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Abstract In this work, we address the computational challenge of large‐scale physics‐based simulation
models for the ring current. Reduced computational cost allows for significantly faster than real‐time
forecasting, enhancing our ability to predict and respond to dynamic changes in the ring current, valuable for
space weather monitoring and mitigation efforts. Additionally, it can also be used for a comprehensive
investigation of the system. Thus, we aim to create an emulator for the Ring current‐Atmosphere interactions
Model with Self‐Consistent magnetic field (RAM‐SCB) particle flux that not only improves efficiency but also
facilitates forecasting with reliable estimates of prediction uncertainties. The probabilistic emulator is built upon
the methodology developed by Licata and Mehta (2023), https://doi.org/10.1029/2022sw003345. A novel
discrete sampling is used to identify 30 simulation periods over 20 years of solar and geomagnetic activity.
Focusing on a subset of particle flux, we use Principal Component Analysis for dimensionality reduction and
Long Short‐Term Memory (LSTM) neural networks to perform dynamic modeling. Hyperparameter space was
explored extensively resulting in about 5% median symmetric accuracy across all data sets for one‐step dynamic
prediction. Using a hierarchical ensemble of LSTMs, we have developed a reduced‐order probabilistic emulator
(ROPE) tailored for time‐series forecasting of particle flux in the ring current. This ROPE offers accurate
predictions of omnidirectional flux at a single energy with no pitch angle information, providing robust
predictions on the test set with an error score below 11% and calibration scores under 8% with bias under 2%
providing a significant speed up as compared to the full RAM‐SCB run.

Plain Language Summary Our study tackles the challenges of simulating the ring current in space
and time, using a model called RAM‐SCB. By making our simulations faster, we can predict changes in the ring
current faster than in real time. This is crucial for monitoring space weather and taking actions to protect
satellites and other space assets. Our goal is to create a computer program (emulator) that is efficient, can
forecast changes accurately, and gives reliable estimates of its predictions. We follow a method developed by
Licata and Mehta (2023), https://doi.org/10.1029/2022sw003345 and extend it to the ring current. Discrete
sampling is used to pick specific periods for our simulations. We focus on a part of the simulation data and use
an advanced method, a hierarchical ensemble of Long Short‐TermMemory (LSTM) to build our emulator. This
is called a ROPE, that can predict the ring current's behavior by providing forecasts with errors below 11% and
calibration scores under 8% (how aligned the predictions are with the actual).

1. Introduction
Earth's protective magnetic field shields it from harmful solar wind particles. Some of these particles, upon
trapping in the Earth's magnetic field, form a “ring current.” The ring current, among the four major particle
populations in the inner magnetosphere—comprising the cold plasmasphere, the warm plasma cloak, and the
relativistic radiation belts—plays a crucial role in regulating energy density and exerting feedback to the
magnetosphericmagnetic field configuration (Daglis et al., 1999; Fok et al., 2021; Russell et al., 2016). Containing
ions and electrons of a few keV to a few 100 keV flowing at geocentric distances of∼2–6 Earth radii (RE), the ring
current interacts with other inner magnetospheric populations, creating a dynamic environment (Jordanova.
et al., 2020; Spence et al., 1989). The ring current has energies∼10–400 keV, and is generated by themovement of
charged particles experiencing both a convective and a gradient‐curvature drift. During geomagnetic activity, the
ring current gains population from plasma that is accelerated by reconnection in the magnetotail and transported
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earthward by the cross‐tail convective electric field, making it the population that carries most of the plasma
pressure and current directly into the inner magnetosphere (Ganushkina et al., 2017; Jordanova et al., 2012;
Jordanova, Thorne, et al., 2010; Yu et al., 2012). These accelerated particles experience a non‐uniform magnetic
field as they travel inward from the magnetotail that causes them to drift in opposite directions (gradient‐curvature
drift), inducing a current, with the ions moving toward the dusk side and electrons toward the dawn side of Earth.
This induced westward current aka ring current, is the main contributor to the magnetic depression observed by
ground‐based magnetometers during geomagnetic storms. The ring current plays a crucial role in space weather,
influencing particle populations, magnetic and electric fields, and various space phenomena. It significantly im-
pacts both the Dst and Sym‐H indices, key indicators of geomagnetic storms, and is highly correlated with space
weather events. The storm‐time ring current influences the ionosphere and thermosphere, contributing to
geomagnetically induced currents through region 2 field‐aligned currents (Jordanova. et al., 2020).

Various models simulate Earth's magnetospheric conditions, with two main types: magnetohydrodynamic models
and kinetic models. Magnetohydrodynamic models are effective for the outer magnetosphere but fall short in
describing the inner magnetosphere due to the dominance of energy‐dependent drifts, as noted by DeZeeuw
et al. (2004). Kinetic approaches are favored for the inner magnetosphere and ring current modeling, offering
better suitability for capturing the intricate particle dynamics. Kinetic ring current models, pioneered by Harel
et al. (1981) and R. Wolf et al. (1982), have been in use for over three decades and continue to be refined, for
example (Fok et al., 2021; Jordanova, Thorne, et al., 2010; Toffoletto et al., 2003). These models use diverse
methodologies to compute self‐consistent electric and/or magnetic fields crucial for simulating the inner
magnetosphere. The self‐consistent magnetic field is derived by solving the force balance equation J × B = ∇ . P,
where J is the current density and P is the plasma pressure tensor (Parker, 1987). While strictly valid in subsonic
regions where plasma inertia can be neglected, this force balance equation remains valuable for ring current
models due to their alignment within this domain (R. A. Wolf & Kamide, 1983).

In this paper, we consider a well‐developed and community‐accepted kinetic convection‐diffusion ring current‐
atmosphere interactions model (RAM) (Jordanova et al., 1994; Jordanova, Thorne, et al., 2010) with a self‐
consistent magnetic (B) field (SCB) (Jordanova et al., 2006; Zaharia et al., 2006). The Ring current‐atmo-
sphere interactions model with self‐consistent magnetic field (RAM‐SCB) began as a research‐based code with
limited options but is now a powerful and highly configurable open‐source software that supports parallelization
(Engel et al., 2019; Jordanova & Engel et al., 2022; Jordanova & Morley et al., 2022). By default, RAM‐SCB
models four species of charged particles (H+, He+, and O+, and e( ) in energies ranging from about 100 eV to
500 keV and the outer flux boundary is set using the Denton et al. (2016) model. An earlier (Kp‐parameterized)
version of the Denton model is used by the community coordinated modeling center runs‐on‐request version of
RAM (S. K. Morley et al., 2023); the vBz‐parameterized version has also been used previously to help specify the
outer flux boundary (Yu et al., 2022) and was also used for the near‐realtime version described in Jordanova et al.
(2023). RAM‐SCB provides a configurable spatial domain, but we use the default grid spanning from 2 to 6.5 RE

with a default setting utilizing a 0.25 RE resolution along the magnetic equatorial plane. One of its many data
products is the equatorial particle flux, which is provided in terms of magnetic local time (MLT), RE, energy (E),
and pitch angle (PA). The model provides invaluable insight into the physical evolution of dynamical systems
such as the ring current. Yet, for real‐time applications, the computational cost associated becomes a bottleneck,
inviting faster, more efficient models to take their place. Development of more efficient models has gained
popularity in the thermosphere (D. J. Gondelach & Linares, 2021; Licata &Mehta, 2023; Mehta & Linares, 2018).
Therefore, our objective is to enhance this application and create an emulator that holds wider applicability within
the Space Weather community. To begin with, we present a probabilistic forecast of the ring current, showcasing
its functionality on a limited subset of RAM‐SCB particle flux—specifically, a single energy channel of omni-
directional flux.

