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A B S T R A C T

Background: Alzheimer’s disease (AD) represents a significant global health challenge requiring early and ac
curate prediction for effective intervention. While machine learning models demonstrate promising capabilities 
in AD prediction, their black-box nature limits clinical adoption due to a lack of interpretability and 
transparency.
Objective: This study aims to develop and evaluate explainable artificial intelligence (XAI) frameworks for AD 
prediction using comprehensive multimodal patient data, with a focus on enhancing model interpretability 
through SHAP and LIME techniques.
Methods: A comprehensive dataset of 2,149 patients aged 60–90 years was obtained from Kaggle, encompassing 
demographic, medical history, lifestyle, clinical measurements, cognitive assessments, and symptom data. 
Rigorous preprocessing included MinMax normalisation, Synthetic Minority Over-sampling Technique (SMOTE) 
for class imbalance, and Backward Elimination Feature Selection reduced 32 features to 26 optimal predictors. 
Six machine learning models were evaluated: K-Nearest Neighbours (KNN), Support Vector Machine (SVM), 
Logistic Regression (LR), XGBoost, Stacked Ensemble, and Random Forest (RF). RF’s optimal hyperparameters 
were obtained using Ant colony Optimization Model interpretability was enhanced using SHAP and LIME 
frameworks for both global and local explanations.
Results: The optimised Random Forest with backward elimination feature selection and ant colony optimisation 
achieved superior performance with 95 % accuracy, 95 % precision, 94 % recall, 94 % F1-score, and 98 % AUC. 
SHAP analysis identified functional assessment, activities of daily living (ADL), memory complaints, and Mini- 
Mental State Examination (MMSE) as the most influential predictors. LIME provided complementary local ex
planations, validating the clinical relevance of identified features.
Conclusion: The integration of explainable AI techniques with machine learning models provides clinically 
meaningful insights for AD prediction, enhancing transparency and fostering trust in AI-driven diagnostic tools 
whilst maintaining high predictive accuracy. Future work should focus on external validation, clinical workflow 
integration, and addressing computational requirements for real-world deployment.

1. Introduction

Alzheimer’s disease (AD) represents the most prevalent neurode
generative disorder worldwide, affecting approximately 6.7 million 
Americans and imposing substantial economic and social burdens on 
healthcare systems globally [1]. According to the World Health 

Organisation, dementia is the seventh leading cause of death among all 
illnesses and one of the leading causes of disability among the world’s 
elderly people [2]. The risk of getting the disease increases with age, and 
while women tend to live longer than men that does not fully explain 
why more women than men have it [3]. Characterised by progressive 
cognitive decline, memory loss, and functional impairment, AD results 
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from complex pathophysiological processes involving amyloid beta 
plaques and tau protein tangles that damage neural networks [4]. Early 
detection and intervention remain critical for optimising patient out
comes, as therapeutic interventions demonstrate greatest efficacy during 
the disease’s initial stages when neuronal damage is potentially 
reversible [5].

Traditional diagnostic approaches for AD rely heavily on clinical 
assessments, neuropsychological testing, and expensive neuroimaging 
techniques such as positron emission tomography (PET) and magnetic 
resonance imaging (MRI) [6]. However, these methods often identify the 
disease only after significant neuronal damage has already occurred, 
limiting the effectiveness of treatment [7]. According to Alzheimer’s 
disease International, the majority of people with dementia worldwide 
never receive a formal diagnosis, leaving them shut off from treatment 
and care [8]. The complexity and cost of current diagnostic procedures 
create barriers to accessible screening, particularly in resource-limited 
settings and rural communities where specialist expertise may be 
unavailable.

Artificial intelligence (AI) and machine learning (ML) technologies 
have emerged as promising tools for addressing these diagnostic chal
lenges by enabling early AD prediction using readily available clinical 
data [9,10]. Recent advances in computational power and algorithmic 
sophistication have facilitated the development of predictive models 
capable of analysing complex multimodal datasets comprising de
mographic information, cognitive assessments, lifestyle factors, and 
biomarker data [11,12]. Innovative approaches using speech patterns 
and other non-invasive biomarkers have shown promise in predicting 
cognitive decline with considerable accuracy [13]. Machine learning 
(ML) models offer a promising tool for identifying individuals at risk of 
AD [14]. These approaches demonstrate potential for improving diag
nostic accuracy, reducing costs, and increasing accessibility of AD 
screening programmes.

Despite the promising performance of AI models in AD prediction, 
their widespread clinical adoption faces significant barriers related to 
interpretability and transparency owing to its black-box approach of 
making decision [15]. However, current research tends to prioritize ML 
accuracy while neglecting the crucial aspect of model explainability 
[14]. Healthcare professionals remain hesitant to rely on “black-box” 
algorithms whose decision-making processes cannot be understood or 
validated against clinical knowledge [16]. This lack of interpretability 
raises concerns about patient safety, regulatory compliance, and pro
fessional liability, highlighting the critical need for explainable AI (XAI) 
frameworks that provide transparent insights into model predictions 
whilst maintaining high predictive accuracy [15].

The current study addresses these limitations by developing a 
comprehensive explainable AI framework for AD prediction using 
multimodal patient data. The primary aim is to create interpretable 
machine learning models that achieve high predictive accuracy whilst 
providing clinically meaningful explanations for their predictions. Spe
cific objectives include: (1) evaluating multiple machine learning algo
rithms for AD prediction using comprehensive patient datasets; (2) 
implementing advanced feature selection and data balancing techniques 
to optimise model performance; (3) applying SHAP (SHapley Additive 
exPlanations) and LIME (Local Interpretable Model-agnostic Explana
tions) frameworks to enhance model interpretability; (4) identifying key 
clinical features that drive AD predictions and validating their clinical 
relevance; and (5) demonstrating the clinical utility of explainable AI 
approaches for fostering trust and adoption in healthcare settings. 
Additionally, this study aims to critically evaluate the limitations of XAI 
frameworks and discuss practical considerations for clinical workflow 
integration. This research contributes to the growing field of interpret
able AI in healthcare by providing a robust framework for transparent 
AD prediction that bridges the gap between algorithmic sophistication 
and clinical utility.

2. Methodology

This section outlines the comprehensive approach employed in this 
study for predicting Alzheimer’s disease and the subsequent interpre
tation of the predictive models using Explainable AI techniques. It de
tails the data acquisition process, the various preprocessing steps 
applied to the raw data, the machine learning models employed for 
prediction, and the methodologies used for model interpretability. The 
workflow for this study is represented in Fig. 1.

2.1. Data acquisition

The dataset used in this study for predicting Alzheimer’s disease was 
sourced from Kaggle, an open-access data platform owned by Google. It 
is a comprehensive, multimodal dataset encompassing various patient 
attributes crucial for a holistic understanding of Alzheimer’s disease. 
The patients’ records included in this dataset were patients between the 
age range of 60 and 90 years. The dataset comprises 2149 instances, 
with each instance detailing demographic information, extensive med
ical history, relevant lifestyle factors, various clinical measurements, 
detailed cognitive and functional assessments, and reported symptoms 
leading to diagnosis.

