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ABSTRACT 
The process of creating fetal images from the uterus using sound influence is known 
as fetal ultrasound imaging. During this scan, measurements such as the gestational 
sac, biparietal diameter, head circumference, abdominal circumference, and femur 
length can be taken from the mother, which are further analyzed by the radiologist 
or gynecologist. These factors allow us to quickly test for anomalies and monitor 
the fetal growth and development of a baby. This paper delves into the techniques 
utilized in previous studies for analyzing abnormalities from ultrasound images 
using machine learning and deep learning techniques. Specifically, we focus on two 
trimesters and three key fetal parameters: Head Circumference (HC), Abdominal 
Circumference (AC), and Femur Length (FL). Our proposed method, the Unet 
segmentation method, not only performs segmentation but also predicts the 
parameters. We employ various transfer learning techniques for classification. The 
experiment involves 1,313 medical fetal images, comprising 563 from the second 
trimester and 750 from the third trimester. In terms of segmentation accuracy, the 
results for the second trimester's biometric parameters are as follows: AC = 
69.09%, FL = 92.02%, and HC = 69.43%. For the third trimester, the accuracy for FL 
is 90.04%, and for HC, it is 69.76%. Regarding classification methods, MobileNet and 
XceptionNet yield comparable results. For the second trimester, MobileNet achieves 
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99.28%, and XceptionNet achieves 99.82%. For the third trimester, both MobileNet 
and XceptionNet achieve 99.86%. 

 
Keywords: Anomaly detection, Abdominal circumference, Biparietal diameter, Deep 
learning techniques, Femur length, Head circumference, Machine Learning, MobileNet, 
Segmentation accuracy, Transfer learning, Ultrasound Fetal Images, XcepationNet 

 
INTRODUCTION 

Ultrasound stands out as the preferred prenatal diagnostic tool due to its myriad benefits, 
encompassing widespread accessibility, affordability, non-ionizing radiation usage, and 
mobility. It serves as the predominant approach for two primary objectives: screening fetal 
growth and evaluating pathological and physiological states [1] [2]. An anticipated 8 million 
children are born each year. Sober birth abnormalities of hereditary or largely inherited origin 
affect 6% of all babies globally. Sober birth abnormalities cause at least 3.3 million deaths in 
children under five every year, and most of those who survive may always have physical and 
mental disabilities [3]. According to a joint World Health Organization (WHO) and March of 
Dimes (MOD) meeting report, 3.3 million under-five fatalities and 7% of all neonatal deaths 
occur in India due to birth abnormalities. India has a 6% to 7% prevalence of birth 
abnormalities, which equates to about 1.7 million birth problems annually. [4]. The fact that 
birth abnormalities have been increasing in frequency annually in recent years is of more 
significant concern.  
 

 
Fig 1: shows a diagram of biometric measurements for each trimester. US: ultrasound; GS: 

Gestational Sac; CRL: Crown-Rump Length; NT: Nuchal Translucency; HC: Head Circumference; 
AC: Abdominal Circumference; FL: Femur Length; 

 

As a result, pregnancy outcome prediction becomes a vital study issue since it may assist in 
reducing congenital disabilities and improving population quality. Each of the three trimesters 
of pregnancy is characterized by distinct fetal development. At 40 weeks, a pregnancy is 
considered to be full-term. They are three trimesters. The first trimester lasts from 0 to 13 
weeks, the second from 14 to 26, and the third from 27 to 40 weeks [6]. Gestational age (GA) 
estimation, crucial for monitoring fetal growth, relies on fetal biometric parameters [5]. 
Measuring parameters such as head circumference (HC), biparietal diameter (BPD), abdominal 
circumference (AC), and femur length (FL) is imperative for this purpose. These standard 
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biometric parameters, commonly evaluated during routine second-trimester scans, are defined 
based on fetal anatomy [5]. A biometric parameters diagram of different trimesters is shown in 
Fig. 1. 

 

The first-trimester ultrasound assesses key biometric parameters are Gestational Sac (GS): 
Detected as early as 4.5 to 5 weeks, the GS surrounds the developing embryo with fluid, marking 
the initial stage of pregnancy [13] [14]. Nuchal Translucency (NT): This fluid-filled space at the 
back of the fetal skin is detectable between 11 and 14 weeks. Increased NT thickness may 
indicate chromosomal or non-chromosomal defects and is associated with various fetal 
abnormalities and poor perinatal outcomes [12][9] [14]. Crown Rump Length (CRL): Measuring 
the length of the embryo or fetus from top to bottom of the torso, CRL provides a precise 
estimate of gestational age, particularly in early pregnancy due to minimal biological variability 
[12].  
 