We employ reduced order modeling (ROM) to create efficient representations of the complex dynamics of the
system, offering a cost‐effective approach. Lumley (Lumley (1967)) pioneered model order reduction techniques,
initially applied to gain insights into turbulence mechanisms and coherent structures in fluid flow. Subsequent
refinements and improvements in these techniques have been explored in geophysical applications (Audouze
et al., 2009; Carlberg & Farhat, 2011; Issan & Kramer, 2023; Licata & Mehta, 2023; Mehta et al., 2018; Puzyrev
et al., 2018; Rekoske et al., 2023). One of the most challenging aspects of ROM in space weather systems is to
properly adjust the timing of the temporal variation predictions with the corresponding input driver(s) (Mehta &
Linares, 2017). Nevertheless, utilizing the learned reduced‐state features, we construct a reduced‐order
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probabilistic emulator (ROPE) using an ensemble of Long Short‐Term Memory (LSTMs) for time‐series fore-
casting of ring current particle flux, incorporating an uncertainty distribution estimate. The key reasons for the
importance of such a system are; (a) This represents a significant advancement, addressing the computational
demands associated with traditional simulation‐based models. (b) Speed‐up allows comprehensive investigation
of the system in terms of sensitivity and variance studies. (c) The reduced space simplifies data assimilation as
previously demonstrated in Mehta and Linares (2017). (d) It also enables uncertainty quantification (UQ), crucial
for operational use. We consider this an important advancement since physical models require significant pro-
cessing power to execute a simulation.

2. Methodology
The work employs reduced‐order modeling (ROM) and machine learning (ML) techniques to significantly cut
down the computational cost of physics‐based simulation models while preserving their accuracy. Note: Emu-
lators are not developed to replace physics‐based models but rather enable a higher adoption rate and usage for
more system‐wide investigations. Figure 1 shows a high‐level overview of the emulation process, where the
following steps are covered in more detail.

1. Event selection in Section 2.1
2. Data set creation in Section 2.2
3. Dimensionality reduction in Section 2.3
4. Dynamic modeling in Section 2.4
5. Model ensemble in Section 2.5
6. UQ in Section 2.6

The workflow employs color‐coded steps in blue for physical space and orange for reduced space. It starts with
discrete sampling to identify geomagnetic storms, simulating themwithRAM‐SCB to generateMLdata sets for the
emulator. Dimensionality reduction transforms ML data sets into a reduced space, and ROM identifies influential
variability modes (Mehta & Linares, 2017; Mehta et al., 2018). Operating in this space aids data assimilation for
high‐dimensional systems (D. J. Gondelach & Linares, 2020; Mehta & Linares, 2018; Maulik et al., 2022). A
recurrent neural network (RNN) predicts temporal variations in the reduced space, enhancing nonlinear modeling.
This deterministic model provides a single estimate, therefore an ensemble of deterministic models is created for
UQ thereby developing a ROPE. In the final step, predictions and uncertainties from the model ensemble are
reconstructed into the physical space by reversing the dimensionality reduction. It's essential to note that de-
velopments in the reduced space can be evaluated in the physical space using this reconstruction step.

2.1. Event Selection

The initial and perhaps the most crucial stage in developing any ML model involves constructing appropriate
training, validation, and test data sets. To create the data sets, we used NASA's space physics data facility

Figure 1. Emulator workflow overview: creation of machine learning data sets, reduced‐order dynamic modeling, model
ensemble assembly, and generation of the final probabilistic output. Physical and reduced space steps are color‐coded in blue
and orange, respectively.
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OMNIWeb database (OMNIWeb, 2020), focusing on solar wind and geomagnetic data spanning 2000–2020,
with a 1‐min cadence. We included various solar wind parameters such as velocity components (Vx, Vy, Vz) in
GSE coordinates, interplanetary magnetic field (IMF) components (Bx, By, Bz) in GSM coordinates, proton
density, proton temperature, flow pressure, and the geomagnetic indices AL and SYM‐H. The decision to retrieve
velocity components in GSE coordinates, rather than GSM coordinates, is constrained by the fact that the OMNI
web interface provides velocity components in GSE.We note the coordinate systems to help any users of the open
data associated with this work avoid the pitfalls of incorrect coordinate system assumptions. Here, the transverse
components of velocity are not used in the modeling, only Vx. As the X‐axis of GSM and GSM are the same, our
input data to RAM‐SCB is consistent. However, anyone choosing to use these input files to run a different model
would need to be aware of the systems used so that they could convert the transverse components to GSM. Given
the computational challenges and expenses involved in simulating this extensive time frame using physics‐based
models like RAM‐SCB, we devised a custom discrete sampling methodology. This approach enabled us to
identify a set of random events that sufficiently capture the entire range of solar wind drivers and ring current
responses.

The 21 years of OMNIWeb data from 2000 to 2020 are split into smaller, more manageable weekly segments,
each representing a candidate simulation interval. The 7‐day intervals are long enough to capture both a space
weather event and its recovery phase and short enough to avoid grouping unrelated events. We then applied two
filters; (a) When initializing large‐scale physics‐based simulations, the initial condition should be set to low
activity levels so that the internal components can stabilize before the system is perturbed. The predictive
performance of RAM‐SCB is known to be diminished when simulations are started under strongly disturbed
conditions (Jordanova, Zaharia, & Welling, 2010). Therefore, we drop weekly intervals that begin with radial
SW velocities (Vx) exceeding 500 km/s. (b) We restrict missing data within each interval to a cumulative total
of 36 hr (1.5 days) for any parameter. Smaller gaps passing this filter are linearly interpolated using the entire
weekly time series. These filters reduce the number of possible candidates from 7,664 to 2,839 at weekly
intervals.

This work introduces a novel custom discrete sampling methodology that efficiently and effectively samples our
full parameter space. Each of the 2,839 weeks‐long candidate intervals is located in a 4‐dimensional (4‐D)
parameter space using a set of summary statistics: (a) minimum SYM‐H, (b) mean AL, (c) mean Vx, and (d)
minimum Bz. These parameters describe the strength of the ring current disturbance and overall geomagnetic
activity, impulsive energy dissipation and injection of plasma into the inner magnetosphere, and strength of the
solar wind drivers, respectively. Traditional Latin hypercube sampling principles (Deutsch & Deutsch, 2012) use
equal probability bins in continuous probability distributions. We have discrete samples and require even
coverage over parameter space, hence we opt for an independent binning approach for each parameter. The full
range of each parameter is divided into 10 linearly spaced bins, each assigned equal probability. In the sampling
process, a bin index is randomly drawn with replacements for each parameter, ensuring coverage. If a bin is
empty, the process is reiterated until a non‐empty bin is found. Subsequently, a candidate interval is randomly
chosen, maintaining uniform probability within the bin. This procedure is repeated for all parameters, yielding a
pool of four candidate intervals. The final selection involves randomly choosing an interval from this pool and
removing it from each parameter space. In our sampling approach, we independently bin each parameter space,
providing a flexible and controlled method to ensure sufficient coverage of each parameter's range. Binning
directly in the 4‐D space would present challenges in balancing the representation of parameters, especially with
varying ranges. We aimed to address two key objectives with our discrete sampling method. Firstly, we sought to
comprehensively and uniformly cover the entire parameter space, ensuring a thorough representation of
geomagnetic activity. Secondly, we aimed to mitigate, by construction, the common issue of data imbalance in
space weather data sets. The sampling uses two summary statistics that represent magnetospheric response
(minimum Sym‐H and mean AL), and two that represent the solar wind driver (mean Vx and minimum Bz).
Uniform sampling from this 4‐D parameter space will include intervals driven by solar wind transients, although
the method does not specifically select based on the solar wind transients. The approach covers the span of drivers
from weak to strong (as represented by the summary measures), as well as the span of responses (as represented
by the geomagnetic index summaries). While it is unsurprising that strong activity and strong drivers are asso-
ciated with solar wind transients, the approach does not specifically select these. Thus, the observed prevalence of
these events in our selected data intervals is coincidental in that regard. Note that we also draw events from bins
with less geoeffective drivers and minimal response—this part of parameter space may have non‐geoeffective
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transients but highlights that we are not selecting based on the presence of transients. Our custom discrete
sampling method addresses the discrete and event‐driven nature of space weather, providing adaptability and
more uniform coverage in the 4‐D parameter space, mitigating bias toward less dynamic states/quiescent times.
This discrete sampling method will also contribute to improved generalization in the ROPE process.