2.2. Data preprocessing

Prior to model training, the raw dataset underwent a rigorous pre
processing pipeline to enhance its quality and suitability for machine 
learning. This involved applying normalisation techniques, specifically 
the MinMax approach, to scale numerical features within a consistent 
range, which helps prevent features with larger values from dominating 
the learning process. To address potential class imbalance within the 
dataset, the Synthetic Minority Over-sampling Technique (SMOTE) was 
employed as a data sampling method, generating synthetic samples for 
the minority class to ensure a balanced representation and prevent 
model bias towards the majority class, as the dataset was highly 
imbalanced with 1369 non-Alzheimer’s instances and 760 Alzheimer’s 
records. The application of SMOTE, while addressing class imbalance, 
carries the risk of introducing synthetic patterns not representative of 
real patients. To validate this approach, we conducted additional anal
ysis comparing model performance with and without SMOTE augmen
tation and confirmed that oversampling did not artificially inflate 
performance metrics through careful validation on hold-out data. 
Following these steps, a forward–backward feature selection technique 
was applied, which systematically identified an optimal subset of 
twenty-six [26] features out of the initial thirty-two [32] features. The 
layered approach combining forward–backward selection with ant col
ony optimization was implemented to leverage both statistical relevance 
(forward–backward selection) and bio-inspired optimization (ant col
ony) to avoid local optima and identify globally optimal feature subsets. 
While this approach may appear over-engineered, our comparative 
analysis demonstrated superior performance compared to individual 
methods, justifying the computational overhead. This selection process 
aimed to reduce dimensionality, remove irrelevant or redundant fea
tures, and ultimately improve model efficiency and predictive 
performance.

2.3. Alzheimer’s prediction using machine learning models

For the prediction of Alzheimer’s disease, a diverse suite of estab
lished machine learning models was employed to assess predictive 
performance. These models included K-Nearest Neighbors (KNN), Sup
port Vector Machine (SVM), Logistic Regression (LR), Extreme Gradient 
Boosting (XGBoost), a Stacked Ensemble model, and Random Forest 
(RF). Hyperparameter tuning was conducted using grid search optimi
zation with 5-fold cross-validation to ensure fair comparisons across all 
models. Specific parameters optimized included: RF (n_estimators: 
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100–500, max_depth: 5–15), SVM (C: 0.1–10, kernel: rbf/linear), 
XGBoost (learning_rate: 0.01–0.3, max_depth: 3–10), with consistent 
optimization protocols applied across all algorithms. Each model was 
trained and evaluated on the preprocessed dataset, leveraging the 
optimised feature set identified during the preprocessing phase. The 
selection of these models allowed for a comprehensive comparison of 
their respective capabilities in handling multimodal healthcare data for 
classification tasks, with a focus on identifying the most accurate and 
robust predictors for Alzheimer’s disease. Hyperparameter tuning was 
conducted using grid search optimization with 5-fold cross-validation to 
ensure fair comparisons across all models. Specific parameters opti
mized included: RF (n_estimators: 100–500, max_depth: 5–15), SVM (C: 
0.1–10, kernel: rbf/linear), XGBoost (learning_rate: 0.01–0.3, max_
depth: 3–10), with consistent optimization protocols applied across all 
algorithms. Moreover, the RF’s wider hyperparameter were further 
optimized for optimal hyperparameter set using Ant colony optimiza
tion, which gave a better result compared to the hyperparameters ob
tained for RF with the grid search optimization.

2.4. Evaluation

The study was evaluated using the Hold-Out evaluation method to 
enable its deployment and interpretation with the 70–30 split. To 
address concerns about data leakage and ensure rigorous validation, 
nested cross-validation was implemented on the training set where 
hyperparameter tuning was performed on the inner folds while perfor
mance evaluation was conducted on completely unseen outer fold data. 
Additionally, stratified sampling was employed to maintain class dis
tribution across training and testing sets. Furthermore, accuracy, pre
cision, recall, and f1-score were used as the evaluation metrics as 
represented in Eqs. (1)–(4): 

Accuracy = (TP+TN)/(TP+TN+ FP+ FN) (1) 

Precision = TP/(TP+ FP) (2) 

Recall = TP/(TP+ FN) (3) 

F1 − Score = 2 × (Precision × Recall)/(Precision+Recall) (4) 

2.5. Interpretation using SHAP and LIME frameworks

To provide transparency and interpretability to the predictions made 
by the machine learning models, SHAP (SHapley Additive exPlanations) 
and LIME (Local Interpretable Model-agnostic Explanations) frame
works were utilised. It is important to acknowledge the limitations of 
these XAI frameworks: SHAP can sometimes overstate feature impor
tance in highly correlated datasets, while LIME explanations may vary 
significantly based on perturbation sampling strategies and local 
approximation quality. These limitations require careful interpretation 
of results and validation against clinical knowledge. For SHAP, both 
summary plots and individual waterfall plots were generated. The 
waterfall plots were created for various indices within the testing 
dataset, rather than relying on a single instance. This approach ensures 
generalisability and provides diverse insights into how individual fea
tures contribute to specific predictions across different patient profiles. 
Similarly, for LIME, explanations were generated for multiple instances 
from the testing dataset to avoid conclusions based on a single example, 
thereby offering a more comprehensive understanding of the local 
decision-making process of the models for different prediction out
comes. This dual interpretability approach enabled a critical examina
tion of feature importance and influence, both globally and locally, 
thereby enhancing trust and clinical utility. The potential for confir
mation bias was addressed by comparing model-identified features 
against established clinical literature and seeking validation from 
domain experts in geriatrics and neurology. XGBoost was used as the 

Fig. 1. Research workflow for prediction of AD with XAI.
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underlying machine learning model to train the AD dataset that SHAP 
and LIME interpret. This model was selected for its proven high per
formance, efficiency, and ability to handle complex, non-linear re
lationships within the dataset, making it an excellent choice for 
generating accurate predictions as shown in this study.

3. Results and discussion

This section critically discusses and analyses the experimental results 
obtained by employing different machine learning algorithms for pre
dicting Alzheimer’s disease using backward feature selection techniques 
and optimized random forest using Ant Colony Optimization. The results 
obtained from the random forest algorithm were further interpreted 
using both SHAP and LIME frameworks to enhance the transparency of 
the decision made by the model.

3.1. Comparison with machine learning algorithms for prediction of 
Alzheimer’s disease

The experimental results obtained by comparing other machine 
learning algorithms with this study’s approach; using the optimal fea
tures set selected by Backward Elimination feature selection with 
Random forest whose hyperparameters were optimized with Ant colony 
optimisation, for predicting Alzheimer’s disease are presented in Table 1
for reference. This result enabled comprehensive validation of the re
sults obtained with the proposed approach and also affirms its impres
sive performance, which would help in improving the performance of 
any machine learning model when swarm intelligence algorithm is used 
for optimisation of its hyperparameters.

A comparative analysis of the performance evaluation of the afore
mentioned conventional and ensemble machine learning algorithms, as 
well as the proposed methodology employed in this study, is presented 
in Table 1 to affirm the excellent performance shown by this method
ology compared to other machine learning algorithms and empirical 
hyperparameter tuning approaches. The performance shown by 
BEFS+AACOAhp+RF has an average accuracy, precision, and AUC of 
95 %, 95 % and 98 % respectively. However, XGBoost and stacked 
ensemble learning (base model: KNN, SVM, RF, and LR; meta model: LR) 
showed close performance, with average accuracies, precisions, and 
AUCs of 94 %, 94 %, and 97 %, respectively. The features obtained with 
BEFS were used to train all the aforementioned models, thereby pre
venting bias, inconsistency, and incompatibility. KN obtained the least 
performance, with an average accuracy and AUC of 75 % and 82 %, 
respectively. As discussed earlier, the 82 % result indicates that KNN has 
an 82 % probability of being able to distinctly differentiate between 
Alzheimer’s patients and healthy patients, given instances of these 
classes. The average difference between the least accuracy and that 
shown with BEFS+AACOAhp+RF is 20 %. This study’s methodology 

demonstrates improved performance, indicating increased acceptability 
compared to other less-performing machine learning algorithms.

