting prevention. Future improvements on the
generalization model will depend on a multi-hospital and geographic region dataset, which will
help the model learn a wider variety of imaging conditions. Also, including external validation
sets beyond those determined by the existing data will introduce a higher degree of freedom in
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ensuring consistent model performance on unseen data. With class imbalance prevalent in
COVID-19 datasets, combining oversampling methods like SMOTE and class weighting against
training biasing of learned predictions toward the latter could, at best, improve the predicted
mfection. Extending the assessment of the model to other imaging modalities such as CT scans
mn addition to chest X-rays would further complement the diagnostic formulation. Such actions
as increasing diversity in datasets, introducing external validation, or tackling class imbalance

would considerably fortify real-world applicability in the model.

3.4 Training and Evaluation

The model was trained using a batch size of 32 for 50 epochs. Early stopping was
mmplemented to prevent overfitting by monitoring validation loss. The model’s performance was
evaluated using metrics such as accuracy, sensitivity, specificity, and confusion matrix analysis.

This study outlined the CNN-based model for COVID-19 detection using chest X-ray
mmages. The data was carefully pre-processed to ensure model performance and generalizability.
The CNN model incorporating a convolution layer, a max-pooling layer for feature extraction
and also fully connected dense layer for classification was trained and evaluated. The techniques
rigorously use early stopping and performance metrics to ensure models reliability and
effectiveness.

4. Results and Discussion

The proposed CNN model is conducted to assess the effectiveness of the performance
and 1ts generalizability on unseen data. The results are critical analysed to understand the
strengths and areas of improvement for the model using evaluation metrics.

4.1 Model Performance Overview

The Convolutional Neural Network (CNN) model developed for the automated
diagnosis of COVID-19 using chest X-ray images achieved notable performance across various
metrics, iIncluding accuracy, sensitivity, specificity, and Area Under Curve (AUC) score. During
the training and evaluation process, the model demonstrated a high capacity to distinguish
between COVID-19 positive and negative cases based on chest X-ray features. The final accuracy
of the model was 98%, with a sensitivity of 97% and a specificity of 100%.

The proposed CNN model demonstrated high diagnostic performance with 98%
accuracy, 97% sensitivity, and 1009% specificity. The confusion matrix in Figure 1 highlights the
model’s ability to distinguish between COVID-19 positive and negative cases, with only one false
negative and no false positives. The model correctly identified 30 true positive cases of COVID-
19 and 29 true negative cases of non-COVID-19 chest X-rays. There 1s 1 false negative cases and

no false positive cases reported. This suggests that the model 1s highly reliable in not over
diagnosing COVID-19.
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Confusion Matrix
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Figure 1 Confusion Matrix
One of the major objectives of this study 1s to optimize the CNN-based feature extraction
and traming efficiency for automatic COVID-19 detection while minimizing computational
complexity. According to Table 1, the proposed CNN model exhibited accuracy levels of 98%,
sensitivity levels of 97%, and specificity levels of 100%, thus proving its high diagnostic rehability.
The results prove that the optimized CNN truly extracts features from chest X-ray photographs
but at low computational costs, thereby meeting one of the key research objectives.

4.2 CNN Model Training and Performance Evaluation

The training and validation history plotted i Figure 2 of the model 1s crucial for
understanding how well it learned from the dataset and generalized to unseen data. The model
was trained using a batch size of 32 for 50 epochs, implementing early stopping to prevent
overfiting. The training was stopped after 19 epochs when the validation loss failed to improve
for 10 consecutive epochs. Training accuracy steadily increased to approximately 88%, while
validation accuracy peaked to 98%, indicating strong generalization.