Ultrasound measurements in the second and third trimesters include crucial biometric 
parameters, and they include the following: Head circumference (HC), biparietal diameter 
(BPD), abdominal circumference (AC), and femur length (FL) are key indicators of fetal size and 
development. These measurements, along with fetal heart rate (FHR), aid in estimating 
gestational age and expected delivery date (EDD) [14]. Fetal Heart Rate (FHR) typically ranges 
from 120 to 160 beats per minute during gestation, varying throughout pregnancy. Detectable 
via sonography as early as six weeks, FHR shows a gradual increase to about 170 bpm at ten 
weeks and then decreases to around 130 bpm at term [14]. Fetal biometric characteristics are 
essential for monitoring gestational age, size, weight, and identifying developmental 
abnormalities in various body systems, including the brain, spine, heart, abdomen, and 
placenta, as well as detecting complications such as bleeding in the first trimester or cesarean 
scar pregnancy. 
 
Ultrasound imaging is often plagued by artifacts like motion blurring, missing borders, acoustic 
shadows, speckle noise, and low signal-to-noise ratio, posing challenges for accurate analysis. 
Current research extensively employs deep learning and machine learning techniques to detect 
adverse pregnancy outcomes, leveraging their automatic feature learning capabilities to aid in 
abnormality detection in ultrasound images. This paper presents a comparative analysis of 
image-processing methods for studying fetal abnormalities and proposes novel approaches for 
analyzing fetal biometric parameters (FBP), focusing on images from the second and third 
trimesters. Utilizing various deep-learning techniques, we employ the Unet method for accurate 
segmentation and explore different transfer-learning techniques for classification tasks.  
 
Key Contributions:  
Overall, the major contributions of this work are multifold as indicated here: 1) The fetal images 
were collected and categorized into trimesters. We arrived at this juncture by labeling and 
annotating the images based on FBP.2) Research the effectiveness of deep learning neural 
networks for segmentation and feature extraction from biometric fetal images.3) Prediction 
and classification from the biometric fetal images using transfer learning techniques.4) 
Verification of the best classification model for fetal biometric image classification. 
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LITERATURE SURVEY 
The advancement of deep learning (DL) algorithms in fetal ultrasound image analysis has 
sparked significant research interest. Fiorentino et al. [1] provided a comprehensive review, 
categorizing studies into fetal standard plane detection, anatomical structure analysis, and 
biometry parameter estimation. They highlighted limitations, applications, open issues, 
publicly available datasets, and DL algorithms. Meanwhile, Vidhi Rawat et al. [2] emphasized 
automated techniques for interpreting fetal abnormalities, focusing on segmentation 
techniques like probabilistic boosting trees and fuzzy logic. Li et al. [8] proposed a novel deep 
neural network for fetal head segmentation and accurate biparietal diameter (BPD) and 
occipitofrontal diameter (OFD) prediction. They achieved significant results using 1334 
ultrasound images from the HC18 challenge, with an accuracy of approximately 90%. Rueda et 
al. [11] automated segmenting of fetal anatomical structures, evaluating methods for obstetric 
biometric parameter measurement across different gestational ages. While numerical accuracy 
rates were not explicitly mentioned, the study demonstrated improvements in segmentation 
accuracy compared to existing methods. Micucci et al. [15] discussed machine learning (ML) 
and DL algorithms for ultrasound image analysis, achieving high accuracy rates with various 
models, including Linear, Logistic, SVM, UNet, AlexNet, and ResNet. However, specific accuracy 
values were not provided. Nithya et al. [16] proposed an algorithm for measuring abdominal 
circumference using a segmentation active contour model, achieving accurate fetal weight and 
growth restriction analysis. No specific accuracy rates were mentioned, but the method 
demonstrated effectiveness in analyzing fetal parameters. Carneiro et al. [21] presented a 
method for the automatic detection and measurement of fetal anatomical structures, employing 
a probabilistic boosting tree classifier. Accuracy rates for this method were not explicitly stated 
in the text. Shrimali et al. [23] discussed ultrasound fetal biometry using morphological 
operators for improved measurement consistency. While numerical accuracy rates were not 
provided, the study focused on addressing inconsistency and subjectivity in fetal ultrasound 
measurements. Singh et al. [24] developed a fetal face detection and visualization approach 
using 3D ultrasound volumes, achieving high accuracy even in multiple fetus pregnancies. 
However, specific accuracy rates were not mentioned in the text. Feng et al. [25] proposed a 
learning-based approach for automatic fetal face detection in 3D volumes, focusing on refining 
detection performance. Although no specific accuracy rates were provided, the study 
emphasized the need for further improvement in detection performance. Baumgartner et al. 
[27] introduced a real-time framework for detecting standard views in freehand fetal 
ultrasound, achieving high accuracy in classification and localization tasks, with an average F1-
score of 0.798 in classification and 77.8% accuracy in localization. Meng et al. [28] focused on 
detecting acoustic shadows in ultrasound images, generating pixel-wise confidence maps for 
segmentation tasks. Specific accuracy rates for this method were not mentioned. Selvathi et al. 
[30] evaluated abnormalities in fetal images using CNN, GoogleNet, and AlexNet, achieving high 
classification accuracies, with AlexNet achieving an accuracy of 90.43%, GoogleNet achieving 
88.70%, and CNN achieving 81.25%. Jardim et al. [32] addressed unsupervised contour 
estimation in fetal ultrasound images, facing challenges with noise sensitivity. Specific accuracy 
rates were not provided in the text. Attallah et al. [33] proposed a low computational cost 
method for classifying fetal brain abnormalities, achieving promising results with various 
classifiers, with SVM achieving 84% accuracy, Linear Discriminate Analysis achieving 86% 
accuracy, K-nearest neighbor achieving 80% accuracy, and Ensemble Subspace Discriminates 
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achieving 84.5% accuracy. Cerrolaza et al. [35] developed a fully automatic framework for 
segmenting fetal skulls in 3D ultrasound, integrating contextual information for accurate 
reconstruction. Specific accuracy rates were not mentioned in the text. Rawat et al. [37] 
employed an ANN model for fetal position detection, aiming for real-time and accurate analysis. 
Specific accuracy rates for this method were not provided. Skeika et al. [40] adapted a deep 
learning method for fetal skull segmentation, achieving improved segmentation accuracy, with 
up to 97.92% correct segmentation. Oghli et al. [42] focused on automatic biometric parameter 
prediction, achieving high accuracy with the MFP-Unet model, with a Dice Similarity Coefficient 
(DSC) of 0.98 and 100% accuracy in achieving good contours. Lee et al. [59] estimated fetal 
gestational age accurately using machine learning methods and biometry measurements, 
achieving a mean absolute error of 3.0 days in the second trimester and 4.3 days in the third 
trimester. Zhu et al. [60] discussed automatic femur length measurement in ultrasound images, 
achieving high accuracy with random forest regression and SegNet methods, with the random 
forest regression model achieving an average error of 1.23 mm and the SegNet-based method 
achieving an average error of 0.46 mm. Deepika et al. [65] defended against fetal abnormalities 
using CNN-U-Net, achieving exceptional identification accuracy of 99.7%. Prieto et al. [66] 
developed a fully automated framework for recognizing and measuring fetal structures, 
achieving accurate predictions with RESNET and RUNET models. Specific accuracy rates for 
this method were not provided. Bano et al. [68] automated fetal biometry estimation using 
segmentation models, achieving accurate parameter estimation, with specific accuracy rates 
not mentioned. Sahli et al. [72] integrated biometric features for diagnosing fetal brain 
abnormalities, achieving high classification accuracies with SVM, MNN, and KNN methods, with 
the SVM classifier achieving 87.10% accuracy, KNN achieving 71.70%, and MNN achieving 
78.87% accuracy. Lee et al. [76] developed AI models for sonographic assessment of gestational 
age, showing potential for higher estimation accuracy. Specific accuracy rates for this method 
were not provided. 
 