The ROC curve for the Random Forest model predicting Alzheimer’s 
disease (Fig. 2) demonstrates exceptional performance, highlighted by 
an Area Under the Curve (AUC) value of 0.98. This remarkably high AUC 
signifies the model’s outstanding ability to discriminate between in
dividuals with and without Alzheimer’s, correctly ranking a positive 
instance higher than a negative one 98 % of the time. Visually, the 
curve’s proximity to the top-left corner of the plot, far from the random 
classifier’s diagonal, indicates that the model achieves high sensitivity 
(True Positive Rate) whilst maintaining a very low False Positive Rate 
across various classification thresholds. This strong diagnostic accuracy 
implies the model’s potential as a reliable clinical aid for prioritising 
patients, guiding treatment, and monitoring disease progression, with its 
inherent interpretability further enhancing its practical adoption in 
medical diagnosis.

In essence, the Random Forest model exhibits near-perfect predictive 
capability for Alzheimer’s disease, offering high diagnostic accuracy and 
reliable discrimination, which positions it as a promising tool for clinical 
application and patient management.

3.2. Interpretation of the ML decision on prediction of Alzheimer’s disease

Similarly discussed earlier with Parkinson’s disease, two major 
frameworks of Explainable AI, namely SHAP and LIME were used to 
interpret the decision made by the Random Forest which gave the best 
predictive performance with the best features selected obtained using 
the forward–backward sequential feature elimination technique.

3.2.1. SHAP for interpretation of the random forest’s prediction of 
Alzheimer’s disease

Domain expert validation was conducted with two geriatricians and 
one neuropsychologist who reviewed the SHAP and LIME outputs for 
clinical relevance and alignment with established diagnostic criteria. 
Their feedback confirmed that the identified features (functional 
assessment, ADL, memory complaints, MMSE) align well with clinical 
practice and diagnostic guidelines for AD.

The SHAP output provides a global interpretation of the model’s 
predictions by quantifying the impact of each feature on the model’s 
output. The SHAP values indicate the extent to which each feature 
contributes to the prediction of Alzheimer’s disease, with positive values 
indicating features that increase the likelihood of the predicted outcome 
and negative values indicating features that decrease the possibility. The 
features are ranked by their mean absolute SHAP values, which repre
sent their overall importance in influencing the model’s predictions.

Table 1 
Comparison of machine learning algorithms and the study’s result for prediction 
of Alzheimer’s disease.

S/ 
N

Algorithm Avg. 
accuracy

Avg. 
precision

Avg. 
recall

Avg. f1- 
score

AUC

1 KNN 0.75 0.76 0.75 0.72 0.82
2 SVM 0.85 0.85 0.85 0.85 0.91
3 LR 0.84 0.84 0.84 0.84 0.91
4 XGBoost 0.94 0.94 0.94 0.94 0.97
5 Stacked 

ensemble
0.94 0.94 0.94 0.94 0.97

6 BEFS +
AACOAhp + RF

0.95 0.95 0.94 0.94 0.98

Abbreviations: KNN − K-Nearest Neighbours, SVM − Support Vector Machine, 
LR − Logistic Regression, RF − Random Forest, BEFS + AACOAhp + RF −
Backward Elimination Feature Selection + Artificial Ant Colony Optimization 
hyperparameter tuning + Random Forest, AUC − Area Under the Curve. Fig. 2. Random Forest’s ROC curve for prediction of Alzheimer’s.
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As shown in Fig. 3, Functional assessment scores, which measure the 
ability to perform daily activities, have the highest positive impact on 
the model’s prediction. Higher scores (indicating greater impairment) 
are strongly associated with the predicted outcome, which is likely to be 
Alzheimer’s disease. ADL scores have a High positive impact (approxi
mately 2 to 3), which assesses the ability to perform basic daily tasks; 
they also have a significant positive effect. This aligns with clinical 
knowledge, as difficulties in daily living activities are common in 
neurodegenerative diseases. Memory complaints have a moderate pos
itive impact (approximately 1 to 2) and are a significant feature, 
reflecting cognitive concerns that are often early indicators of neuro
degenerative conditions. Mini Mental State Examination (MMSE) scores 
have a Moderate positive impact (approximately 1 to 2). Which mea
sures cognitive function and contributes positively to the prediction. 
Lower scores (indicating cognitive impairment) are associated with a 
higher likelihood of the predicted condition. Behavioural problems are 
another important feature, highlighting the model’s ability to capture 
non-cognitive symptoms of neurodegenerative diseases. Cholesterol 
levels have a relatively minor impact on the model’s predictions. While 
some cholesterol metrics (e.g., HDL) may have a slight protective effect 
(negative SHAP values), others (e.g., LDL) may slightly increase the risk 
(positive SHAP values). These features (Sleep Quality, BMI, Physical 
Activity, Diet Quality, Alcohol Consumption, Education Level, Ethnicity, 

Diastolic BP, Hypertension, and Smoking) have a relatively minor in
fluence on the model’s predictions. Lifestyle factors, such as sleep 
quality, physical activity, and diet quality, exhibit slight protective ef
fects (negative SHAP values), while factors like hypertension and 
smoking may slightly increase the risk (positive SHAP values).

Fig. 4 gave the same representation of the aforementioned features 
and their distinct contribution to the prediction of Alzheimer’s disease. 
The SHAP analysis provides critical insights into the importance and 
impact of various features on the model’s predictions, highlighting the 
pivotal role of functional assessment, ADL, memory complaints, and 
MMSE in predicting neurodegenerative conditions. These features, 
which are well-established clinical indicators, underscore the model’s 
alignment with medical knowledge and its ability to capture both 
cognitive and non-cognitive symptoms.

The interpretability offered by SHAP values ensures transparency, 
enabling healthcare professionals to understand and trust the model’s 
decision-making process. By identifying the most influential features, 
the model not only enhances diagnostic accuracy but also facilitates 
accountability, as its predictions are grounded in clinically relevant 
data. This transparency is crucial for integrating AI models into 
healthcare, as it allows clinicians to validate and incorporate AI-driven 
insights into their decision-making, ultimately improving patient out
comes and fostering trust in AI-assisted healthcare solutions.

Fig. 3. SHAPE’s summary for prediction of Alzheimer’s disease.
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As shown in Fig. 5, Functional Assessment (SHAP value: 9.915), 
Functional assessment scores, which measure the ability to perform 
daily activities, have the highest positive impact on the model’s pre
diction. Higher scores (indicating greater impairment) are strongly 
associated with the predicted outcome, likely a neurodegenerative 
condition such as Parkinson’s disease. Memory Complaints (SHAP 

value: 1), Memory complaints are a significant feature, reflecting 
cognitive concerns that are often early indicators of neurodegenerative 
conditions. The presence of memory complaints increases the likelihood 
of the predicted outcome. ADL (Activities of Daily Living) scores (SHAP 
value: 3.66), which assess the ability to perform basic daily tasks, also 
have a significant positive impact. This aligns with clinical knowledge, 
as difficulties in daily living activities are common in neurodegenerative 
diseases. MMSE (Mini-Mental State Examination) (SHAP value: 7.987). 
MMSE scores, which measure cognitive function, contribute positively 
to the prediction. Lower scores (indicating cognitive impairment) are 
associated with a higher likelihood of the predicted condition. Behav
ioural Problems (SHAP value: 0), Behavioural problems do not 
contribute to the prediction in this specific instance. This could be due to 
the absence of behavioural issues in the input data or their minimal 
variability in the dataset. SystolicBP (SHAP value: 101), Systolic blood 
pressure has a high positive impact on the prediction. Elevated systolic 
blood pressure may be a risk factor or comorbid condition that increases 
the likelihood of the predicted outcome. BMI (SHAP value: 39.159), 
Body Mass Index (BMI) has a moderate positive impact on the predic
tion. Higher BMI values may be associated with an increased risk of 
neurodegenerative conditions. CholesterolHDL (SHAP value: 93.992), 
High-density lipoprotein (HDL) cholesterol levels have a high positive 
impact on the prediction. Higher HDL levels are generally considered 
protective, but in this context, they may indicate a complex relationship 
with the predicted condition. Alcohol Consumption (SHAP value: 
9.905), Alcohol consumption has a significant positive impact on the 
prediction. Higher alcohol consumption may be a risk factor for the 
predicted outcome. Other Features, the remaining 21 features have 
minimal or no effect on the prediction. This indicates that they either do 
not contribute significantly to the model’s decision or are not relevant in 
this specific case.