A total of 30 events were selected using this sampling methodology, with 20 used for the training (TRNG) data set
(see Tables 1 and 5) used for each of the validation (VAL) and test (TST) data sets (see Table 2). Upon initial
sampling, it was observed that the TST2 case (TST 2, 2004‐11‐03, ( 394.0, ( 277.3, ( 475.3, ( 44.7) was being
overlapped, with the values closely aligning with the VAL2 data (VAL 2, 2004‐11‐05, ( 394.0, ( 409.3, ( 542.7,
( 44.7). Recognizing the potential for data leakage during the model evaluation phase, we opted to address this
concern by replacing the TST2 data with a new event selected from the same bin where the original TST2 was
located. This proactive step ensures the integrity of our model evaluation process by mitigating the risk of
inadvertent overlap between training and validation data sets. By selecting a replacement event with similar
characteristics to TST2, we maintain the coherence of the data set while minimizing the possibility of bias in our
results. Figure 2 displays the training, validation, test, and remaining samples (SAMP) in red, green, orange, and
dark blue, respectively. Histograms of each sample parameter's distribution are shown on the diagonal plots. The
panels below the diagonal show 2‐D scatter plots between the various parameter pairs, and the bivariate kernel
density estimates (Waskom, 2021; Węglarczyk, 2018) are plotted above the diagonal. This split leads to a
training/validation/test ratio of 66/17/17%.

2.2. Data Set Creation

Simulations were performed on WVU's Thorny Flat cluster with identical configurations, utilizing 13 CPU
cores (Cruz et al., 2024). The simulations generated 92 GB of data over 210 days in nearly 48 computational
days at an average speed of 4.4x real‐time, with a final output of 3 TB. RAM‐SCB produced equatorial,
directional differential fluxes as a 4‐D hypercube for various plasma species (H+, He+, O+, and e( ) for each

Table 1
Training Events Identified by the Novel Sampling Methodology

Event

Start date Min (SYM‐H) Mean (AL) Mean (Vx) Min (Bz)
(YYYY‐MM‐DD) (nT) (nT) (km/s) (nT)

TRNG 1 2001‐03‐31 ( 437.0 ( 216.3 ( 580.4 ( 44.4

TRNG 2 2001‐04‐07 ( 280.0 ( 272.2 ( 605.7 ( 20.3

TRNG 3 2001‐10‐16 ( 219.0 ( 173.8 ( 379.6 ( 17.8

TRNG 4 2001‐11‐24 ( 234.0 ( 77.9 ( 506.1 ( 26.6

TRNG 5 2002‐09‐05 ( 168.0 ( 224.2 ( 440.7 ( 22.8

TRNG 6 2003‐03‐14 ( 67.0 ( 283.4 ( 670.2 ( 7.4

TRNG 7 2003‐11‐09 ( 134.0 ( 412.9 ( 638.5 ( 8.5

TRNG 8 2003‐11‐20 ( 490.0 ( 251.5 ( 542.9 ( 51.3

TRNG 9 2004‐07‐19 ( 168.0 ( 287.0 ( 505.4 ( 18.6

TRNG 10 2005‐07‐08 ( 114.0 ( 253.4 ( 435.7 ( 18.9

TRNG 11 2005‐09‐10 ( 137.0 ( 381.8 ( 706.5 ( 6.5

TRNG 12 2005‐11‐30 ( 25.0 ( 102.5 ( 607.2 ( 3.6

TRNG 13 2007‐11‐13 ( 24.0 ( 53.0 ( 516.9 ( 5.6

TRNG 14 2008‐07‐12 ( 41.0 ( 116.9 ( 566.1 ( 7.7

TRNG 15 2009‐03‐08 ( 45.0 ( 79.3 ( 409.8 ( 10.2

TRNG 16 2009‐09‐09 ( 20.0 ( 50.5 ( 332.4 ( 6.1

TRNG 17 2011‐01‐07 ( 49.0 ( 82.1 ( 531.2 ( 4.6

TRNG 18 2012‐05‐02 ( 32.0 ( 53.1 ( 305.2 ( 8.3

TRNG 19 2013‐01‐17 ( 58.0 ( 62.9 ( 376.7 ( 12.3

TRNG 20 2013‐10‐30 ( 57.0 ( 84.0 ( 348.6 ( 8.1
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simulation, resulting in a data shape of (72, 35, 25, 20) per timestep. Each 7‐day simulation outputted at a
10‐min cadence, yielding 1,008 timesteps. The data structure for protons (H+) from 20 training simulations
had a shape of (20,160, 72, 35, 25, 20). Preprocessing steps included converting to single precision, resetting
the minimum threshold, and truncating radial distances below 3 RE, which resulted in a final shape of
(20,160, 72, 35, 25, 15). To maintain spatial information, we used a single energy channel and integrated
directional flux into omnidirectional flux (normalized per steradian) at the 208 keV energy channel following
Bourdarie et al. (2012):

jomni =
∫ π
0 j(E,α) sin(α) dα

∫ π
0 sin(α) dα

(1)

This yields omnidirectional differential flux ( jomni) in cm
( 2 s( 1 sr( 1 keV( 1, where j (E, α) is the directional

differential flux at a specific energy (E) and pitch angle (α). By focusing on a single energy channel and elim-
inating α information, the training data is condensed to spatial dimensions with a shape of (20,160, 25, 15),
occupying 30 MB of physical memory. The same process is applied to validation and test data sets.

2.3. Dimensionality Reduction

The next step in the emulation process is to reduce the dimensionality of the data sets. Principal Component
Analysis (PCA) (Hotelling, 1933), aka Empirical Orthogonal Function analysis (Bjornsson & Ven-
egas, 1997; Matsuo & Forbes, 2010), is the first step applied in ROM to reduce the spatial dimensionality
of the system. A system's spatial variations are normally represented by a set of basis vectors that are both
independent in time and mutually orthogonal (Carlberg & Farhat, 2011; D. J. Gondelach & Linares, 2020;
D. Wilks, 2011). The temporal variations ci(t) are then added in as weights to the spatial variations, which
we will be referring to as the reduced‐order temporal coefficients (Licata et al., 2022). This is shown in
Equation 2, where X ∈ Rn, s represents the spatial domain, t represents the temporal domain, and U
contains the spatial modes.

X(s,t) = X(s) + X̃(s,t) where X̃(s,t) ≈ ∑
r

i=1
ci (t)Ui (s) (2)

We convert the data into a 2‐D array as a last step performed to prep the data for the PCA. Since we are analyzing
only a single energy of omnidirectional flux, the spatial dimensions (25, 15) will be collapsed into a single array of
size n = 375, resulting in a data shape of (20,160, 375). Our PCA is implemented using a singular value
decomposition solver (Pedregosa et al., 2011).