To check the preceding work the following selection is considered from 2010 onwards 
publication for analysis. We followed the Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis (PRISMA) statement to select the research publications. Focusing on prenatal 
anomalies analyzed using machine learning and deep learning techniques. After reviewing the 
titles, abstracts, and full texts. Nearly 120 research studies were taken into consideration for 
this investigation. Around 120 records, were considered, with 33 reviews excluded due to 
unclear objectives, irrelevance to our research area, inadequate use of machine learning, or 
unrelated focus on prenatal anomalies. The PRISMA flow diagram (Fig 2) summarizes our 
literature review process, while Table 1 outlines the main inclusion and exclusion criteria for 
the study. 
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Fig 2: illustrates the summary systematic literature review process using the PRISMA flow 

diagram 
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Table 1: Inclusion and Elimination Measures of The Study 
Inclusion Measures for the Study Exclusion Measures for the Study 

➢ Available articles are in the English language.  
➢ Available articles are chosen from the last 

decades. 
➢ Papers/articles that are open accessible and 

downloadable. 
➢ Studies that utilized behavioral Biometric 

parameters data i.e. publicly available datasets.  
➢ Research work related to machine learning as 

the main technique.  
➢ Research work related to analysis and 

abnormalities in fetal ultrasound images  

➢ Articles which are written/published in non-
English languages  

➢ Papers/articles that are not open-accessible and 
downloadable 

➢ The objective and study of the work are not 
properly defined  

➢ Studies that are not relevant to the specific 
research domain.  

➢ Studies those are not employ machine learning 
and deep learning as the main techniques.  

➢ Relevant studies, but not based on fetal analysis 
and abnormalities. 