The analysis of the SHAP outputs from the three instances reveals 
consistent patterns in the model’s decision-making process, under
scoring the importance of functional assessment, ADL (Activities of 
Daily Living), memory complaints, and MMSE (Mini-Mental State Ex
amination) as the most influential features in predicting neurodegen
erative conditions. These features, which are directly tied to functional 

Fig. 4. SHAPE’s summary sing bar for prediction of Alzheimer’s disease.

Fig. 5. SHAP’s waterfall for interpretation of RF decision for prediction of Alzheimer’s disease.
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and cognitive impairment, align with clinical knowledge and demon
strate the model’s ability to capture key diagnostic criteria. Addition
ally, the SHAP outputs highlight the significant role of metabolic factors 
(e.g., cholesterol levels, BMI) and lifestyle factors (e.g., alcohol con
sumption, blood pressure), suggesting that the model considers a broad 
spectrum of risk factors beyond traditional clinical symptoms. However, 
the varying impact of these factors across instances indicates complex 

relationships that may require further investigation. The interpretability 
provided by SHAP ensures transparency, enabling healthcare pro
fessionals to understand and trust the model’s predictions. This trans
parency is crucial for integrating AI models into healthcare, as it enables 
clinicians to validate AI-driven insights and effectively incorporate them 
into their decision-making processes. Overall, the SHAP outputs 
demonstrate the model’s robustness in leveraging clinically relevant 

Fig. 6. Waterfall plot for Index 4 and 40.
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features, while also highlighting opportunities for refinement, such as 
incorporating additional data on comorbidities or genetic factors, to 
further enhance its predictive accuracy and applicability in real-world 
healthcare settings.

Further experimentations were done with another two different in
stances of index values 4 and 40 to further analyses the results obtained 
with the index 0 earlier presented in Fig. 4.8. the waterfall output for 
these indexes were presented in Fig. 6(a and b).

Comparing these two instances critically highlights the model’s 
sensitivity to different feature combinations. For Index 40, high func
tional assessment and the absence of subjective complaints are crucial 
for a low-risk prediction, whereas for Index 4, severe functional and ADL 
impairments are the primary drivers of a high-risk prediction. Whilst 
both individuals show some cognitive impairment as indicated by the 
MMSE, the severity of the impairment for Index 40 is seemingly offset by 
other factors, whereas for Index 4, the MMSE score reinforces the 
functional decline. This suggests the model captures a nuance where 
functional independence is a critical determinant, possibly reflecting 
later disease stages where cognitive decline is undeniable even if not 
self-reported. Cholesterol and diet quality play minor, less consistent 

roles, indicating a complex, less dominant relationship with the 
outcome.

These SHAP plots offer profound implications and significance for 
Alzheimer’s disease prediction. Firstly, they enhance interpretability 
and trust in machine learning models by providing transparency, 
explaining why a particular prediction was made for an individual pa
tient. This is vital for clinicians to trust and utilise AI-driven diagnostic 
tools, allowing them to validate the model’s reasoning against their 
clinical judgement. Secondly, these insights are crucial for guiding 
clinical decision-making, enabling personalised risk assessment and 
informing targeted preventative or therapeutic interventions. Clinicians 
can monitor disease progression by observing changes in feature con
tributions over time. Thirdly, SHAP analysis facilitates a deeper under
standing of disease biomarkers, reinforcing the importance of measures 
such as Functional Assessment, ADL, and MMSE as critical indicators, 
and prompting further research into the interplay between subjective 
and objective markers. Fourthly, these insights inform feature engi
neering and model improvement in future development, guiding data 
collection and potentially revealing complex relationships between 
features. Finally, although not explicitly detailed in these plots, SHAP 

Fig. 7. LIME Output for four indexes.
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analysis across larger datasets can help address potential biases if the 
model relies on proxy features that could lead to discriminatory pre
dictions. In essence, SHAP waterfall plots transform complex machine 
learning predictions into actionable insights, significantly impacting 
personalised care, research directions, and the overall fight against 
Alzheimer’s disease.

3.2.2. LIME interpretation for prediction of Alzheimer’s disease
LIME (Local Interpretable Model-agnostic Explanations) is a tech

nique that provides instance-specific insights into a machine learning 
model’s prediction by locally approximating its behaviour with an 
interpretable model. For each prediction, LIME generates explanations 
that highlight the features most contributing to that specific outcome. In 
the context of Alzheimer’s disease prediction, these plots utilise orange 
bars to indicate features that push the prediction towards “Alzheimer” 
and blue bars for those pushing towards “No Alzheimer,” with the length 
of the bar reflecting the strength of the feature’s contribution. The nu
merical value next to each bar represents the weight or importance of 
that feature in the local linear approximation of the model.

The LIME output for different instances as used for the SHAP was also 
experimented as shown in Fig. 7 to expand the model’s interpretation.

The relationship between these LIME outputs (Fig. 7) reveals 
consistent patterns in the model’s reliance on key features. Across all 
instances, MemoryComplaints, BehaviouralProblems, Functiona
lAssessment, ADL, and MMSE consistently emerge as the most influen
tial features, aligning with clinical understanding of Alzheimer’s 
disease. A clear balance is observed between subjective and objective 
measures: for “No Alzheimer” predictions (Index 40), the absence of 
subjective complaints and good functional assessment are paramount, 
whilst for “Alzheimer” predictions (Indices 0, 4, 300), objective func
tional and cognitive impairments are the primary drivers, often over
riding the lack of subjective complaints. LIME’s presentation of feature 
contributions based on value ranges offers a more intuitive under
standing than raw values. However, the apparent inconsistency in the 
interpretation of the FunctionalAssessment feature across instances (e. 
g., low value contributing to “No Alzheimer” in Index 0, but a high value 
contributing to “Alzheimer” in Index 4, and low value contributing to 
“Alzheimer” in Index 300) is a critical observation. This suggests a need 
to clarify the exact scaling and meaning of this particular feature within 
the dataset, or it could point to complex non-linear interactions or local 
model approximations that are not immediately intuitive. Minor fea
tures like Diabetes, CholesterolHDL, and DietQuality consistently 
appear as less influential contributors, indicating their weaker or less 
consistent impact on these specific predictions.

The significance and interpretation of these LIME outputs are pro
found for Alzheimer’s disease prediction. LIME’s local explainability is 
paramount in healthcare, allowing clinicians to understand why a spe
cific risk level is predicted for an individual patient, thereby fostering 
trust and enabling personalised diagnostic and treatment approaches. 
This transparency facilitates clinical validation, where clinicians can 
assess if the model’s reasoning aligns with medical knowledge, and can 
also help in identifying key risk factors for individual patients, guiding 
targeted interventions. Furthermore, LIME serves as an invaluable 
debugging tool for the model itself; any counter-intuitive explanations, 
such as the FunctionalAssessment example, can highlight potential is
sues with data quality, feature engineering, or limitations in the model’s 
ability to capture complex relationships, prompting necessary im
provements. Ultimately, LIME outputs are crucial for transforming 
“black box” machine learning models into transparent, actionable tools 
that can enhance clinical decision-making and support ongoing research 
in the fight against Alzheimer’s disease.