Table 2
Validation and Test Events Identified by the Novel Sampling Methodology

Event
Start date Min (SYM‐H) Mean (AL) Mean (Vx) Min (Bz)

(YYYY‐MM‐DD) (nT) (nT) (km/s) (nT)

VAL 1 2003‐05‐05 ( 93.0 ( 297.5 ( 670.1 ( 7.5

VAL 2 2004‐11‐05 ( 394.0 ( 409.3 ( 542.7 ( 44.7

VAL 3 2005‐01‐12 ( 107.0 ( 251.9 ( 618.7 ( 12.3

VAL 4 2012‐11‐09 ( 118.0 ( 101.0 ( 357.5 ( 17.4

VAL 5 2017‐12‐01 ( 47.0 ( 129.5 ( 443.0 ( 11.1

TST 1 2002‐04‐19 ( 185.0 ( 206.3 ( 482.8 ( 13.7

TST 2 2005‐05‐12 ( 305.0 ( 273.9 ( 562.6 ( 36.7

TST 3 2005‐08‐24 ( 179.0 ( 164.9 ( 479.3 ( 32.4

TST 4 2013‐04‐24 ( 52.0 ( 132.2 ( 435.1 ( 12.8

TST 5 2017‐03‐26 ( 86.0 ( 259.1 ( 586.1 ( 9.2

SpaceWeather 10.1029/2023SW003706

CRUZ ET AL. 6 of 22

 15427390, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003706, W
iley O

nline L
ibrary on [12/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



X̃ = UΣVT where X̃ =

⎡

⎢
⎢
⎢
⎢
⎣

⃒
⃒

⃒
⃒

⃒
⃒

x̃1 x̃2 … x̃n
⃒
⃒

⃒
⃒

⃒
⃒

⎤

⎥
⎥
⎥
⎥
⎦
, (3)

where U contains the left singular vectors of X̃X̃T , V contains the right singular vectors of X̃
T
X̃, Σ is a diagonal

matrix containing the squares of the corresponding eigenvalues, and all are arranged in descending order. We use
this PCA decomposition to transform the ML data sets into the reduced‐space representation.

The PCA decomposition identifies spatial modes of variability, resembling known physical processes, but direct
interpretations are not guaranteed as each mode may encompass multiple processes or combinations of physical
phenomena (McGranaghan et al., 2015). Figure 3 shows the mean and first seven right singular vectors from the
PCA, or spatial modes of variability, on RAM‐SCB's grid (for the 208 keV proton flux). Upon visual inspection,
there are roughly three trends: (a) radial falloff, (b) symmetric rings, and (c) asymmetric structures. The mean and
Mode 1 exhibit radial falloff, corresponding to the expected location of the ring current during quiescent and
storm phases. During quiescent times, the ring current is normally confined to radial distances under 4.5 RE

(R < 4.5 RE) for high‐energy protons (E > 200 keV) (Jordanova, Zaharia, & Welling, 2010), which is consistent

Figure 2. Pairplot displaying the TRNG (red), VAL (green), and TST (orange) events identified by the novel custom discrete
sampling methodology. It visualizes the sampling taken within each parameter's distribution, where histograms of each
parameter are shown on the diagonal plots. The panels below and above the diagonal show 2‐D scatter plots between
parameter pairs and the bivariate KDEs, respectively. The remaining samples (SAMP) are shown in dark blue.
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with the mean plot. During the main phase of a geomagnetic storm, most all particle fluxes are reduced at radial
distances R > 4.5 RE, and the ring current is compressed closer toward the Earth (Jordanova et al., 2012). Mode 1
agrees with this reduction and compression, which by definition is also the most dominant mode of variability.
The symmetric rings in Modes 2, 4, and 7 seem to simply resemble basis functions for the symmetric ring current,
which becomes more defined at higher particle energies. During the main and recovery phases of a geomagnetic
storm, each particle's drift is known to vary radially (Jordanova, Zaharia, & Welling, 2010), creating similar
symmetric rings. The asymmetric structures in Modes 3, 5, and 6 are more difficult to interpret but are probably
related to the asymmetric particle injection at the night‐side boundary. The ring current is comprised of both a
symmetric and asymmetric portion or partial ring current (Daglis et al., 1999; Russell et al., 2016), as well as
drifting injected particles. Most of the asymmetric modes show variations between dawn and dusk, which is
probably due to the westward drift path for high‐energy ions in the ring current.

We decided to truncate our PCA at 20 modes (r = 20), which reduces the spatial dimensionality from X̃∈Rn to
X̃∈Rr. This is essentially a balance between minimizing the amount of reconstruction error and reducing the
dimensionality of the system for enough observability in later data assimilation applications (Mehta &
Linares, 2018). The cumulative variance contribution is plotted on the left axis of 3, where the first 20 modes are
shown to capture 82.9% of the variability. Figure 4 also reveals that the truncation error (right axis) from the

Figure 3. Mean and first 7 spatial modes of variability identified by the Principal Component Analysis from the right singular
vectors plotted on RAM‐SCB's grid. The modes are ordered in terms of importance, meaning the mean is the most dominant
followed by mode 1, and so on.
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reconstruction back to the physical space using 20 PCA modes is 2.9% median symmetric accuracy (MdSA) (S.
K. Morley, Brito, & Welling, 2018). Please refer to Section 2.7 for more details.

To illustrate the robustness of the PCA decomposition, three different timesteps from the VAL 4 simulation (see
Table 2) are reconstructed back to the physical space and shown in Figure 5. Timesteps were chosen before,
during, and after the geomagnetic storm, and the resulting truncation errors between the actual (left plots) and
reconstructed (middle plots) fluxes are plotted on the right. The errors in the plots before and after the storm are in
the same order as the truncation error, with an MdSA of 3.4% and 1.6%, respectively. Geomagnetic storms are
dynamic and complex phenomena characterized by non‐linear interactions between solar wind and Earth's
magnetosphere. While linear PCA provides valuable insights into the principal modes of variability within our
data set, it may not fully capture the intricate non‐linear dynamics exhibited during geomagnetic storms. As such,
errors in the PCA reconstruction are expected to increase under such conditions, highlighting the limitations of
linear methods in capturing non‐linear relationships within the system.

2.4. Dynamic Modeling

We implement a LSTM (Gers et al., 2002; Hochreiter & Schmidhuber, 1997) RNN to model and predict RAM‐
SCB's temporal variations (Wang et al., 2022). We chose LSTM for dynamic modeling for 2 reasons: (a) Since
magnetospheric responses tend to lag behind their SW drivers (Bargatze et al., 1985; Borovsky, 2020), an LSTM
copes with this temporal hysteresis by incorporating knowledge of previous timesteps, often referred to as the
lookback period, in its short‐term memory while still maintaining information on any long‐term trends in its cell
state (Licata &Mehta, 2023). (b) An LSTM can also capture nonlinear relationships between the input drivers and
reduced‐space temporal coefficients. The preconditioning of the inner magnetosphere (Kozyra et al., 1998;
Kozyra et al., 2002; S. K. Morley & Lockwood, 2006) adds another layer of complexity to how the LSTM learns
the dynamics of this system. LSTMs require a unique input structure, containing the reduced‐space temporal
coefficients as well as a set of user‐defined input drivers. We chose the same parameters used during the discrete
sampling in Section 2.1 (SYM‐H index, AL index, IMF Bz, and SW Vx) as input drivers with the addition of the
SW density. The LSTM input structures are built following the process outlined in Section 2.2 of Licata and
Mehta (2023).

Figure 6 shows a pictorial representation of different components in an LSTM cell. The LSTM cell processes
input xt alongside the previous state outputs (Ct( 1, Ht( 1) and current state input, with t and t ( 1 denoting current
and previous steps. Three σ nodes represent internal layers, using sigmoid activation, and tanh indicates a layer or
point‐wise operation. Sigmoid layers act as binary gates, allowing open (1) or closed (0) states. In the input gate,
the sigmoid and tanh layers process input and previous output. The forget gate employs a sigmoid layer to in-
fluence the previous cell state. The output gate decides how much of the output should proceed to the next layer.
The internal cell state undergoes updates, and the information proceeds to the downstream layer, ensuring LSTMs
effectively manage long‐term information.