 
Challenges 
From the clinician's perspective, analysis of the fetus is challenging in scanning because of poor 
image quality, fetal position, poor visualization, acoustic shadows, etc. 
• It continues to be very difficult to access massive datasets of prenatal ultrasound images. 

Because of this, collecting high-quality ultrasound images separating those images 
according to the biometric parameters, and also labelling those images is the big challenge 
[1,2,7,15,38-39,83-84,91]. 

• Fetal face analysis and detection of face position and visualization is the big challenge [1,24-
26,40,22]. 

• As biometry-parameter estimation includes gestational sac(G.Sac)[56,59,61,64,66,73-
74,77,85], biparietal diameter(BPD)[49,51-54,67], head circumference (HC)[7,8,18-21,44-
47,57-58], abdominal circumference(AC)[16,17,22,31,41,79]and femur length 
(FL)[1,60,78], hence considering these parameters in second and third trimester to 
detection and classification of fetal abnormalities is necessary and emerging research area. 
[1,2,7,15,30,33,37,42-43,65,72,83-84,87,89]. 

• There have not been any proposals for unified frameworks for biometry estimation from 
multiple anatomical locations. The primary obstacle in this case is the extreme form 
fluctuation. Clinicians may find it helpful to determine the scan plane before calculating the 
biometrics related to that plan. [1,27,75,81] 

• Determining the parameters is difficult, and multiple or twin pregnancies require longer 
computing times and iterations. [1,2,32,91]. 

• The difficult task in fetal imaging is to identify gestational diabetes and preterm birth 
problems and recognize standard planes in the fetal brain, abdomen, and heart. [1,28-
29,33-35,62-63,69-71,82,86,92-93]. 

• An acoustic shadow created by opaque sound may obscure important anatomical 
information in 2D ultrasound, making it difficult to analyze ultrasound data, from anatomy 
segmentation to landmark detection. [1,28,29,55] 
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PROPOSED METHODOLOGY 
In the current literature study, most of the researchers focus on the HC biometry parameter, 
other biometry parameters need to be analyzed such as FL and AC. To fill the research 
challenge, this work focuses on the analysis of HC, FL, and AC biometric parameters for both 
second and third trimesters. This research introduces a deep-learning method for fetal 
ultrasound images. The proposed model uses the U-Net method for segmentation and the 
classifications have used transfer learning methods [42]. The model predicts the given 
parameter and classifies the parameters.Fig.3. shows the process flow diagram. 
 

 
Fig.3: The Process Flow Diagram. 

 
Pre-Processing 
The Pre-Processing step enhances the quality of the image by suppressing unwanted 
distortions and highlighting the data of interest. In this process first step, divided the collected 
raw images into three trimesters bifurcated them parameter-wise (AC, FL, HC), and also labeled 
the images. In the Region of Interest (ROI), the image cropping function for extracting the region 
of interest and resizing the images 300*300 pixels. 
 
Platform Implementation 
GIMP (GNU Image Manipulation Program) is a tool used for annotating the medical images and 
generating the ground truth images. [94] The model is executed in the Anaconda navigator, 
which is a graphical user interface.it is compatible with many different implementation 
platforms. Jupyter Notebook (7.0.6) is used for computing, it is an online interactive execution 
environment. Python is used for coding and importing libraries such as TensorFlow, Keras, 
sklearn, pandas, NumPy, and Matplotlib. 
 
Segmentation and Feature Extraction 
The segmentation process of images gives qualitative and quantitative image analysis. The 
weak edges and wrong edges are inherent in the Ultrasound images. The digital image 
processing segmentation techniques like Edge-based, Otsu’s, Threshold-based segmentations, 
morphological operation dilation, and erosion methods for segmenting the images. Different 
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filtering techniques have been applied to reduce the noise and enhance the quality of 
ultrasound images. Fig 4 shows the results of various segmentation techniques. The above-
mentioned technique’s results do not haveaccurate outcomes of ultrasound images. Therefore, 
the deep-learning Unet model is used for segmentation [95] [96].  
 

 
Fig 4: Results of Traditional Digital Image Processing Techniques. 

 
U-Net: 
For accurate segmentation, the deep-learning techniques U-net model used for image 
segmentation.  
 