3.2.3. Comparative analysis of SHAP waterfall and LIME outputs for 
Alzheimer’s disease prediction

A critical comparison of the SHAP waterfall plots and LIME outputs 
for Alzheimer’s disease prediction reveal both congruent observations 

and notable differences, highlighting the complementarity of these 
model interpretability techniques. Both SHAP and LIME rank Functio
nalAssessment, ADL (Activities of Daily Living), MMSE (Mini-Mental 
State Examination), MemoryComplaints, and BehaviouralProblems 
consistently as the most predictive features in predicting Alzheimer’s 
risk. This strong concordance backs up the clinical usefulness of these 
cognitive and functional tests as fundamental markers of the disease. 
Overall, lower objective cognitive/functional scores (i.e., MMSE and 
ADL) and the presence of subjective complaints (memory and behav
ioural issues) increase predicted risk for Alzheimer’s, whilst absence of 
complaints and more positive functional status shift the prediction to
wards “No Alzheimer.” Both methods also illustrate other features, such 
as cholesterol level, diet quality, and blood pressure, have a compara
tively smaller role to play in predictions for these cases. Yet there is a 
striking inconsistency in the interpretation of the FunctionalAssessment 
feature, a key one for understanding the model’s behaviour. All the 
SHAP plots suggest that a larger number value for FunctionalAssessment 
is linked to better functional capacity and, in turn, lowers the predicted 
risk for Alzheimer’s (e.g., Index 40), whilst a smaller value is linked to 
worse function and increases the risk (e.g., Index 4). This is in line with a 
standard interpretation where a higher score indicates better health. In 
contrast, the LIME outputs produce a more varied and sometimes 
counter-intuitive picture for FunctionalAssessment. For instance, in 
LIME for Index 0, FunctionalAssessment <= 0.23 (a low value) is 
favourable to “No Alzheimer,” contradicting the SHAP pattern. Simi
larly, LIME for Index 4 shows FunctionalAssessment > . (implying 
higher value) to “Alzheimer,” which is also unusual if higher is implying 
better function. Whilst LIME for Index 40 and Index 300 traces the SHAP 
pattern for this feature, discrepancies in the LIME explanations such as 
these point either to a misinterpretation of the feature’s scale by LIME 
during its local approximation, the use of highly localised, non- 
generalisable interactions, or even issues with the feature’s definition 
or scaling in the underlying dataset. This highlights one of the principal 
distinctions in their approach: SHAP provides a more globally consistent 
additive explanation, whilst LIME gives a strictly local, linear approxi
mation that will sometimes capture nuances or anomalies specific to a 
very small region around the instance.

The relationship between SHAP and LIME, therefore, is one of 
complementarity. Although both aim to interpret model predictions, 
they do so from slightly different perspectives. SHAP provides a 
“consistent, additive feature attribution from a global average” making 
it excellent for “comprehending the overall feature importance and di
rection of impact of features on the dataset as applied to an individual 
case.” LIME provides a very local explanation by describing which fea
tures are most important to that specific prediction by fitting a simple, 
interpretable model around it. The importance of employing both 
techniques lies in being able to construct strong and reliable AI models 
in high-stakes fields such as medicine. When both techniques concur 
regarding the most impactful features and the overall direction of their 
effect, it gives a large amount of confidence in the underlying rationale 
of the model as well as the clinical utility of the features. On the other 
hand, disagreement, as seen with FunctionalAssessment, is very 
important. They serve as valuable flags for further investigation, where 
they can represent data quality issues, unexpected model behaviour in 
certain regions of the feature space, or the need for more advanced 
feature engineering. This comprehensive understanding, derived from 
comparing both global and local interpretability, is of immense impor
tance in debugging and improving the machine learning model, its 
trustworthiness, and ultimately, its applicability in personalised diag
nosis and treatment regimens in the complex issue of Alzheimer’s 
disease.

3.3. Clinical implication of the interpretation

The comparative analysis of SHAP waterfall plots and LIME outputs 
for Alzheimer’s disease prediction yields significant clinical 
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implications, primarily by validating the AI model’s reliance on core 
cognitive and functional markers. Both interpretability methods 
consistently highlight FunctionalAssessment, ADL, MMSE, Memo
ryComplaints, and BehaviouralProblems as the most influential features. 
This strong agreement reassures clinicians that the AI model’s reasoning 
aligns with established diagnostic frameworks, fostering trust and 
encouraging the integration of such tools into practice. It underscores 
the importance of comprehensive patient assessments that include 
objective cognitive tests, evaluations of daily living activities, and sub
jective reports from patients and caregivers, confirming that the model 
prioritises clinically relevant indicators for Alzheimer’s disease risk.

However, the observed discrepancies, particularly in the interpre
tation of the FunctionalAssessment feature by LIME, carry crucial clin
ical significance as a “red flag.” Whilst SHAP offers a more globally 
consistent view of this feature’s impact, LIME’s local explanations 
sometimes present counter-intuitive contributions. Clinically, this 
inconsistency prompts immediate investigation into the feature’s data 
quality, scaling, or the model’s complex non-linear interactions, 
potentially revealing ambiguities in data collection or underlying issues 
within the dataset. This critical feedback loop is invaluable for refining 
both the data and the predictive model, ensuring its reliability and 
enhancing its utility for personalised diagnosis and treatment strategies. 
Ultimately, the transparent and granular explanations from both SHAP 
and LIME are indispensable for safely and effectively integrating AI into 
the complex and sensitive domain of Alzheimer’s diagnosis and patient 
care, allowing for personalised insights, improved communication with 
patients, and guiding future clinical research.

Furthermore, the strength of this interpretation is significantly 
bolstered by the excellent experimental results obtained by the under
lying predictive models. Algorithms such as XGBoost, stacked ensemble, 
and BEFS+AACOAhp+RF demonstrate remarkable performance, 
achieving average accuracies and F1-scores of 0.94–0.95, and AUC 
values of 0.97. Even simpler models like SVM and Logistic Regression 
show strong performance with average accuracies, precisions, recalls, 
and F1-scores of 0.85 and 0.84 respectively, with AUCs of 0.91. This 
high level of predictive accuracy means that the insights derived from 
SHAP and LIME are not merely academic exercises but are applied to 
models that are demonstrably effective in identifying Alzheimer’s dis
ease. The ability to explain predictions from highly accurate models is 
paramount in clinical settings; it transforms a powerful but opaque tool 
into a transparent and trustworthy diagnostic aid. Clinicians can confi
dently rely on the model’s high performance whilst simultaneously 
understanding the specific patient characteristics that contribute to a 
diagnosis, enabling more informed decision-making, personalised 
treatment plans, and better patient communication. This combination of 
high accuracy and interpretability is crucial for the successful and 
ethical deployment of AI in sensitive medical domains.

3.4. Clinical workflow integration and future implementation

The successful deployment of this XAI-enhanced AD prediction 
model in clinical practice requires careful consideration of workflow 
integration and user interface design. We propose a multi-tiered 
implementation approach: 

1. Electronic Health Record (EHR) Integration: The model could be 
integrated as a clinical decision support tool within existing EHR 
systems, automatically analyzing patient data during routine visits 
and flagging high-risk individuals for further assessment. Risk scores 
could be presented alongside traditional clinical indicators, with 
SHAP-based feature contributions displayed as intuitive 
visualizations.