The early stabilization of validation loss and gradual improvement in training accuracy
indicate that the model achieved optimal learning without overfitting. Early stopping was triggered
appropriately, helping the model avoid memorizing noise or irrelevant features. The training and
evaluation process for the CNN model are in line with the research objective that aims to
optimize the efficiency of feature extraction and training in automatic COVID-19 detection. The
training concluded after 19 epochs due to early stopping, avoiding overfitting and ensuring that
the CNN learned to generate outputs from meaningful features rather than memorizing input
data. The training accuracy continued to increase reaching 879, while validation accuracy
achieved 98% as seen in Figure 2, showing a good generalization to unseen data. Validation loss
lustrated a stabilization as well which would indicate robustness in the real-world situation on
deployment. Linking these findings explicitly to broader mmplications would strengthen their
influence. The high generalization ability would thus mean that the CNN model would be held
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for use n different clinical setups, reducing dependence on manual radiological interpretation

and increasing speed during the pandemic outbreak.

Accuracy and Loss Across Epochs:

Epoch Train Accuracy Train Loss Validation Accuracy Validation Loss
2] 1 8.495536 @.7187e1 @.78125 @.676858
1 2 B8.674187 8.6808239 8.59375 8.567886
2 3 8.741071 8.569202 0.96875 8.339862
3 4 8.816964 8.451335 1.80800 8.126311
4 5 8.861687 8.326427 0.9375@ 8.134099
5 6 8.861687 8.293929 0.96875 8.114118
6 7 B8.825893 8.377644 8.9375@ @.161895
7 8 08.981786 @.277825 1.06800 @.869371
g g B8.9086258 @.264483 1.06800 @.828938
9 18 B.888303 8.381724 1.86880 8.852385
1@ 11 8.892857 8.277092 0.908625 8.222993
11 12 8.901786 08.234229 1.80800 8.860235
12 13 8.915179 08.229258 1.80800 B.840814
13 14 8.924187 8.165890 0.96875 8.861928
14 15 8.937580 8.17%9e99 1.0ee00 @.826988
15 16 8.941964 @.133382 @.96875 @.869858
16 17 8.897321 8.248777 @.93758 @.187302
17 18 8.928571 8.286161 8.96875 8.882928
18 19 8.910714 8.234317 1.80800 B.868594

Figure 2 Accuracy and Loss Across Epochs

4.3 Sensitivity and Specificity Analysis

Sensitivity, or the true positive rate, measures the proportion of actual COVID-19
positive cases that were correctly 1dentified by the model. The model achieved a sensitivity of
97%, meaning that it successfully identified 97% of the COVID-19 positive cases. This metric 1s
critical in medical diagnostics, especially during a pandemic, as it ensures that infected individuals
are correctly diagnosed and can receive timely treatment.

The specificity, or true negative rate, was 1009, indicating that the model was highly
elffective in correctly identifying non-COVID-19 cases. High specificity is equally important to
avoid misclassifying healthy individuals as COVID-19 positive, which could lead to unnecessary
treatment and anxiety. The ROC curve further highlights in Figure 3 the model’s ability to
maintain a balance between sensitivity and specificity, with an AUC close to 1, signifying an
overall performance.

Sensitivity and specificity analysis directly fit to the main research objective whose
emphasis 1s on the detection of COVID-19 without false predictions. The model, with a
sensitivity of 979, shows the high capacity to accurately identify COVID-19 positive cases, which
1s crucial in preventing missed diagnoses and controlling the spread of infection. However, this
could be further enhanced by linking the findings to a much wider implication. High sensitivity
1s an evidence that the model may work as an early screening tool for pandemic responses that
require rapid detection. The 100% specificity minimizes psychological and logistical burdens of
cases misdiagnosed to avoid unnecessary isolation and treatment.
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Receiver Operating Characteristic (ROC) Curve
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Figure 3 ROC Curve

4.4 Model Performance Overview
The loss function used in this model was binary cross-entropy, a standard metric for

binary classification tasks. Throughout the training process, both training and validation loss

steadily decreased, with the final validation loss reaching 0.05.

The low validation loss indicates that the model was highly accurate in predicting

COVID-19 from the unseen validation dataset. Moreover, the close alignment between the

traiing and validation loss suggests that the model was neither underfitting nor overfitting, which

further contributes to its robust performance.