 
Fig 5: U-net Architecture 

 
Fig 5. shows the U-Net model. This model takes an input image of size 256*256 and 1 single 
channel and the output of segmented size is 68*68. The convolution layer with Rectified Linear 
Unit (ReLU) activation function is used for feature extraction and 2*2 max-pooling layers are 
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used for spatial dimension reduction. The network hits a bottleneck where the feature channels 
are maximal but the spatial dimensions are limited after multiple down-sampling steps. To 
avoid overfitting, dropout layers are used. To expand the spatial dimensions of the feature 
maps, up-sampling layers are employed. Concatenation is used to obtain high-resolution 
features for segmentation by combining the corresponding feature maps from the down-
sampling path. The last layer creates a binary mask that indicates if the target object is present 
in each pixel by using a 1x1 convolution with sigmoid activation. The binary cross-entropy loss 
function and Adam optimizer are used to compile the model. A metric for assessing the 
performance of the model is accuracy. [96] 
 
Classification 
To identify segmented images based on trimester parameters, we investigated a wide range of 
classification approaches in this study, each of which represented a unique convolutional 
neural network (CNN) architecture. CNN, DNN, ResNet50, LenNet, InceptionV2, XceptionNet, 
DenseNet121, MobileNet, MobileNetV2, and VGG16 are some of the categorization models used. 
Since each method has its special qualities and skills, we can assess each method's effectiveness 
in classifying fetal biometric parameters in great detail. To improve prenatal diagnoses and 
healthcare, these models were thoroughly contrasted and examined to ascertain how well they 
could classify traits unique to each trimester. [98-107] 
 
Convolutional Neural Networks (CNN):  
A popular deep-learning technique for image classification Convolutional layers are used to 
extract features from images, and pooling layers are used to minimize dimensionality. CNNs are 
renowned for their capacity to automatically figure out feature spatial hierarchies. To introduce 
non-linearity, they frequently employ activation functions such as Rectified Linear Unit (ReLU). 
Images with translation invariance can be used to train CNNs to recognize patterns. They have 
proven essential in helping numerous computer vision tasks achieve state-of-the-art 
performance. For training, CNNs need a lot of labeled data and are computationally demanding. 
It is common practice to fine-tune pre-trained CNN models for particular tasks through transfer 
learning [98] [99]. 
 
A Deep Neural Network (DNN): 
A deep neural network (DNN) has several hidden layers in between the input and output layers. 
They can deduce intricate patterns and representations from data. To reduce prediction errors, 
DNNs employ weight adjustments during training via backpropagation. DNNs usually use 
activation functions like sigmoid, tanh, or ReLU. Numerous fields, including voice and picture 
recognition, have seen their successful use. For training, DNNs need a lot of processing power 
and big datasets. Regularization strategies are frequently used to solve overfitting, a significant 
problem with DNNs. Numerous sophisticated neural network designs are built on top of DNNs. 
They may be tailored to various tasks and data kinds because of their versatility. [98] [100]. 
 
A Residual Network (ResNet50): 
A Residual Network (ResNet50) is a convolutional neural network design. The vanishing 
gradient problem is tackled by utilizing skip links or shortcuts. Deep networks can be trained 
with skip connections, which provide a more direct gradient flow. ResNet50 uses residual 
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blocks with identity mappings and has 50 layers. In the ImageNet Large Scale Visual 
Recognition Challenge, it performed remarkably well. Image categorization is one of the many 
computer vision applications where ResNet50 is widely used. Because transfer learning using 
pre-trained ResNet50 models is so successful, it is widely used. It is useful for numerous 
applications because it strikes a compromise between computational performance and model 
complexity. Beyond picture categorization, advances in neural network design have been 
sparked by ResNet50's architecture [98] [101] [102]  
 
LeNet-5(LeNet): 
LeNet-5(LeNet) one of the first convolutional neural network (CNN) designs, created by Yann 
LeCun, transformed the area of deep learning. Convolutional, pooling and fully connected layers 
make up LeNet's architecture, which is specifically designed for handwritten digit recognition. 
In presenting ideas like convolutional layers and max-pooling, which are currently essential to 
CNN architecture, it was a trailblazer. LeNet demonstrated how neural networks can handle 
complex real-world data by demonstrating impressive performance in pattern recognition 
tasks. LeNet established a vital groundwork for later developments in deep learning, despite its 
relative simplicity in comparison to contemporary designs. Beyond just digit identification, it 
also influences how CNNs are designed for different picture classification tasks. Thus, LeNet 
represents a significant turning point in the development of computer vision and deep learning. 
[98] [103] 
 
Incepation-ResNet-V2(InceptionV2): 
Incepation-ResNet-V2(InceptionV2) is based on the original Inception design, is a major 
development in convolutional neural network (CNN) architectures, and was developed by 
Google. With factorized convolutions and batch normalization, for example, InceptionV2 aims 
to improve performance and efficiency by cutting computing costs without sacrificing accuracy. 
Its architecture revolves around inception modules, which allow filters of varying sizes to be 
processed in parallel to efficiently capture a variety of properties. Through benchmark testing, 
InceptionV2 proved to be more accurate than its predecessor, proving its usefulness for a range 
of computer vision tasks. Notable is the dimensionality reduction it introduces in the 
intermediary layers, which improves computational efficiency without sacrificing performance. 
Because of its sensible architecture, InceptionV2 is a good option for real-world applications 
since it places a high priority on balancing model complexity and processing resources. Using 
pre-trained InceptionV2 models to facilitate transfer learning [98] [104]. 
 