2. User-Friendly Interface Design: Clinical interfaces should present 
prediction results through clear risk stratification (low/moderate/ 
high risk) accompanied by ranked feature contributions. Visual 

dashboards could display individual patient risk profiles, high
lighting key modifiable factors for targeted interventions.

3. Continuous Model Monitoring: Regular revalidation protocols 
should be implemented to detect concept drift and maintain model 
performance. Monthly validation against new patient outcomes and 
quarterly recalibration procedures are recommended to ensure sus
tained accuracy in evolving clinical environments.

4. Training and Adoption Support: Comprehensive training programs 
for healthcare providers should emphasize model limitations, 
appropriate use cases, and integration with existing diagnostic 
workflows. This includes education on interpreting XAI outputs and 
maintaining clinical judgment in final decision-making.

4. Discussion

The findings of this study demonstrate the significant potential of 
explainable artificial intelligence in enhancing Alzheimer’s disease 
prediction whilst providing clinically meaningful insights. Our results 
align closely with recent advances in the field and extend current 
knowledge by providing comprehensive comparative analysis of SHAP 
and LIME interpretability frameworks.

4.1. Comparison with recent studies

This study’s optimized Random Forest model, achieving 95 % ac
curacy, 94 % F1-score, and 98 % AUC, demonstrates robust performance 
in Alzheimer’s disease (AD) prediction, aligning closely with recent 
advancements in the field while offering unique contributions through 
its focus on explainable artificial intelligence (XAI) and accessible 
multimodal clinical data. Our model’s performance compares favorably 
with Alatrany et al. (2024), who reported an impressive 98.9 % F1-score 
for binary AD classification using SVM on a large dataset of 169,408 
records from the National Alzheimer’s Coordinating Center [14]. The 
slightly lower accuracy in our study (95 % vs. 98.9 %) can be attributed 
to two key factors. First, our dataset, comprising 2,149 records, is 
significantly smaller, which may potentially limit the model’s ability to 
capture the full spectrum of AD variability across diverse populations. 
Larger datasets, as used by Alatrany et al., typically enhance general
ization by reducing overfitting and capturing subtle patterns. Second, 
our reliance on multimodal clinical data, encompassing demographic, 
lifestyle, and cognitive assessment features—contrasts with Alatrany 
et al.’s focus on neuroimaging data, which provides high-dimensional, 
precise biomarkers such as brain atrophy patterns. While neuro
imaging offers granularity, it is often cost-prohibitive and inaccessible in 
resource-limited settings. Our model’s competitive performance with 
more accessible clinical data underscores its potential for scalable, cost- 
effective screening in primary care or underserved regions, addressing a 
critical gap in global AD diagnostics. Future studies could explore hybrid 
approaches combining clinical and imaging data to balance accuracy 
and accessibility, potentially reducing the performance gap with larger, 
imaging-focused studies. Similarly, our integration of SHAP (SHapley 
Additive exPlanations) and LIME (Local Interpretable Model-agnostic 
Explanations) frameworks echoes the approach of Jahan et al. (2023), 
who achieved 98.81 % accuracy using Random Forest for a five-class AD 
classification task with multimodal data fusion [8]. The higher accuracy 
in Jahan et al.’s study may reflect differences in task complexity, as 
multi-class classification (distinguishing AD, mild cognitive impairment, 
and healthy controls) is inherently more challenging than our binary 
classification (AD vs. non-AD). Despite this, our model’s performance 
remains highly competitive, particularly for clinical screening where 
binary outcomes are often prioritized for actionable decision-making. A 
key distinction lies in our study’s extensive comparative analysis of 
SHAP and LIME, which goes beyond Jahan et al.’s application by dis
secting interpretability discrepancies, such as the inconsistent inter
pretation of the FunctionalAssessment feature. These discrepancies 
highlight potential issues with feature scaling or local model 
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approximations, offering a methodological advancement in the rigor of 
XAI. This focus addresses gaps identified in recent reviews, such as 
Vimbi et al. (2024), which call for more robust evaluation of interpret
ability frameworks in AD detection [16]. Further exploration of how 
classification complexity (binary vs. multi-class) impacts clinical utility 
could strengthen the practical implications of our findings, as simpler 
models may be more immediately deployable in routine diagnostics. Our 
results also align closely with recent work employing ensemble tech
niques, such as a study achieving 96.35 % accuracy using LightGBM and 
Random Forest with Chi-Square feature selection [19]. The marginal 
performance edge in that study may stem from differences in feature 
selection methods or dataset characteristics. Our novel use of for
ward–backward feature selection, combined with ant colony optimiza
tion, distinguishes our approach, enhancing model robustness by 
systematically identifying 26 optimal predictors from an initial set of 32 
features. The consistent prioritization of functional assessment, activ
ities of daily living (ADL), memory complaints, and Mini-Mental State 
Examination (MMSE) across our study and the referenced ensemble 
work reinforces the clinical validity of these features as core AD bio
markers. This concordance strengthens the case for integrating these 
predictors into standardized diagnostic protocols, as they reliably cap
ture cognitive and functional impairments central to AD. However, the 
computational demands of ensemble methods, including our optimized 
Random Forest, warrant further discussion. While our approach ach
ieves high accuracy, scalability in resource-constrained clinical settings 
may be limited compared to simpler models, such as SVM or Logistic 
Regression, which still achieved respectable accuracies (84–85 %) in our 
study. Future research could quantify computational trade-offs to guide 
practical deployment. The clinical implications of these comparisons are 
significant. Our model’s reliance on accessible clinical data, rather than 
neuroimaging, enhances its applicability in primary care and low- 
resource settings, addressing barriers to AD screening highlighted by 
Alzheimer ’s disease International [8]. The rigorous application of XAI 
frameworks provides transparent, clinically meaningful insights, 
fostering trust among healthcare providers, a critical factor for AI 
adoption, as noted in recent literature [9,16]. The identification of 
interpretability discrepancies, particularly for FunctionalAssessment, 
serves as a valuable flag for refining data quality and feature engineer
ing, ensuring reliable model outputs. While our performance is slightly 
below some benchmarks, the combination of high accuracy, interpret
ability, and accessibility positions our model as a practical tool for 
personalized risk assessment and early intervention. To further advance 
the field, future studies should explore multi-center validation to 
enhance generalizability, incorporate longitudinal data to track disease 
progression, and assess the computational scalability of optimized 
ensemble models for real-world clinical integration.

4.2. Novel contributions and methodological advances

This study advances the field of AD prediction by introducing novel 
methodological approaches and addressing critical gaps in XAI for 
healthcare. Through a comprehensive comparison of SHAP (SHapley 
Additive exPlanations) and LIME (Local Interpretable Model-agnostic 
Explanations) frameworks and the innovative application of for
ward–backward feature selection combined with ant colony optimiza
tion, our work enhances both the interpretability and robustness of 
machine learning (ML) models for AD detection, setting it apart from 
existing research. Our detailed analysis of SHAP and LIME interpret
ability frameworks directly responds to gaps identified in recent sys
tematic reviews, such as Vimbi et al. (2024), which emphasized the need 
for rigorous evaluation of XAI methods in AD detection [16]. Unlike 
prior studies that often apply these frameworks in isolation or with 
limited comparative depth, our work provides an in-depth examination 
of the consistency and discrepancies in feature importance between 
global (SHAP) and local (LIME) explanations. For instance, we identified 
inconsistencies in the interpretation of the Functional Assessment 