In a data set with n samples, each comprising inputs (ninp) and outputs (nout), concatenation produces an array of
shape n × (nout + ninp). For RNNs, the hyperparameter known as the number of lag‐steps (nLS) determines the
model's consideration of previous time steps, akin to short‐term memory in Long Short‐Term Memory (LSTM)
networks. Data preparation involves stacking rows to arrange outputs and inputs for each lag step, resulting in a
shape of n × (nLS + 1) (nout + ninp). The last ninp columns are dropped. Further division yields training inputs and
outputs, with the first n × nLS (nout + ninp) columns as inputs and the last nout columns as outputs. The final step
involves reshaping the input data to n × nLS × (nout + ninp).

In our LSTM training process, we employ a many‐to‐one mode, where states are reset only after each simulation
period. Consequently, states undergo multiple resets within a single epoch. We opt not to utilize a dynamic mode
during training. Transitioning to evaluation mode, we maintain the many‐to‐one configuration; however, the
“many” aspect begins to incorporate predictions as we progress beyond the prediction epoch.

During LSTM training, the model predicts one step ahead using the last nLS sets of true values for both the input
drivers and state outputs (or reduced‐space coefficients in our case). The availability of true state outputs stems
from the predetermined nature of the training, validation, and test data sets, all derived from simulations. This
evaluation method, entailing the utilization of true input drivers and state outputs to forecast each timestep, is
commonly referred to as a one‐step prediction method.
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Figure 4. The cumulative variance contribution (orange) for each mode of the Principal Component Analysis, and truncation error (blue) of the reconstruction back into
the physical space using the specified number of modes on the training data set.

Figure 5. Snapshots taken before, during, and after the geomagnetic storm of the VAL 4 simulation with the truncation errors (right) between the actual (left) and
reconstructed (middle) fluxes. The truncation errors for the before, during, and after snapshots are 3.4%, 5.9%, and 1.6% median symmetric accuracy, respectively.

SpaceWeather 10.1029/2023SW003706

CRUZ ET AL. 10 of 22

 15427390, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003706, W
iley O

nline L
ibrary on [12/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Throughout an epoch, the model iteratively updates weights, encompassing those of the three sigmoid layers and
one tanh layer within each LSTM cell. As information traverses through each cell, the LSTM's internal state C
evolves. To counter temporal discontinuities, we reset the internal memory of every LSTM cell at the end of each
epoch, precluding the utilization of outdated information in predictions. This resetting mechanism proves pivotal
for ensuring accurate evaluations across diverse time periods during one‐step LSTM training.

In certain scenarios, true state outputs may not be accessible. In such cases, when conducting forecasts, predicted
state outputs are utilized for forecasting future timesteps, following the approach outlined in Figure 3 of Licata
and Mehta (2023). After predicting the current timestep t, the lookbacks are advanced for the subsequent timestep
t + 1, with the corresponding lookback for t being updated with the predicted output. This iterative process
continues for the forecast window's duration, constituting a dynamic prediction method, which represents one of
the advantages conferred by developing an emulator.

For the direct sequence applied to the model, we employ a look‐back period of 3, determined through parameter
tuning. This suggests that, based on the validation metric, the optimal window for this application spans 3‐time
steps. We exclusively operate in a stateful mode for a singular dynamic prediction window. For instance, his-
torical information and forecasted drivers initiate the process, with a fresh state commencing the sequential
advancement into the future, replacing historical information with predictions in the lookback window to diverge
from the prediction epoch. The state remains unreset during this period, retaining system information. Subse-
quently, if the model is utilized for a different timeframe, the state is reset. Throughout all training and evaluation
processes, the state reset only occurs when transitioning to a new window.

2.4.1. Hyperparameter Tuner

We employ a hyperparameter tuner, using TensorFlow's API (Abadi et al., 2015) and Keras Tuner (O’Malley
et al., 2019) with GPU settings using Nvidia's CUDA framework (NVIDIA, 2022), to automate the search for
optimal LSTM architectures. The tuner performs 50 trials, starting with 25 random grid searches and concluding
with 25 Bayesian Optimization iterations (Snoek et al., 2012). In typical practice, data sets with many samples are
split into batches for training efficiency which also enhances the model's generalization capability (Goodfellow
et al., 2016; Licata & Mehta, 2023; Montavon et al., 2012). While we adopt this approach by halving our

Figure 6. Schematic representation of a typical Long‐Short TermMemory (LSTM) cell (a). The components of an LSTM cell
such as the input gate (b ‐ green color‐coded), forget gate (c ‐ red color‐coded), and output gate (d ‐ blue color‐coded) are
shown. Point‐wise operations are denoted in green.
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simulations, allowing for batch shuffling during each training epoch, it has the drawback of truncating data due to
the required lookback period of a few timesteps to predict the initial epoch. Our hyperparameter tuner performs
two separate executions per trial to mitigate potential performance issues from weight initialization. Additionally,
we implement a callback to terminate training upon encountering a NaN loss, acting as a precaution against
exploding gradients (Goodfellow et al., 2016).

Table 3 outlines the hyperparameter space and the tuner configuration settings. The choice of optimizers, such as
AdaGrad (Duchi et al., 2011), RMSprop (Hinton et al., 2012), AdaDelta (Zeiler, 2012), and Adam (Kingma &
Ba, 2014), is treated as a hyperparameter. We also introduce a custom hyperparameter for the LSTM's lookback
period to address variations in the inner magnetosphere's responses to solar wind drivers, requiring changes in the
LSTM's input shape for each trial (Bargatze et al., 1985; Maggiolo et al., 2017; Stumpo et al., 2020). However,
this presented an additional challenge because LSTM's input shape needs to be changed for each trial of the
hyperparameter tuner.

Our hyperparameter tuner is implemented with a fixed number of epochs so that it can search the entire
hyperparameter space in a reasonable amount of time. This, however, does not guarantee that these models have
converged, so we included optimizers in the tuner that utilize momentum, which helps mitigate the effects of local
minima in the loss function. The top architectures identified by the tuner are then put through more rigorous
training. Each of these architectures is allowed to reach a maximum of 1,000,000 epochs, but this value does not
have to be reached because an early stopping (Goodfellow et al., 2016) callback with a patience period (Montavon
et al., 2012) was implemented to prevent any overfitting. This is a much more robust training but requires
additional computational resources and time, which is why it was not implemented in the hyperparameter tuner.

2.5. Model Ensemble

Our emulator implements a model ensemble to not only provide an uncertainty estimate but also increase overall
model performance. An ensemble of models typically outperforms a single model (Elvidge et al., 2016, 2023;
Kioutsioukis & Galmarini, 2014; S. K. Morley, Welling, & Woodroffe, 2018; Weigel et al., 2008; Xiao
et al., 2018) because a diverse set of models will normally contain individual models that predict certain portions
of the training data better than others. Since the predictions of the LSTM models from the hyperparameter tuner
are deterministic, a model ensemble provides the ability to compute statistics from multiple models to determine
an error distribution.