Extreme Inception (XceptionNet): 
As an acronym for "Extreme Inception," which represents its progression from the Inception 
framework, Google invented XceptionNet, a revolutionary convolutional neural network (CNN) 
architecture. Unlike its predecessors, XceptionNet allows the independent capturing of spatial 
and channel-wise dependencies by substituting depth-wise separable convolutions for typical 
inception modules. By drastically reducing the number of parameters compared to 
conventional convolutional layers, this innovative architectural design improves computing 
efficiency. XceptionNet has proven to be effective in real-world applications by achieving state-
of-the-art performance on multiple picture categorization benchmarks. Its accomplishment 
serves as a reminder of how important effective model design is in actual deployment settings. 



 
 
 

 
 
 

29 

Gornale, S., Kamat, P., Siddalingappa, R., & Kumar, S. (2024). Deep Learning Techniques for a Comprehensive Analysis of Fetal Biometric Parameters 
Across Trimesters. Transactions on Engineering and Computing Sciences, 12(3). 18-45. 

URL: http://dx.doi.org/10.14738/tecs.123.16985 

 

Because pre-trained XceptionNet models are successful and can be easily adapted to a variety 
of applications and datasets, transfer learning with these models is widely used. Moreover, 
XceptionNet's architecture has accelerated the creation of thin and effective neural networks, 
highlighting [98] [105] 
 
Densely Connected Convolutional Networks (DenseNet):  
A novel convolutional neural network (CNN) architecture called DenseNet121 is characterized 
by its dense connections between layers, in which every layer is feed-forwardly coupled to 
every other layer. Both feature reuse and smooth gradient flow throughout the network are 
facilitated by these tight connections. Because DenseNet121 is composed of several dense 
blocks followed by transition layers, it promotes feature propagation and solves the vanishing 
gradient issue that deep networks frequently face. The usefulness of dense connection patterns 
in deep neural networks is demonstrated by DenseNet121, which has remarkably attained 
competitive performance across a variety of image classification tasks. About deep learning 
model optimization, its architecture emphasizes the significance of information flow and 
connectivity patterns. The fact that transfer learning using pre-trained DenseNet121 models is 
common demonstrates its effectiveness by allowing adaption to a variety of datasets [98][106].   
 
MobileNet:  
Convolutional neural network (CNN) architecture has advanced with MobileNet, a 
breakthrough designed for mobile and embedded devices that prioritizes low computational 
cost and efficiency without sacrificing accuracy. By utilizing depth-wise s arable convolutions, 
MobileNet effectively reduces both computational complexity and model size by factorizing 
ordinary convolutions into distinct depth-wise and pointwise convolutions. This cutting-edge 
architecture is a popular option in mobile and edge computing scenarios because it is especially 
well-suited for applications with constrained compute resources or strict latency requirements. 
The efficacy of MobileNet in transfer learning, which permits fine-tuning particular tasks with 
pre-trained models, further facilitates its widespread use. Furthermore, the design concepts of 
MobileNet have greatly impacted the creation of lightweight neural network architectures, 
which in turn has influenced the continuous search for effective deep learning models [98] 
[107].  
 
MobileNetV2: 
Which focuses on improving both efficiency and performance, is a major improvement over the 
original MobileNet architecture. To effectively capture complicated features while minimizing 
computing costs, it incorporates inverted residual blocks with linear bottlenecks. To improve 
gradient propagation and information flow, MobileNetV2 also includes shortcut connections. 
This results in lower computing overhead and increased accuracy over its predecessor. This 
design strikes a compromise between model complexity and deployment efficiency for 
resource-constrained situations, making it ideal for real-time applications on embedded and 
mobile devices. The practical applicability of MobileNetV2 is further highlighted by its success 
in transfer learning with pre-trained models. It has been widely implemented across numerous 
computer vision tasks, including object identification and image classification. Additionally, the 
advancement of lightweight design has been significantly impacted by its design advancements 
[98] [108].  
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Visual Geometry Group 16-layer model (VGG16):  
The Visual Geometry Group at Oxford created VGG16, which is well known for its ease of use 
and efficiency in picture classification applications. VGG16, which consists of several 
convolutional layers and max-pooling layers, demonstrated the potential of deeper 
architectures by achieving competitive performance in the ImageNet Large Scale Visual 
Recognition Challenge. Its success can be attributed to its design principles, which place a high 
priority on preserving feature hierarchy and spatial resolution across the network. Notably, the 
durability and effectiveness of VGG16 are largely due to its uniform architecture, which 
includes modest receptive fields in convolutional layers. Because of its efficacy, VGG16's 
architecture is frequently used in transfer learning and has influenced later deep learning 
designs. VGG16 is still a benchmark for picture classification even though it is simpler than most 
recent architectures, demonstrating the importance of architectural decisions in deep learning 
[98] [109] 
 