feature, where SHAP consistently linked higher values to lower AD risk, 
while LIME occasionally produced counterintuitive local approxima
tions (low Functional Assessment values favoring “No Alzheimer” in 
certain instances). These findings highlight potential issues in feature 
scaling, data quality, or LIME’s local linear approximations, offering 
actionable insights for refining XAI applications. By systematically 
comparing these frameworks across multiple instances (indices 0, 4, 40, 
300), our study ensures generalizability. It provides a nuanced under
standing of how global and local explanations complement each other, 
thereby enhancing trust and clinical utility in AI-driven diagnostics. The 
integration of forward–backward feature selection with ant colony 
optimization represents a methodological leap beyond traditional 
feature selection techniques, such as rule-extraction or basic statistical 
methods (Chi-Square), commonly used in recent studies [19]. This 
hybrid approach systematically reduced the initial 32 features to 26 
optimal predictors, improving model efficiency while maintaining high 
predictive performance (95 % accuracy, 98 % AUC). Unlike standard 
feature selection methods that may overlook complex feature in
teractions, ant colony optimization leverages swarm intelligence to 
explore the feature space more effectively, optimizing the trade-off be
tween model complexity and predictive power. This contrasts with 
studies such as Alatrany et al. (2024), which relied on simpler feature 
selection for SVM models, or Jahan et al. (2023), which utilized multi
modal data fusion without advanced optimization [8,14]. Our meth
odology’s superior performance compared to baseline models (KNN at 
75 % accuracy, SVM at 85 %) demonstrates the value of combining 
forward–backward selection with bio-inspired optimization techniques 
to enhance model robustness, particularly for multimodal clinical 
datasets. These novel contributions have significant implications for AD 
research and clinical practice. The rigorous comparison of SHAP and 
LIME addresses a critical barrier to AI adoption in healthcare by 
providing transparent, clinically relevant insights into model decision- 
making. Identifying discrepancies, such as those in FunctionalAssess
ment, serves as a diagnostic tool for model improvement, prompting 
further investigation into data quality or feature engineering. The use of 
ant colony optimization in feature selection not only improves predic
tive accuracy but also ensures computational efficiency, making the 
model more feasible for deployment in resource-constrained settings. By 
prioritizing accessible clinical data (functional assessment, ADL, MMSE) 
over costly neuroimaging, our approach enhances scalability for pri
mary care and underserved regions, aligning with global health prior
ities [8]. Future research could build on these advances by exploring 
hybrid XAI frameworks to resolve interpretability inconsistencies, 
integrating additional biomarker modalities (such as genetic or neuro
imaging data), and developing clinician-friendly visualization tools to 
facilitate the real-world adoption of these methods.

4.3. Clinical relevance and interpretability

The findings of this study underscore the clinical relevance of inte
grating XAI into AD prediction, offering actionable insights that enhance 
personalized diagnostics and foster trust in AI-driven tools. By 
leveraging SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-agnostic Explanations) frameworks, our approach 
provides transparent, clinically meaningful explanations, aligning with 
the growing emphasis on interpretable AI in healthcare. Our interpret
ability analysis, which consistently identifies functional assessment, 
activities of daily living (ADL), memory complaints, and Mini-Mental 
State Examination (MMSE) as key predictors, supports personalized 
diagnostic approaches by highlighting risk factors that clinicians can 
readily assess in routine practice. These findings resonate with recent 
research emphasizing sex-specific differences in AD progression, as 
noted by Tang et al. (2024) [3]. For instance, our SHAP and LIME out
puts reveal how features like memory complaints and functional im
pairments differentially influence predictions, enabling clinicians to 
tailor risk assessments to individual patient profiles, including potential 
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sex-based variations in disease presentation. This granularity facilitates 
targeted interventions, such as cognitive therapy or lifestyle modifica
tions, which are most effective in the early stages of AD [5]. The 
transparency provided by SHAP and LIME addresses a critical barrier to 
AI adoption in healthcare, as highlighted by recent studies [9,16–18]. By 
elucidating why specific predictions are made (e.g., high Functional 
Assessment scores lowering AD risk), these frameworks enable clinicians 
to validate model outputs against clinical knowledge, fostering trust and 
enhancing patient communication. Our approach complements recent 
work by AbdelAziz et al. (2024), who demonstrated the value of XAI in 
MRI-based AD diagnosis [20]. While their study leveraged neuro
imaging to achieve high diagnostic precision, such methods are often 
inaccessible in resource-limited settings due to cost and infrastructure 
constraints. In contrast, our model relies on multimodal clinical and 
demographic data (cognitive assessments, lifestyle factors), offering a 
more accessible alternative for routine screening. This accessibility is 
critical for addressing global disparities in AD diagnostics, as noted by 
Alzheimer’s Disease International, which reports that most dementia 
patients worldwide lack formal diagnoses [8]. By achieving 95 % ac
curacy and 98 % AUC with widely available data, our model supports 
scalable screening in primary care and underserved regions, potentially 
improving early detection rates and patient outcomes. The use of SHAP 
and LIME further enhances clinical utility by providing intuitive visu
alizations (waterfall plots, local feature contributions) that clinicians 
can integrate into decision-making workflows. The clinical implications 
of our findings extend beyond diagnostics to inform preventive strate
gies and research directions. The consistent prioritization of functional 
assessment, ADL, and MMSE across SHAP and LIME outputs reinforces 
their role as core AD biomarkers, supporting their integration into 
standardized screening protocols. However, discrepancies in Functional 
Assessment interpretation between SHAP and LIME highlight the need 
for rigorous data quality validation to ensure reliable clinical insights. 
Future research could enhance clinical relevance by developing user- 
friendly interfaces for XAI outputs, facilitating seamless integration 
into electronic health records, and exploring longitudinal data to track 
the evolution of these biomarkers during disease progression. By 
combining high predictive accuracy with transparent, accessible in
sights, our study paves the way for trustworthy AI tools that empower 
clinicians to deliver personalized, equitable AD care.

4.4. Validation of key biomarkers

This study’s identification of functional assessment, activities of 
daily living (ADL), memory complaints, and Mini-Mental State Exami
nation (MMSE) as key predictors aligns with and extends recent research 
on Alzheimer’s disease (AD) biomarkers, reinforcing their clinical val
idity while providing novel insights through advanced interpretability 
techniques. Our findings contribute to a growing body of evidence 
supporting the prioritization of cognitive and functional markers in AD 
prediction, with implications for clinical risk stratification and future 
research. The consistent identification of functional assessment and 
MMSE as top predictors in our study mirrors recent findings that high
light entorhinal areas, lateral ventricles, and cognitive assessment scores 
as critical AD biomarkers [19]. These brain regions, often assessed via 
neuroimaging, are well-established indicators of AD-related neuro
degeneration, while cognitive assessments like MMSE capture func
tional impairments central to diagnosis. Our study extends this 
understanding by quantifying the relative contributions of functional 
assessment, ADL, and MMSE using SHAP (SHapley Additive exPlana
tions) and LIME (Local Interpretable Model-agnostic Explanations) 
frameworks [17,18]. For instance, SHAP analysis revealed high positive 
impacts from functional assessment (SHAP value: 9.915) and MMSE 
(SHAP value: 7.987), showing their pivotal role in predicting AD risk. By 
providing both global (SHAP) and local (LIME) explanations across 
multiple instances, our approach offers clinicians actionable insights for 
risk stratification, enabling precise identification of at-risk patients 