To ensure a diverse ensemble, we independently train five instances of the top five architectures from scratch,
resulting in 25 models. This approach, different from the one introduced by Licata and Mehta (2023), enhances
diversity within architectures. The models, even with the same architecture, exhibit differences due to random
weight initialization, dropout inclusion, and batch shuffling during training (Goodfellow et al., 2016; Montavon
et al., 2012). Additionally, instead of selecting top models based on mean squared error (MSE) of reduced‐space

Table 3
Hyperparameter Tuner Configuration (Left Panel) and Tuner Search Space (Right Panel) for the Long‐Short Term Memory
Model

Hyperparameter tuner configuration Hyperparameter search space

Tuner option Choice Parameter Values/range

Scheme Bayesian optimization Number of LSTM layers [1–2]

Total Trials 50 LSTM neurons Min = 32, Max = 300, step = 4

Initial Trials 25 LSTM activations Tanh, Sigmoid, SoftSign

Repeats per trial 2 Number of dense layers [1–3]

Minimization parameter Validation MSE Dense Neurons Min = 64, Max = 600, step = 4

Epochs per trial 50 Dense activation ReLu, Elu, Sigmoid, SoftSign, SoftPlus

Early stopping criteria val_loss Dense dropout min = 0.01, max = 0.50, step = 0.01

Early stopping patience 75 Optimizer AdaGrad, AdaDelta, RMSProp, Adam

Lookback Period [3, 24]
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temporal coefficients in the validation data set, as is common, we identify top architectures using the physical‐
space metric (MdSA) (refer Section 2.7).

2.6. Uncertainty Quantification

The emulator's last step is to combine the ensemble of deterministic models into a single probabilistic model.
Multi‐model ensembles have a history of applying a 2‐tier weighted average method to combine models (Elvidge
et al., 2016, 2023; Huang et al., 2009; Sewell, 2008; D. S. Wilks, 2011; ), but Licata and Mehta (2023) adds
another tier to the method while also computing a variance, making this 3‐tier hierarchical approach a robust and
reliable uncertainty estimate. To begin, each of the 25 models must be evaluated over the training data set using a
dynamic prediction. For better interpretability, the indexes in the next sections have the following definitions: i
refers to the architecture, j refers to the individual model within an architecture, k refers to the reduced‐space
coefficient's index, and t refers to the timestep from the above training data set evaluation. The central ten-
dency metric (mean vs. median) used in the UQ calculations varies depending on the data set as indicated in
Section 2.7. The RAM‐SCB dynamic predictions have a small number of timesteps with large errors (see
Figure 8), considered to be outliers, which justifies the use of the median statistic whenever an average is taken
over the temporal dimension (t). Implementing the median statistic instead of the mean is another modification
made to the method developed by Licata and Mehta (2023).

Combining models with a weighted average is more robust than taking a simple average because the weights can
be computed to place more emphasis on predictions with higher accuracy. In Equation 4 (right), the median
absolute error (MdAE) is taken over t for each model's evaluation and inverted to place more weight on models
that have the least error. These weights w̃i,j,k are then normalized within each architecture using Equation 4 (left)
so that the combination can be calculated as a simple weighted sum.

wi,j,k =
w̃i,j,k

∑
j
w̃i,j,k

where w̃i,j,k =
1

MdAEi,j,k
(4)

The resulting weights wi,j,k are then used to calculate the mean prediction and variance for each architecture,
creating the 2nd tier of this hierarchical ensemble method. This is done by performing a weighted sum over the
individual models within an architecture as shown in Equation 5. In these equations, α̂i,j,k,t are the dynamic
predictions from each model, α̂i,k,t is the mean prediction for each architecture, and σ̂2i,k,t is each architecture's
estimated variance.

α̂i,k,t = ∑
j
wi,j,k α̂i,j,k,t and σ̂2i,k,t = ∑

j
wi,j,k (α̂i,k,t ( α̂i,j,k,t)2 (5)

This variance calculation assumes a Gaussian distribution for each architecture, but combining these distributions
to develop the final emulator's uncertainty estimate may not end up Gaussian. This is because each architecture's
mean and variancemay differ, meaning their distributions will not necessarily be independent or uncorrelated with
each other, resulting in a non‐Gaussian distribution. A visual depiction of this can be found in Figure 7 of Sol-
tanzadeh et al. (2011),which shows the resulting non‐Gaussian probability density function from aBayesianmodel
averaging ensemble. To provide a more robust and reliable UQ, Licata and Mehta (2023) apply a scaling factor to
the uncertainty, called σ‐scaling (Laves et al., 2021). The concept behind σ‐scaling is to inflate the variance
whenever predictions within an architecture are very precise but not accurate. Equation 6 shows how to calculate
the σ‐scaling factor, Si,k, for each architecture and reduced‐space coefficient, where αk,t is the training data set's
ground truth (i.e., from the original simulations). This is another deviation fromLicata andMehta (2023) in that we
use themedian statistic instead of themean to calculate our scaling factors. Laves et al. (2021) also developed Si,k to
be applied to the standard deviation (i.e. σ), but we instead apply S2i,k to each architecture's variance σ̂

2
i,k,t. This

choice was made to focus on capturing the architecture‐specific variability within the variance metric.

Si,k =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Median[
(αk,t ( α̂i,k,t)2

σ̂2i,k,t
]

√
√
√

(6)
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The mean and variance estimates from each architecture are then combined to determine the ensemble's overall
mean α̂k,t and variance σ̂2k,t, which define the emulator's probabilistic output. This is also the 3rd and final tier of
the hierarchical ensemble method. The calculations are shown in Equation 7, where ni is the number of archi-
tectures, α̂i,k,t is each architecture's mean prediction, and σ̂2i,k,t is the variance estimate for each architecture with
the σ‐scaling factor already applied. A simple average is used here because this combination is conducted on the
2nd tier of the hierarchical ensemble. Licata and Mehta (2023) demonstrate that if the same number of models are
trained within each architecture then the pooled variance calculation simplifies to a simple average. The result is
referred to as a probabilistic output because of the included error distribution from the uncertainty estimate.

α̂k,t =
1
ni
∑
i
α̂i,k,t and σ̂2k,t =

1
ni
∑
i
σ̂2i,k,t (7)

2.7. Metrics

The error metric employed for physical space is the MdSA (S. K. Morley, Brito, & Welling, 2018). Given the
wide span and strictly positive nature of ring current particle flux (Zheng et al., 2019), conventional relative error
metrics like mean absolute percent error face limitations. MdSA addresses these concerns by offering a relative
error metric that equally penalizes over‐ and under‐estimations. Utilizing the median instead of the mean en-
hances robustness, particularly in the presence of outliers or unreliable data. In Section 2.6, when averaging over
the temporal range (t) for UQ, the median statistic is preferred due to the expected outliers during peak solar and
geomagnetic activity. Equation 8 outlines the MdSA computation, where Q =

pred
truth represents the accuracy ratio.

MdSA provides a straightforward interpretation as a percentage error.

MdSA = 100 ( exp ( Median( |loge(Q)| ) ) ( 1) (8)

The metric used to determine the bias in either the physical or reduced spaces is the symmetric signed percentage
bias (SSPB) (S. K. Morley, Brito, &Welling, 2018). Similar to the MdSA, the SSPB is a relative error metric that
penalizes over (positive SSPB value) and under (negative SSPB value) estimations equally. An SSPB with 0%
indicates an unbiased prediction.

SSPB = 100 sgn( Median( loge(Q)) ) ( exp ( |Median( loge(Q)) | ) ( 1) (9)

The standard metric, MSE, is used to quantify errors in the temporal coefficients in the reduced space (ref.
Equation 2). Model performance metrics, optimized in dynamic models (Section 2.4), undergo multiple

Figure 7. Relative error histogram of dynamic prediction errors from all 20 weeks‐long training simulations. The simulation
time is binned hourly, while the errors are binned every 10% median symmetric accuracy. The inset highlights the relative
high errors seen at the onset of each simulation.
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transformations (logarithmic, dimensional reduction, and standardization), posing challenges for direct inter-
pretation. Consequently, post‐processing involves reconstructing predictions into the physical space, a unique
challenge when working with ROMs as ML algorithms analyze reduced‐space representations that may lack
interpretability.