Training and Validation Accuracy over Epochs

104
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Accuracy

071

0.6 1
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—-- Stopped at epoch 19

0.0 25
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Figure 1. Training and Validation Accuracy over Epochs
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To provide balanced evaluation, we also measured precision, recall, F1-score, and AUC-
ROC curves in addition to accuracy and loss. They help to achieve the proper parity of the
model’s predictive potential. Key metrics include Precision (98%), Recall (98%), F1-Score (98%),
AUC-ROC (0.98). The AUC-ROC curve in Figure 3 shows that the proposed model possesses
a high level of ability to distinguish COVID-19 from normal conditions. Additionally, the
confusion matrix in Figure 1 shows no false positives and 1 false negative. This indicates high
reliability and minimizes the risk of misdiagnosis.

The perfect AUC-ROC score of 0.98 suggests that the model can effectively differentiate
between classes, exhibiting outstanding discriminatory power. However, while these results are
promising, they also warrant scrutiny to ensure the absence of overfitting, especially considering
the high validation accuracy. Further validation on an independent test set and cross-validation
would provide additional confidence in the model’s robustness and real-world applicability.

The proposed solution successfully addressed the core research objective of developing
an optimized CNN for automatic early detection of COVID-19 with high accuracy and
computational efficiency. According to Table 1, the developed model had an accuracy of about
98%, a precision of 98%, and an Fl-score of about 98%, signifying strong classification. The low
validation loss shown m Figure 4 further reinforces the strength of the model in generalizing
without overfitting. While this study focused on a custom CNN architecture, future comparisons
with other established models such as ResNet50 and VGG16 could further validate its efficiency
and diagnostic performance. Unlike PCR tests, which require laboratory processing, the CNN
model developed here delivers results in less time, offering a valuable solution in time-sensitive
scenarios such as pandemic outbreaks. The studies [2] and [3] also support the diagnostic
accuracy of CNNs, further validating their potential in real-world applications.

Table 1 Model Evaluation

Model Accuracy (%) Precision | Recall | F1-Score | AUC-
(%) (%) (%) ROC
Proposed 98(Validation) and 98 98 98 0.98
Convolution Neural 87(Training)
Network

4.5 Model Generalizability and Robustness

The ability of a CNN model to generalize across different patient populations and
clinical settings is crucial for its adoption in real-world healthcare environments [15]. One of the
major challenges in medical Al is ensuring that models trained on specific datasets can perform
well in diverse settings. The dataset used in this study as shown in Figure 5, included a range of
COVID-19 and non-COVID-19 cases, but further external validation 1s needed to assess the
model's generalizability.
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Figure 2. Samples of Dataset

The model demonstrated strong generalization on the validation set, but future studies
should focus on testing the model in different clinical environments, using datasets from multiple
hospitals and geographical regions. Generalizability 1s particularly important for COVID-19
diagnosis, as the radiological manifestations of the disease can vary significantly between different
populations [7]. Furthermore, the robustness of the model should be evaluated against different
mmaging techniques, as chest X-rays may vary in quality depending on the equipment used and
the expertise of the technician.

4.6 Fithical Considerations and Limitations

While CNN models offer numerous advantages in medical diagnostics, their
mmplementation in healthcare settings raises several ethical and practical concerns. One of the
primary issues 1s the interpretability of CNNs. CNN models are often referred to as "black boxes,"
meaning that their decision-making processes are not easily understood by humans. In medical
practice, clinicians must be able to trust and verify the results generated by Al models, which
requires greater transparency in how the models make their predictions.

Recent developments in explainable Al (XAI) offer potential solutions to this issue.
Techniques such as saliency maps and Grad-CAM allow clinicians to visualize the areas of the
X-ray image that the CNN model focuses on when making a diagnosis [19]. However, these tools
are still in the early stages of development and are not yet widely implemented in chinical practice.