RESULTS AND DISCUSSION 
Description of Data 
As mentioned in the challenges section 2.3, the collection, labeling, and annotation of high-
quality fetal images based on biometric parameters are significant challenges of fetal research. 
The publicly available benchmark dataset contains one biometric parameter, the dataset name 
is HC18. The proposed model needs biometric parameters like HC, FL, and AC fetal images to 
analyze. To address this limitation, we have collected fetal images and created our dataset for 
experiments. The images were collected from the VOLUSON P6 Ultrasound Machine in JPG 
format from Metgud Hospital - Advanced Laparoscopy Centre and IVF, Belagavi, Karnataka, 
India. The original image size is 640*480.  
 
In this work, the image size is 300*300. The dataset contains 1,313 images, these images are 
divided into two categories the Second and Third trimesters. Each sonographic fetal image is 
manually annotated and labeled as per the biometric parameters by the guidance of doctors. In 
the second trimester, have 563 images and 563 ground truth images. These images are the 
three parameters HC=228 images, FL=232 images, and AC=101 images. In the third trimester, 
have used 750 fetal images and 750 ground truth images. These images are the two parameters 
HC=355 images and FL=395 images. In our experiments, we have split each biometric 
parameter dataset into 70:20:10 ratios for training, testing, and validation purposes. 

 
Segmentation Results  
The objective of this work is an analysis and prediction of biometric parameters of fetal images. 
The quality of fetal images depends on the machine and the radiologist’s ability to find good 
images. These images involved various types of noises.it is essential to differentiate noise and 
parameter information. Radiologists may make the wrong prediction; it may give the wrong 
analysis and treatment. So, the deep learning approach has proposed to accurate prediction of 
the fetus. 
 
A total of 1,313 images were preprocessed and used for the training of the U-Net model for 
segmentation. Each parameter is split into a 70:20:10 ratio for training testing and validation. 
These parametric datasets are applied for the segmentation task, where our pre-trained model 
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undergoes rigorous evaluation to produce robust and reliable results. and results have been 
stored in the pre-trained model.  
 
The segmentation accuracy for the second-trimester results is HC= 69.43%, AC=69.09%, and 
FL=92.02%. Third-trimester results are HC= 69.76%, and FL=90.04%, Fig 6. and Fig 7. show 
the segmentation results of the second and third trimesters. In the results figures a) Input the 
original image b) ground-truth image c) Segmented output mask image d) Segmented output 
image. 
 

 
Fig 6: Segmentation Results of The Second Trimester 

 

 
Fig 7: Segmentation Results of The Third Trimester 
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Classification Results 
In the classification phase, the second-trimester dataset contains 1126 images for classification. 
This divided into three groups FL, AC, and HC. In these 563 images and 563 related annotated 
images. Similarly, there are two categories in the third-trimester dataset: FL and HC. These 
categories include 750 images and 750 images with annotations, for a total of 1500 images. For 
evaluation, these datasets were split into two sets: 20% for validation and 80% for training. To 
identify the segmented images based on trimester parameters, a variety of transfer learning 
classification approaches were used, including CNN, DNN, ResNet50, LenNet, InceptionV2, 
XceptionNet, DenseNet121, MobileNet, MobileNetV2, and VGG16. 
 
Table 2. and Table 3. show the classification results of both the second and third trimesters and 
Fig 8 and Fig 9. show the classification accuracy chart of both trimesters. The good classification 
results of two methods MobileNet and XcepationNet. Results of the ROC curve and confusion 
matrix are shown in Fig 10. for the second trimester and Fig 11. for the third trimester. The 
evaluation of model performance measures used like confusion matrix, accuracy, precision, f1-
score, recall-score, and Receiver Operating Characteristic (ROC) curve. 

• Confusion Matrix: It is a table that is used to describe the performance of the 
classification model on a set of which the true values are known.it consists of four 
numbers: 

▪ True Positive (TP): The samples that the model correctly identified as belonging 
to a certain category based on parameters HC, FL, and AC. 

▪ True Negative (TN): The negative samples that the model correctly identified as 
not belonging to a certain category based on parameters HC, FL, and AC. 

▪ False Positive (FP): A sample identified as positive for a condition based on 
parameters HC, FL, and AC, when it doesn’t have the condition. 

▪ False Negative (FN): A sample identified as negative for a condition based on 
parameters HC, FL, and AC, when it has the condition. 

• Accuracy: It measures the proposition of correct predictions out of the total predictions 
made. 

 
• Sensitivity: It measures the proportion of actual positive cases that were correctly 

identified by the model. 

 
• Precision: It measures the proportion of true positive predictions out of all positive 

prediction made by the model. 