We will use the calibration error score (CES) from Licata and Mehta (2022) as a metric for UQ. Calibration error
score measures the deviation between observed cumulative probability p(α̂r,m) and expected cumulative prob-
ability p (αr,m), computed as outlined in Section 2.5.1 of Licata et al. (2022), where the prediction intervals span
from 5% to 99% in increments of 5%. Reliability is assessed through calibration curves, plotting p(α̂r,m) against p
(αr,m), with curves under Gaussian distribution assumption. A 45° line (i.e., y= x) indicates a match with a normal
distribution, while deviations imply over or underestimation of uncertainty. Calibration curves and CES are
calculated in the reduced space, and the CES calculation is presented in Equation 10.

CES =
100%
r ⋅m

∑
r
∑
m

|p(αr,m) ( p(α̂r,m)| (10)

where r is the number of reduced‐space coefficients and m is the number of prediction intervals used to determine
the cumulative probabilities.

3. Results
3.1. Hyperparameter Tuner

Table 4 presents the best models from the hyperparameter tuner. As seen in the test and validation metrics, most
errors hover around 5% MdSA with biases under ±1% SSPB after only 50 epochs of training. A model ensemble
was created by selecting the top 5 architectures from this table. The tuner settled on a shallow architecture, where
all of the top 10 architectures had only one LSTM and one dense layer. Only the Best Model #2 differed by having
two dense layers. Each model used the AdaGrad optimizer with a lookback period of three timesteps, or 30 min of
simulation time. It is important to note that these metrics are derived from a one‐step prediction and not the
dynamic prediction, or forecast evaluation method, used for the performance metrics in the next sections.

3.2. Dynamic Prediction

Based on a detailed analysis, we found relatively high errors during the initial few hours of each simulation.
Figure 7 shows the relative frequency of errors across all 20 weeks‐long training simulations. The simulation time

Figure 8. Hourly dynamic prediction results of the TST 5 simulation from the Long‐Short Term Memory tuner's best model.
Reconstructed errors (blue) in the physical space (median symmetric accuracy) are plotted along with the SYM‐H index
(orange) and interplanetary magnetic field Bz component (green).
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is binned every hour (6 timesteps) while the errors are binned every 10% MdSA. Figure 7 is interpreted as a
histogram, where the errors for every hour of each simulation are binned and presented as a percentage. The inset,
however, highlights a shorter trend of errors in the initial few hours. A more in‐depth look at the input drivers
(SYM‐H, AL, and Bz) during the onset of each simulation showed that not all parameters began at quiescent
levels. This meant that each simulation's initialization, or spin‐up, period was set with heightened activity, which
is known to affect the simulation results. Since the input drivers of each simulation varied in activity level, the
spin‐up periods ultimately differed across all simulations, so a simple cutoff time could not be determined. The
individual energy channels within each simulation are also expected to have varying spin‐up times, so we decided
to use this finding as a lesson learned for running large‐scale physics‐based simulation models such as RAM‐
SCB. Future work from this project will incorporate a more robust initialization period that allows each simu-
lation to reach a steady state before the event of interest begins. Of course, these initialization periods will not be
included when creating the training, validation, and test data set, but it should mitigate the errors seen in the initial
few hours of Figure 7.

As stated in Section 2.5, the top 5 architectures identified by the hyperparameter tuner are processed through
more rigorous training and evaluated using a dynamic prediction. An hourly forecast window was chosen for
the dynamic prediction. The selection of an hourly forecast window for dynamic prediction was guided by an
empirical assumption, driven by the intuition that forecasting double the lookback period would be a logical
choice in this context. Figure 8 shows the errors of the dynamic prediction evaluation for the TST 5 simulation
(see Table 1) using the tuner's best model. The SYM‐H and IMF Bz drivers are also plotted directly below the
errors to visually show that the error spikes coincide with heightened activity level. This LSTM model was able
to dynamically predict this week‐long simulation in just 11 s with a mean MdSA less than 11%, even though

the peak error can be observed in the initial timesteps, which is a factor of 2.
This mean MdSA error is an average over the simulation period where
the reconstructed MdSA is determined at each timestep. The threshold
for errors reaching a factor of 2 is important because Boyd et al. (2019)
shows that even instruments on the same spacecraft can have flux values
of the inner magnetosphere that disagree by a factor of 2. The quartiles
(25%, 50%, 75%) for this simulation came out to 5.48%, 8.09%, and 11.31%
MdSA, respectively.

The LSTM model was able to dynamically predict all 5 week‐long test
simulations using the hyperparameter tuner's best model in approx. 2 minutes
with a mean MdSA of 17.9%. This error value is an average over the entire
test data set, where the MdSA is determined from the reconstructed fluxes for
each timestep of every simulation. The quartiles (25%, 50%, 75%) came out to
6.8%, 11.42%, and 19.74% MdSA, respectively. This means that more than
75% of the errors in this entire data set have less than 20% MdSA.

Table 4
Top 10 Long‐Short Term Memory Architectures From the Hyperparameter Tuner

Best model
TRNG TRNG TRNG VAL VAL VAL TEST TEST TEST
MSE MdSA SSPB MSE MdSA SSPB MSE MdSA SSPB

1 0.159 4.22% 0.57% 0.380 5.29% 0.44% 0.41 7.89% 1.81%

2 0.156 4.24% 0.37% 0.398 5.33% 0.69% 0.39 8.49% 0.51%

3 0.150 4.14% ( 0.02% 0.395 5.49% ( 0.63% 0.44 8.01% ( 0.72%

4 0.156 4.26% 0.73% 0.367 5.58% ( 0.61% 0.42 7.71% 1.00%

5 0.187 4.10% ( 0.36% 0.273 5.59% 0.06% 0.33 7.15% 1.15%

6 0.166 4.29% ( 0.03% 0.408 5.72% ( 1.54% 0.42 8.70% ( 0.87%

7 0.168 4.40% 0.04% 0.394 5.74% ( 0.39% 0.46 8.50% ( 1.12%

8 0.190 4.32% ( 0.11% 0.288 5.80% ( 0.58% 0.33 7.10% 1.35%

9 0.206 4.66% 0.70% 0.348 5.91% 0.31% 0.34 7.21% 0.50%

10 0.205 5.15% 0.13% 0.328 6.35% ( 0.22% 0.33 7.29% 0.52%

Table 5
Hourly Dynamic Prediction Results for Both the Best Individual Model
(Deterministic) and Final Probabilistic Emulator (Reduced‐Order
Probabilistic Emulator) Over Each of the Machine Learning Data Sets

TRNG VAL TEST

Indiv. Model:

Dyn. Pred. (MdSA) 8.50% 11.44% 13.59%

Model Bias(SSPB) ( 1.80% 1.36% ( 1.56%

ROPE:

Dyn. Pred. (MdSA) 7.60% 10.34% 10.98%

Model Bias(SSPB) ( 1.53% ( 1.97% ( 1.92%

Calibration (CES) 8.97% 7.61% 7.50%
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3.3. Reduced‐Order Probabilistic Emulator

The 3‐tier hierarchical approach of first combining models within an architecture via a weighted average and then
combining the various architectures through a simple mean provides this work's final product, a ROPE of RAM‐
SCB particle flux.

A summary of our ROPE's final performance metrics is shown in Table 5, where it has an average MdSA of
roughly 10% with biases just under 2% SSPB using an hourly dynamic prediction on both the validation and test
data sets. As expected, the model ensemble outperformed the best individual model by a whole percentage point,
which is a significant performance bump given the level of accuracy in the ensemble members (see Table 4). The
biases stayed about the same between 1% and 2% SSPB. The ROPE's training, validation, and test quartiles (25%,
50%, 75%) came out to (3.19%, 5.12%, and 9.01%), (3.88%, 6.84%, and 12.25%), and (3.92%, 6.03%, and 10.83%)
MdSA, respectively.