based on accessible clinical measures rather than costly neuroimaging. 
This alignment with established biomarkers validates the clinical rele
vance of our model while enhancing its practical utility for routine 
screening. Our findings also resonate with recent research by UCSF 
scientists, who identified metabolic factors such as cholesterol and 
osteoporosis as predictive of AD [3]. In our SHAP analysis, metabolic 
factors, such as cholesterol levels (HDL, SHAP value: 93.992) and body 
mass index (BMI, SHAP value: 39.159), showed moderate to high im
pacts, although less dominant than cognitive and functional markers. 
The consistent presence of these metabolic factors across studies, despite 
their lower importance in our model, suggests a complex mechanistic 
relationship with AD pathology. For example, cholesterol’s dual role 
(protective HDL vs. risk-increasing LDL) indicates potential interactions 
with neurodegenerative processes that warrant further exploration. 
Similarly, lifestyle factors like alcohol consumption (SHAP value: 9.905) 
and diet quality exhibited minor but consistent effects, aligning with 
emerging evidence on their role in AD risk modulation. These findings 
highlight the need for future research to investigate the mechanistic 
pathways linking metabolic and lifestyle factors to AD, potentially 
through longitudinal studies or integration of genetic and biomarker 
data. The clinical implications of our biomarker validation are signifi
cant. By confirming the primacy of functional assessment and MMSE, 
our study supports their integration into standardized AD screening 
protocols, particularly in resource-limited settings where neuroimaging 
is infeasible. The use of XAI frameworks enhances the interpretability of 
these biomarkers, enabling clinicians to understand their contributions 
to individual predictions and tailor interventions accordingly. However, 
the observed discrepancies in Functional Assessment interpretation be
tween SHAP and LIME suggest potential data quality or scaling issues 
that could affect clinical reliability. Future research should prioritize 
validating these biomarkers across diverse populations, incorporating 
advanced modalities like genetic markers or cerebrospinal fluid bio
markers, and exploring longitudinal data to elucidate their dynamic 
roles in AD progression. By combining robust biomarker validation with 
transparent XAI insights, our study paves the way for more accurate, 
equitable, and clinically actionable AD diagnostics.

5. Limitations

This study acknowledges several limitations that should be consid
ered when interpreting the results and planning future research 
directions.

5.1. Dataset and generalisability limitations

The dataset size of 2149 patients, whilst substantial, represents a 
relatively modest sample compared to large-scale neuroimaging studies 
such as those utilising ADNI databases with hundreds of thousands of 
records. This limitation may affect the generalisability of findings across 
diverse populations and geographical regions. The age restriction to 
patients between 60–90 years may limit applicability to early-onset 
Alzheimer’s disease cases and younger populations at risk. The reli
ance on a single Kaggle dataset introduces significant selection bias and 
may not represent the diagnostic distributions and demographic di
versity seen in real-world clinical populations. The dataset’s origin and 
validation status are not fully documented, which raises questions about 
its clinical authenticity and representativeness.

5.2. Methodological limitations

Feature selection, whilst optimised through forward–backward 
elimination and ant colony optimisation, may have inadvertently 
excluded potentially important biomarkers or interactions between 
features. The reduction from 32 to 26 features, whilst improving model 
efficiency, may have overlooked subtle but clinically relevant predictors 
that could enhance diagnostic accuracy. The absence of genetic markers, 
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advanced neuroimaging features, cerebrospinal fluid biomarkers, or 
longitudinal progression data represents a significant limitation, as these 
are increasingly recognized as crucial for comprehensive AD risk 
assessment.

5.3. XAI framework limitations

The interpretability analysis, whilst comprehensive, revealed in
consistencies between SHAP and LIME frameworks, particularly 
regarding functional assessment features. These discrepancies suggest 
potential issues with feature scaling, data quality, or fundamental dif
ferences in how these frameworks approximate model behaviour. Crit
ical evaluation revealed that SHAP may overstate feature importance in 
correlated datasets, while LIME’s local approximations can be sensitive 
to perturbation strategies, potentially leading to inconsistent explana
tions across similar cases.

5.4. Validation and performance concerns

The reported metrics (95 % accuracy, 98 % AUC) are unusually high 
for clinical AD prediction, which typically exhibits greater heterogeneity 
and noise. These results may indicate potential data leakage, insufficient 
cross-validation rigor, or dataset-specific artifacts that may not translate 
to real-world clinical settings. External validation on independent, 
multi-center datasets is essential to establish true generalisability.

5.5. Clinical Translation limitations

The study’s cross-sectional design limits the ability to assess tem
poral relationships and disease progression patterns. No formal clinical 
workflow integration testing was conducted, and computational re
quirements for real-time deployment in clinical settings remain to be 
validated. The absence of formal clinician usability testing and patient 
outcome evaluation represents a significant gap in clinical validation.

6. Conclusion

This study demonstrates the significant potential of explainable 
artificial intelligence frameworks for enhancing Alzheimer’s disease 
prediction whilst maintaining clinical interpretability and transparency. 
The optimised Random Forest model achieved exceptional performance 
with 95 % accuracy, 98 % AUC, and robust predictive metrics across all 
evaluation criteria, though these results require external validation to 
establish true generalisability. The BEFS+AACOAhp+RF approach 
provides a novel framework for feature optimization in clinical predic
tion tasks.

The comprehensive application of SHAP and LIME interpretability 
frameworks provided valuable insights into model decision-making 
processes, consistently identifying functional assessment, Activities of 
Daily Living (ADL), memory complaints, and Mini-Mental State Exam
ination (MMSE) scores as the most influential predictors. These findings 
align with established clinical knowledge and reinforce the importance 
of comprehensive cognitive and functional assessments in Alzheimer’s 
disease diagnosis. Domain expert validation confirmed the clinical 
relevance of these identified features, though concerns about potential 
confirmation bias suggest the need for investigation of novel bio
markers. The transparency provided by these explainable AI techniques 
addresses critical barriers to AI adoption in healthcare by enabling cli
nicians to understand, validate, and trust model predictions.

Critical evaluation of XAI frameworks revealed important limita
tions: the comparative analysis of SHAP and LIME frameworks revealed 
both complementary strengths and important discrepancies that high
light the value of employing multiple interpretability approaches while 
acknowledging their inherent limitations in correlated datasets and 
local approximation quality. Whilst both techniques consistently iden
tified key clinical features, observed inconsistencies in feature 

interpretation underscore the importance of rigorous validation and the 
need for careful consideration of data quality and feature engineering in 
developing trustworthy AI systems for healthcare.

Clinical workflow integration considerations demonstrate that suc
cessful deployment requires careful attention to EHR integration, user 
interface design, continuous monitoring protocols, and comprehensive 
training programs. Computational requirements (2.3 s training, 0.05 s 
prediction) suggest feasibility for real-time clinical deployment, though 
scalability across diverse healthcare systems requires further 
investigation.

The clinical implications extend beyond diagnostic accuracy to 
encompass personalised risk assessment, targeted interventions, and 
enhanced communication between clinicians and patients. The ability to 
explain individual predictions enables healthcare providers to make 
more informed decisions whilst fostering patient understanding and 
engagement in their care.

Future research priorities should focus on: (1) external validation 
across diverse, multi-center clinical populations; (2) integration of lon
gitudinal data for disease progression monitoring; (3) incorporation of 
additional biomarker modalities including genetic and neuroimaging 
data; (4) development of user-friendly clinical interfaces with formal 
usability testing; (5) investigation of computational scalability and real- 
world deployment challenges; and (6) prospective clinical trials to 
evaluate patient outcomes and clinical utility. Additionally, addressing 
the limitations identified in XAI framework consistency and exploring 
hybrid interpretability approaches will be crucial for advancing trust
worthy AI in healthcare.

While this study provides a foundation for explainable AI in AD 
prediction, the path to clinical implementation requires addressing 
significant limitations in external validation, clinical workflow inte
gration, and comprehensive evaluation of real-world performance. The 
successful integration of explainable AI techniques with high- 
performing machine learning models represents a crucial step towards 
realising the potential of artificial intelligence in transforming Alz
heimer’s disease diagnosis and management whilst maintaining the 
trust and confidence essential for clinical adoption.
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