 
• F1-Score: It is a harmonic mean of precision and sensitivity.it gives a balance between 

precision and sensitivity. 
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• Recall: It measures the proportion of actual positive cases that were correctly identified 
by the model, similar to Sensitivity. 

 
• Receiver Operating Characteristic (ROC) Curve: It is a graphical plot that illustrates the 

diagnostic ability of a binary classifier system as its discrimination threshold is varied.it 
is created by plotting the True Positive Rate (Sensitivity) against the False Positive 
Rate(1-Specificity) at various threshold settings. 

• Area Under the ROC Curve (AUC) is a measure of the area under the Receiver Operating 
Characteristic curve, which plots the True Positive Rate (Sensitivity) against the False 
Positive Rate (1-Specificity). AUC quantifies the classifier’s ability to discriminate 
between positive and negative classes, with values ranging from 0 to 1, where higher 
values indicate better performance. 

 
Table 2: Classification Results for The Second Trimester 

Classifier Accuracy Precision F1-Score Recall-Score 

CNN 98.4 0.98 0.99 0.99 

ResNet50 87.92 0.88 0.93 0.98 

DenseNet121 98.22 0.97 0.98 1 

VGG16 99.22 0.98 0.98 0.98 

MobileNet 99.28 0.99 0.99 0.99 

MobileNetV2 98.93 0.98 0.99 1 

InceptionV3 98.75 0.99 0.99 0.99 

XceptionNet 99.82 0.99 0.99 1 

LeNet 97.51 0.97 0.98 0.99 

DNN 98.93 0.99 0.99 0.98 

 

 
Fig 8: Classification Accuracy Chart for Second Trimester 
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Fig 10: Confusion Matrix, ROC Curve, and AUC Curve 

 
Table 3: Classification Results for The Third Trimester 

Classifier Accuracy Precision F1-Score Recall-Score 

CNN 90.66 0.86 0.91 0.96 
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ResNet50 96.66 0.94 0.96 0.99 

DenseNet121 99.2 0.99 0.99 0.98 

VGG16 99.73 1 0.99 0.99 

MobileNet 99.86 0.99 0.99 1 

MobileNetV2 99.2 0.99 0.92 0.98 

InceptionV3 98.41 0.99 0.98 0.92 

XceptionNet 99.86 0.99 0.99 1 

LeNet 98.4 0.99 0.98 0.92 

DNN 93.46 1 0.93 0.87 

 

 
Fig 9: Classification Accuracy Chart for the Third Trimester 
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Fig 11: Confusion Matrix, ROC Curve, and AUC Curve 

 
The validation and testing of our experiments were conducted at the Metgud Hospital - 
Advanced Laparoscopy Centre and IVF, located in Belagavi, Karnataka, India. The oversight of 
experienced professionals ensured the meticulous design and implementation of the validation 
and testing processes, thereby guaranteeing accuracy, reliability, and adherence to scientific 
standards. The outcomes derived from these rigorous experiments are robust and credible, 
highlighting their substantial contribution to the progress of research in our field. The 
invaluable insights gained from our collaboration with the expert professionals at Metgud 
Hospital further enhance the significance and reliability of our findings, fostering advancements 
in prenatal care and diagnosis 
 

CONCLUSION 
The application of deep learning and transfer learning techniques facilitates the automated 
segmentation and classification of fetal ultrasound images based on key biometric parameters 
such as Head Circumference (HC), Abdominal Circumference (AC), and Femur Length (FL). Our 
study encompasses a dataset comprising 1,313 images categorized into Second and Third 
trimesters. Each sonographic fetal image in our dataset is meticulously annotated and labeled 
by medical professionals according to the corresponding biometric parameters. Specifically, the 
Second trimester subset comprises 563 images, covering HC, FL, and AC, with corresponding 
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ground truth annotations. In contrast, the Third-trimester subset consists of 750 images, 
focusing on HC and FL parameters, each accompanied by ground truth annotations. Utilizing 
the deep learning architecture Unet, we achieved exceptional results in the segmentation 
process, accurately delineating fetal anatomy in ultrasound images. Additionally, we explored 
various transfer learning methods for classifying fetal images. Our proposed model 
demonstrated impressive performance, with MobileNet achieving an accuracy of 99.28% and 
XceptionNet achieving 99.82% for the Second trimester. Similarly, for the Third trimester, 
MobileNet and XceptionNet both achieved an accuracy of 99.86%. Looking ahead, our future 
research endeavors will delve into the analysis of fetal abnormalities through biometric 
parameters, transcending conventional measurements. Our goal is to enhance the accuracy and 
efficiency of fetal anomaly detection, paving the way for improved prenatal care and diagnosis. 
Despite the promising results achieved thus far, there remains ample room for further 
exploration and refinement in this field. 
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