Themodel ensemble, consisting of 25 LSTMs, delivers a striking result in terms of time efficiency during dynamic
predictions. The entire evaluation process for predicting the 5 week‐long simulations within each validation and
test data set is accomplished in a mere 110 s. In stark contrast, the parallel execution of the same 5 week‐long
simulations using RAM‐SCB, configured with identical settings and computational resources, demands an
extensive 38.2 hr. However, it is important to note that while the emulator predicts omnidirectional flux at a single
energy level without pitch angle information, RAM‐SCB predicts a much higher dimensionality space. Addi-
tionally, the ROPE is valid within the training bounds and represents only one configuration of the RAM‐SCB
model. Although RAM‐SCB itself is physics‐based and configurable, the emulator offers advantages in routine
prediction, low‐resource systems, large‐scale analyses, and scenarios where adding probabilistic output is ad-
vantageous. The ROPE's predictions (i.e., ensemble's combined hourly dynamic predictions) on the TST 3
simulation (see Table 2) are shown in Figure 9 with 2( σ bounds. Upon visual inspection, the first two reduced‐
order coefficients express good agreement with the truth values. Since the PCA coefficients are numbered in
descending order, having the best performance in the first few coefficients is ideal, so these are very promising
results.

Since our variance calculation assumes a Gaussian distribution (see Equation 5), we expect that approx. 95% of
the ROPE's predictions will fall within the 2‐σ bounds. The actual observed percentages for the first two co-
efficients (shown in Figure 9) are 93.5% and 92.8%, respectively. This is a slight underestimation of the variance
and only a few percentage points off, implying these uncertainty estimates are indeed well‐calibrated. Figure 10
demonstrates that the uncertainty is mostly underestimated for the remaining coefficients. The CES for each data
set is provided in Table 5, with scores less than 10%. These scores are interpreted as the emulator's reduced‐space
predictions having error distributions that deviate less than 10%, on average, from a normal distribution.

Lastly, Figure 11 depicts the evolution of the particle flux predicted by our ROPE through the TST 1 simulation.
The before and after storm predictions show a high degree of resemblance between the true and predicted fluxes,
with errors of 3.8% and 6.0%MdSA, respectively. These errors are on the order of the truncation error introduced
by the PCA decomposition, demonstrating good performance. During the storm, however, local errors climb past
500%, which is expected but still relatively large even given the fact that this is evaluated using a dynamic
prediction. The quartiles (25%, 50%, 75%) during the storm came out with errors of 12.68%, 27.73%, and 52.37%,
respectively. This translates to 3 out of every 4 flux values, on average, will have an error less than 53% during a
storm period where errors are expected to be high, which is well within the threshold of a factor of 2 (Boyd
et al., 2019).

4. Limitations and Future Work
The goal of this work is to apply the emulator workflow (Licata & Mehta, 2023) to the ring current by
demonstrating it on a smaller subset of RAM‐SCB particle flux, which in this case is a single energy channel of
omnidirectional flux. This is our biggest limitation. Thus, subsequent work will expand this workflow to
encompass the full energy spectrum and pitch angle distribution found in the particle flux data product.

While acknowledging that the inner magnetosphere contains nonlinear dynamics (e.g., Daglis et al., 2023),
necessitating consideration of nonlinear dimensionality reduction methods, our work opts for linear techniques
such as PCA. This choice, however, is a limitation. The future expansion to encompass RAM‐SCB's full energy
spectrum may require exploring nonlinear methods like kernel PCA or convolutional autoencoder (CAE).
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Incorporating nonlinear dimensionality reduction methods could help capture
these dynamics and potentially alleviate the significant error spikes observed
during periods of heightened solar and geomagnetic activity in our study,
which can be attributed, in part, to the use of linear PCA for dimensionality
reduction.

The hierarchical ensemble methodology is still a relatively novel approach for
creating probabilistic predictions. There is much to be explored and room for
more improvements. Even though the first two reduced‐space coefficients
contained roughly 93% of the ground truth values in their 2( σ bounds, the
uncertainties of the other coefficients were all underestimated. Our calibration
curves are also under a Gaussian assumption, so measuring the reliability
under non‐Gaussian distributions will require further investigation. Exploring
a debiasing or more sophisticated ensemble method (e.g., Elvidge et al., 2023)
may potentially improve the UQ's performance. The emulation process also
leveraged reduced‐order modeling to facilitate future data assimilation ap-
plications. This can enhance the workflow by assimilating an observable,
such as the Dst index, back into the emulator to further calibrate it.

5. Summary
This study extends Licata and Mehta's (2023) emulation process to ring
current dynamics, creating a ROPE with 25 LSTM models trained on 20
weeks‐long RAM‐SCB simulations. A hierarchical ensemble combines these
models for a probabilistic prediction with a robust uncertainty estimate. The
data that was fed to this mechanism comes from a unique sampling technique
where 30 events spanning 20 years of solar and geomagnetic activity are
transformed into reduced‐space representations through PCA decomposition.

The emulator demonstrates its effectiveness through consistently low er-
rors. The hyperparameter tuner's performance, evaluated with a one‐step
prediction, yields metrics of around 5% MdSA overall. However, more

Figure 9. Hourly dynamic predictions of the first 2 reduced‐space coefficients (α1 and α2) by the reduced‐order probabilistic emulator on the TST 3 simulation. The
prediction (blue) is plotted at each timestep along with the truth (black) and 2( σ bounds (light blue).

Figure 10. ROPE's calibration curves for the machine learning data sets
(training, validation, and test). Each reduced‐space coefficient has its own
curve, where the first 10 are plotted in solid lines and the remaining 10 have
dotted lines. The black dashed line represents the perfectly calibrated y = x
line of the Gaussian assumption.
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consideration is needed when initializing the simulations to obtain better results. The low truncation error from
the PCA of 2.9%MdSA demonstrates its robustness in reducing the dimensionality of this system, although fluxes
of H+ at higher energies (i.e., 208 keV) are undoubtedly easier to capture with PCA than lower energies (e.g., 1–
10 keV). The lookback period, number of LSTM layers, and number of dense layers from the hyperparameter
tuner results were all lower than expected, but this may have been an artifact frommodeling a smaller subset of the
RAM‐SCB particle flux data product. Once expanded to the full energy spectrum and PA distribution, we expect
the hyperparameter tuner to provide a much more diverse set of architectures. With all that said, our emulator
achieves a remarkable speed over RAM‐SCB, offering approximately 10% MdSA for hourly dynamic pre-
dictions. This substantial enhancement was achieved within a mere 110 s, a noteworthy improvement compared
to the 38.2 hr required for week‐long RAM‐SCB simulations. The emulator predicts omnidirectional flux at a
single energy level, contrasting with RAM‐SCB's prediction of a higher dimensionality space; however, it offers
advantages such as routine prediction and low‐resource system suitability due to its probabilistic output capa-
bilities and efficient performance.

Data Availability Statement
The OMNIWeb data used in this paper can be downloaded at (OMNIWeb, 2020). The RAM‐SCB source code
(Jordanova, Engel et al., 2022; Jordanova &Morley et al., 2022) can be found at Github (2022) (Github repo.Lanl
732 RAM‐SCB, 2022), and the version used in this work was tagged v.2.1.1. Both TensorFlow (Abadi
et al., 2015) and Keras Tuner (O’Malley et al., 2019) were downloaded using Anaconda (Anaconda Software

Figure 11. Snapshots taken before, during, and after the geomagnetic storm in the TST 1 simulation with the prediction errors (right) between the actual (left) and
reconstructed reduced‐order probabilistic emulator hourly dynamic predictions (middle), plotted on RAM‐SCB's grid.
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Distribution, 2020). The input files for the RAM‐SCB simulations, ML data sets, and code to run ROPE are
available at Cruz et al. (2024).
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