Another Iimitation of the CNN model 1s the availability of high-quality datasets [20]. The
model was trained on a publicly available dataset, but the dataset’s size and diversity may not be
sufficient to ensure that the model can perform well in all clinical settings. Data augmentation
techniques were used to improve the model's generalization, but further research is needed to
gather more diverse datasets from multiple healthcare systems.

4.7 Future Direction and Clinical Integration

Future studies should aim at collecting larger and more diverse datasets from regions
and healthcare systems to improve the generality and robustness of the CNN model to lower
testing errors. Finally, transfer learning techniques may be applied to fine-tune the model to serve
the specific patient population the model 1s designed for, thereby enhancing diagnostic accuracy
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in several clinical settings. Furthermore, combining clinical metadata, such as age, comorbidities
and symptoms with chest X-ray images would add value to the benefit of the model to make
more accurate and personalized diagnoses [21].

Additional research should also investigate the feasibility of joint use of CNN models
with other deep learning architectures (e.g., Recurrent Neural Networks (RNNs) and Long Short-
Term Memory (LSTM) networks) that can exploit temporal information emphasizing the
disease progression. It would enable clinicians to determine not only whether a patient has
COVID-19, but whether that patient is experiencing a mild or serious case of COVID-19, which
would allow clinicians to track how the disease remains manifest throughout a patient's recovery.
The accuracy and precision of the presented model suggest that it can be applied to real-hfe
diagnostics. Nevertheless, care should be taken not to have low sensitivity so that people with the
disease are not overlooked. Deploying this model in clinical workflows necessitates the following:

e Hiring human opinion to assess the model’s predictions.
o The benefits of constant validation with other datasets to increase the level of model
generalization.

If these aspects are considered, the model might help clinicians in diagnosing COVID-
19 efficiently.

Before CNN models will be widely adopted in healthcare, however, ethical
considerations, such as data privacy and algorithmic bias, also need to be addressed [21]. In order
to ensure the benefits of diagnostics being driven by Al are equally distributed to all patient
populations, transparent and accountable Al systems are key. To improve model interpretability,
explainable Al techniques such as Grad-CAM will be integrated, allowing clinicians to visualise
the features influencing predictions. This enhances trust and facilitates Al-assisted decision-
making. Additionally, combining Al insights with expert radiological assessments will mitigate
risks associated with misdiagnosis, ensuring responsible deployment in clinical settings.

4.8 Limitations and Future Work
While the proposed model demonstrated strong performance, several limitations
warrant attention:
e Dataset Size and Diversity: The used dataset was not very large, and the imaging
conditions were not very diverse, which can be a problem for generalization.
e Synthetic Augmentation: The solution to the problem that shift classes might not
compensate for the variability of data in real life by using augmentation techniques to get
a similar effect can be seen as less than ideal.
Future work will focus on the following:
e Taking stronger material from a larger number of different institutions to test the model’s
efficacy.
e To enhance the performance still more, using transfer learning with pre-existing

architectures.
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e Applying techniques like Grad-CAM or SHAP (SHapley Additive exPlanations) to
explain the model’s predictions to make them understandable to clinicians.

o Testing the model on unseen data from different hospitals to ensure robust performance
across clinical settings

o Deploying the model into real-world workflows to support faster diagnoses and alleviate
the burden on radiologists, especially during pandemic outbreaks.

5. Conclusion

This study demonstrates that CNNs can effectively diagnose COVID-19 from chest X-
ray images with high accuracy and efficiency. The model presents a viable alternative to PCR
tests by enabling rapid, scalable, and automated diagnosis. By incorporating advanced feature
extraction and training optimization techniques, our model outperforms traditional deep learning
architectures.

Future research will focus on enhancing model generalizability, integrating explainable
Al techniques, and addressing ethical considerations related to Al-driven diagnostics. Ensuring
real-world applicability through external validation and diverse datasets will be essential for
clinical adoption.
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